Plasma Indoleamine-2,3-Dioxygenase (IDO) is Increased in Drug-Naï ve Major Depressed Patients and Treatment with Sertraline and Ketoprofen Normalizes IDO in Association with Pro-Inflammatory and Immune- Regulatory Cytokines

Author(s): Hussein Kadhem Al-Hakeim, Ahmed Jasim Twayej, Arafat Hussein Al-Dujaili, Michael Maes*.

Journal Name: CNS & Neurological Disorders - Drug Targets
(Formerly Current Drug Targets - CNS & Neurological Disorders)

Volume 19 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Major Depression Disorder (MDD) is accompanied by an immune response characterized by increased levels of inflammatory and immune-regulatory cytokines and stimulation of indoleamine-2,3-dioxygenase (IDO). There is also evidence that anti-inflammatory drugs may have clinical efficacy in MDD.

Methods: This study examined a) IDO in association with interferon (IFN)-γ, Interleukin (IL)-4 and Transforming Growth Factor (TGF)-β1 in 140 drug-naïve MDD patients and 40 normal controls; and b) the effects of an eight-week treatment of sertraline with or without ketoprofen (a nonsteroidal antiinflammatory drug) on the same biomarkers in 44 MDD patients.

Results: Baseline IDO, IFN-γ, TGF-β1 and IL-4 were significantly higher in MDD patients as compared with controls. Treatment with sertraline with or without ketoprofen significantly reduced the baseline levels of all biomarkers to levels which were in the normal range (IDO, TGF-β1, and IL-4) or still somewhat higher than in controls (IFN-γ). Ketoprofen add-on had a significantly greater effect on IDO as compared with placebo. The reductions in IDO, IL-4, and TGF-β1 during treatment were significantly associated with those in the BDI-II.

Conclusion: MDD is accompanied by activated immune-inflammatory pathways (including IDO) and the Compensatory Immune-Regulatory System (CIRS). The clinical efficacy of antidepressant treatment may be ascribed at least in part to decrements in IDO and the immune-inflammatory response. These treatments also significantly reduce the more beneficial properties of T helper-2 and T regulatory (Treg) subsets. Future research should develop immune treatments that target the immune-inflammatory response in MDD while enhancing the CIRS.

Keywords: Major depression, tryptophan, ketoprofen, neuro-immune, inflammation, immune-inflammatory disorder.

[1]
Maes, M. A review on the acute phase response in major depression. Rev. Neurosci., 1993, 4(4), 407-416.
[http://dx.doi.org/10.1515/REVNEURO.1993.4.4.407] [PMID: 7506108]
[2]
Al-Hakeim, H.K. Serum cortisol, immunoglobulins and some complements among depressed patients. Indian J. Clin. Biochem., 2008, 23(1), 76-80.
[http://dx.doi.org/10.1007/s12291-008-0018-2] [PMID: 23105726]
[3]
Maes, M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 664-675.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.014] [PMID: 20599581]
[4]
Köhler, C.A.; Freitas, T.H.; Maes, M. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr. Scand., 2017, 135(5), 373-387.
[http://dx.doi.org/10.1111/acps.12698] [PMID: 28122130]
[5]
Anderson, G.; Maes, M. How immune-inflammatory processes link CNS and psychiatric disorders: classification and treatment implications. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 266-278.
[http://dx.doi.org/10.2174/1871527315666161122144659] [PMID: 27875954]
[6]
Maes, M.; Carvalho, A.F. The Compensatory Immune-Regulatory Reflex System (CIRS) in depression and bipolar disorder. Mol. Neurobiol., 2018, 55(12), 8885-8903.
[http://dx.doi.org/10.1007/s12035-018-1016-x] [PMID: 29611101]
[7]
Al-Hakeim, H.K.; Al-Kufi, S.N.; Al-Dujaili, A.H.; Maes, M. Serum interleukin levels and insulin resistance in major depressive disorder. CNS Neurol. Disord. Drug Targets, 2018, 17(8), 618-625.
[http://dx.doi.org/10.2174/1871527317666180720155300] [PMID: 30033878]
[8]
Peixoto, C.; Grande, A.J.; Mallmann, M.B.; Nardi, A.E.; Cardoso, A.; Veras, A.B. Dehydroepiandrosterone (DHEA) for depression: a systematic review and meta-analysis. CNS Neurol. Disord. Drug Targets, 2018, 17(9), 706-11.
[http://dx.doi.org/10.2174/1871527317666180817153914] [PMID: 30124161]
[9]
Maes, M.; Scharpé, S.; Meltzer, H.Y. Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res., 1994, 54(2), 143-160.
[http://dx.doi.org/10.1016/0165-1781(94)90003-5] [PMID: 7761549]
[10]
Maes, M.; Leonard, B.E.; Myint, A.M.; Kubera, M.; Verkerk, R. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 702-721.
[http://dx.doi.org/10.1016/j.pnpbp.2010.12.017] [PMID: 21185346]
[11]
Maes, M.; Verkerk, R.; Bonaccorso, S.; Ombelet, W.; Bosmans, E.; Scharpé, S. Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci., 2002, 71(16), 1837-48.
[http://dx.doi.org/10.1016/S0024-3205(02)01853-2] [PMID: 12175700]
[12]
Chaves Filho, A.J.M.; Lima, C.N.C.; Vasconcelos, S.M.M.; de Lucena, D.F.; Maes, M.; Macedo, D. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 234-49.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.035] [PMID: 28595944]
[13]
Hernandez, M.E.; Mendieta, D.; Pérez-Tapia, M. Effect of selective serotonin reuptake inhibitors and immunomodulator on cytokines levels: an alternative therapy for patients with major depressive disorder. Clin. Dev. Immunol., 2013, 2013267871
[http://dx.doi.org/10.1155/2013/267871] [PMID: 24348675]
[14]
Pan, Z.; Grovu, R.C.; Cha, D.S. Pharmacological treatment of cognitive symptoms in major depressive disorder. CNS Neurol. Disord. Drug Targets, 2017, 16(8), 891-9.
[PMID: 28933261]
[15]
David, D.J.; Gardier, A.M. [The pharmacological basis of the serotonin system: Application to antidepressant response]. Encephale, 2016, 42(3), 255-263.
[http://dx.doi.org/10.1016/j.encep.2016.03.012] [PMID: 27112704]
[16]
Orsolini, L.; Tomasetti, C.; Valchera, A. Current and future perspectives on the major depressive disorder: focus on the new multimodal antidepressant vortioxetine. CNS Neurol. Disord. Drug Targets, 2017, 16(1), 65-92.
[http://dx.doi.org/10.2174/1871527315666161025140111] [PMID: 27781949]
[17]
Wei, Z.; Zhang, K.; Zhou, Q. Differential mechanisms underlying antidepressant responses of ketamine and imipramine. CNS Neurol. Disord. Drug Targets, 2017, 16(7), 846-853.
[http://dx.doi.org/10.2174/1871527316666170428123248] [PMID: 28462695]
[18]
Mazza, M.; Marano, G.; Traversi, G.; Carocci, V.; Romano, B.; Janiri, L. Cariprazine in bipolar depression and mania: state of the art. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 723-727.
[http://dx.doi.org/10.2174/1871527317666180828120256] [PMID: 30152291]
[19]
Xia, Z.; DePierre, J.W.; Nässberger, L. Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology, 1996, 34(1), 27-37.
[http://dx.doi.org/10.1016/0162-3109(96)00111-7] [PMID: 8880223]
[20]
Maes, M.; Song, C.; Lin, A.H. Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology, 1999, 20(4), 370-9.
[http://dx.doi.org/10.1016/S0893-133X(98)00088-8] [PMID: 10088138]
[21]
Lee, K.M.; Kim, Y.K. The role of IL-12 and TGF-beta1 in the pathophysiology of major depressive disorder. Int. Immunopharmacol., 2006, 6(8), 1298-1304.
[http://dx.doi.org/10.1016/j.intimp.2006.03.015] [PMID: 16782542]
[22]
Blatteau, J.E.; de Maistre, S.; Lambrechts, K.; Abraini, J.; Risso, J.J.; Vallée, N. Fluoxetine stimulates anti-inflammatory IL-10 cytokine production and attenuates sensory deficits in a rat model of decompression sickness. J. Appl. Physiol., 2015, 119(12), 1393-9.
[http://dx.doi.org/10.1152/japplphysiol.00602.2015] [PMID: 26494447]
[23]
Khan, H.; Khattak, S.; Mubarak, M.S.; Bawazeer, S.S.; Abu-Izneid, T.; Kamal, M.A. Antidepressant potential of peptides: new insights as future therapeutic. CNS Neurol. Disord. Drug Targets, 2018, 17(1), 9-13.
[http://dx.doi.org/10.2174/1871527316666170731102237] [PMID: 28758584]
[24]
Brunoni, A.R.; Machado-Vieira, R.; Zarate, C.A. Cytokines plasma levels during antidepressant treatment with sertraline and transcranial direct current stimulation (tDCS): results from a factorial, randomized, controlled trial. Psychopharmacology (Berl.), 2014, 231(7), 1315-23.
[http://dx.doi.org/10.1007/s00213-013-3322-3] [PMID: 24150249]
[25]
Horikawa, H.; Kato, T.A.; Mizoguchi, Y. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(7), 1306-16.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.015] [PMID: 20654672]
[26]
Song, C.; Lin, A.; Bonaccorso, S. The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression. J. Affect. Disord., 1998, 49(3), 211-9.
[http://dx.doi.org/10.1016/S0165-0327(98)00025-1] [PMID: 9629951]
[27]
Maes, M.; Galecki, P.; Verkerk, R.; Rief, W. Somatization, but not depression, is characterized by disorders in the tryptophan catabolite (TRYCAT) pathway, indicating increased indoleamine 2,3-dioxygenase and lowered kynurenine aminotransferase activity. Neuroendocrinol. Lett., 2011, 32(3), 264-273.
[PMID: 21712776]
[28]
Maes, M. Targeting cyclooxygenase-2 in depression is not a viable therapeutic approach and may even aggravate the pathophysiology underpinning depression. Metab. Brain Dis., 2012, 27(4), 405-413.
[http://dx.doi.org/10.1007/s11011-012-9326-6] [PMID: 22773310]
[29]
Faridhosseini, F.; Sadeghi, R.; Farid, L.; Pourgholami, M. Celecoxib: a new augmentation strategy for depressive mood episodes. A systematic review and meta-analysis of randomized placebo-controlled trials. Hum. Psychopharmacol., 2014, 29(3), 216-223.
[http://dx.doi.org/10.1002/hup.2401] [PMID: 24911574]
[30]
Maes, M.; Fišar, Z.; Medina, M.; Scapagnini, G.; Nowak, G.; Berk, M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates--Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology, 2012, 20(3), 127-150.
[http://dx.doi.org/10.1007/s10787-011-0111-7] [PMID: 22271002]
[31]
Fernandes, B.S.; Dean, O.M.; Dodd, S.; Malhi, G.S.; Berk, M. N-Acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J. Clin. Psychiatry, 2016, 77(4), e457-66.
[http://dx.doi.org/10.4088/JCP.15r09984] [PMID: 27137430]
[32]
Müller, N. The role of anti-inflammatory treatment in psychiatric disorders. Psychiatr. Danub., 2013, 25(3), 292-8.
[PMID: 24048400]
[33]
Fields, C.; Drye, L.; Vaidya, V.; Lyketsos, C. ADAPT Research Group.Celecoxib or naproxen treatment does not benefit depressive symptoms in persons age 70 and older: findings from a randomized controlled trial. Am. J. Geriatr. Psychiatry, 2012, 20(6), 505-13.
[http://dx.doi.org/10.1097/JGP.0b013e318227f4da] [PMID: 21775876]
[34]
Köhler, O.; Benros, M.E.; Nordentoft, M. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 2014, 71(12), 1381-91.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1611] [PMID: 25322082]
[35]
Al-Dujaili, A.H.; Al-Hakeim, H.K.; Twayej, A.J.; Maes, M. Total and ionized calcium and magnesium are significantly lowered in drug-naïve depressed patients: effects of antidepressants and associations with immune activation. Metab. Brain Dis., 2019, 34(5), 1493-1503.
[http://dx.doi.org/10.1007/s11011-019-00458-5] [PMID: 31292851]
[36]
Twayej, A.J.; Al-Hakeim, H.K.; Al-Dujaili, A.H.; Maes, M. Lowered zinc and copper levels in drug-naïve patients with major depression: effects of antidepressants, ketoprofen and immune activation. World J. Biol. Psychiatry, 2019, 23, 1-12.
[http://dx.doi.org/10.1080/15622975.2019.1612090] [PMID: 31062629]
[37]
Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the beck depression Inventory-II; San Antonio, TX: Psychological Corporation, 1996.
[38]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 1995, 57(1), 289-300.
[http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x]
[39]
Zoga, M.; Oulis, P.; Chatzipanagiotou, S. Indoleamine 2,3-dioxygenase and immune changes under antidepressive treatment in major depression in females. In Vivo, 2014, 28(4), 633-8.
[PMID: 24982234]
[40]
Kopschina Feltes, P.; Doorduin, J.; Klein, H.C. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J. Psychopharmacol. , 2017, 31(9), 1149-65.
[http://dx.doi.org/10.1177/0269881117711708] [PMID: 28653857]
[41]
Kim, H.; Chen, L.; Lim, G. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J. Clin. Invest., 2012, 122(8), 2940-54.
[http://dx.doi.org/10.1172/JCI61884] [PMID: 22751107]
[42]
Quak, J.; Doornbos, B.; Roest, A.M. Does tryptophan degradation along the kynurenine pathway mediate the association between pro-inflammatory immune activity and depressive symptoms? Psychoneuroendocrinology, 2014, 45, 202-10.
[http://dx.doi.org/10.1016/j.psyneuen.2014.03.013] [PMID: 24845191]
[43]
Badawy, A.A.B. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res., 2017, 101178646917691938
[http://dx.doi.org/10.1177/1178646917691938] [PMID: 28469468]
[44]
Bay-Richter, C.; Linderholm, K.R.; Lim, C.K. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav. Immun., 2015, 43, 110-7.
[http://dx.doi.org/10.1016/j.bbi.2014.07.012] [PMID: 25124710]
[45]
Mechawar, N.; Savitz, J. Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl. Psychiatry, 2016, 6(11)e946
[http://dx.doi.org/10.1038/tp.2016.212] [PMID: 27824355]
[46]
Strawbridge, R.; Arnone, D.; Danese, A.; Papadopoulos, A.; Herane Vives, A.; Cleare, A.J. Inflammation and clinical response to treatment in depression: A meta-analysis. Eur. Neuropsychopharmacol., 2015, 25(10), 1532-43.
[http://dx.doi.org/10.1016/j.euroneuro.2015.06.007] [PMID: 26169573]
[47]
Dahl, J.; Ormstad, H.; Aass, H.C. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology, 2014, 45, 77-86.
[http://dx.doi.org/10.1016/j.psyneuen.2014.03.019] [PMID: 24845179]
[48]
Al-Hakeim, H.K.; Twayej, A.J.; Al-Dujaili, A.H. Reduction in serum IL-1β, IL-6, and IL-18 levels and Beck Depression Inventory-II score by combined sertraline and ketoprofen administration in major depressive disorder: a clinical trial. Neurol. Psychiatry Brain Res., 2018, 30, 148-153.
[http://dx.doi.org/10.1016/j.npbr.2018.10.001]
[49]
Pavón, L.; Sandoval-López, G.; Eugenia Hernández, M. Th2 cytokine response in Major Depressive Disorder patients before treatment. J. Neuroimmunol., 2006, 172(1-2), 156-65.
[http://dx.doi.org/10.1016/j.jneuroim.2005.08.014] [PMID: 16457895]
[50]
Tu, L.; Chen, J.; Zhang, H.; Duan, L. Interleukin-4 inhibits regulatory T cell differentiation through regulating CD103+ dendritic cells. Front. Immunol., 2017, 8, 214.
[http://dx.doi.org/10.3389/fimmu.2017.00214] [PMID: 28316599]
[51]
Yao, Y.; Li, W.; Kaplan, M.H.; Chang, C.H. Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. J. Exp. Med., 2005, 201(12), 1899-903.
[http://dx.doi.org/10.1084/jem.20050324] [PMID: 15967820]
[52]
Myint, A.M.; Leonard, B.E.; Steinbusch, H.W.; Kim, Y.K. Th1, Th2, and Th3 cytokine alterations in major depression. J. Affect. Disord., 2005, 88(2), 167-73.
[http://dx.doi.org/10.1016/j.jad.2005.07.008] [PMID: 16126278]
[53]
Noto, M.N.; Maes, M.; Nunes, S.O.V. Activation of the immune-inflammatory response system and the compensatory immune-regulatory reflex system in antipsychotic naive first episode psychosis. Eur. Neuropsychopharmacol., 2019, 29(3), 416-31.
[http://dx.doi.org/10.20944/preprints201809.0314.v1]
[54]
Connor, T.J.; Starr, N.; O’Sullivan, J.B.; Harkin, A. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci. Lett., 2008, 441(1), 29-34.
[http://dx.doi.org/10.1016/j.neulet.2008.06.007] [PMID: 18584961]
[55]
Lichtblau, N.; Schmidt, F.M.; Schumann, R.; Kirkby, K.C.; Himmerich, H. Cytokines as biomarkers in depressive disorder: current standing and prospects. Int. Rev. Psychiatry, 2013, 25(5), 592-603.
[http://dx.doi.org/10.3109/09540261.2013.813442] [PMID: 24151804]
[56]
Müller, N.; Schwarz, M.J. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol. Psychiatry, 2007, 12(11), 988-1000.
[http://dx.doi.org/10.1038/sj.mp.4002006] [PMID: 17457312]
[57]
Leonard, B.; Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev., 2012, 36(2), 764-85.
[http://dx.doi.org/10.1016/j.neubiorev.2011.12.005] [PMID: 22197082]
[58]
Kolouri, S.; Firoozabadi, A.; Salehi, A. Nepeta menthoides Boiss. & Buhse freeze-dried aqueous extract versus sertraline in the treatment of major depression: A double blind randomized controlled trial. Complement. Ther. Med., 2016, 26, 164-70.
[http://dx.doi.org/10.1016/j.ctim.2016.03.016] [PMID: 27261997]
[59]
Zamanian, A.; Ghanbari Jolfaei, A.; Mehran, G.; Azizian, Z. Efficacy of Botox versus placebo for treatment of patients with major depression. Iran. J. Public Health, 2017, 46(7), 982-4.
[PMID: 28845410]
[60]
Myint, A.M.; Kim, Y.K.; Verkerk, R.; Scharpé, S.; Steinbusch, H.; Leonard, B. Kynurenine pathway in major depression: evidence of impaired neuroprotection. J. Affect. Disord., 2007, 98(1-2), 143-51.
[http://dx.doi.org/10.1016/j.jad.2006.07.013] [PMID: 16952400]
[61]
Maes, M.; Delange, J.; Ranjan, R. Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res., 1997, 66(1), 1-11.
[http://dx.doi.org/10.1016/S0165-1781(96)02915-0] [PMID: 9061799]
[62]
Vazquez, G.H.; Camino, S.; Tondo, L.; Baldessarini, R.J. Potential novel treatments for bipolar depression: ketamine, fatty acids, anti-inflammatory agents, and probiotics. CNS Neurol. Disord. Drug Targets, 2017, 16(8), 858-869.
[PMID: 28758582]
[63]
Köhler, C.A.; Freitas, T.H.; Stubbs, B. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol. Neurobiol., 2018, 55(5), 4195-4206.
[PMID: 28612257]
[64]
Sutcigil, L.; Oktenli, C.; Musabak, U. Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin. Dev. Immunol., 2007, 2007, 76396.
[http://dx.doi.org/10.1155/2007/76396] [PMID: 18317531]
[65]
Maes, M.; Mihaylova, I.; Ruyter, M.D.; Kubera, M.; Bosmans, E. The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression - and other conditions characterized by tryptophan depletion induced by inflammation. Neuroendocrinol. Lett., 2007, 28(6), 826-831.
[PMID: 18063923]
[66]
Han, G.; Li, F.; Singh, T.P.; Wolf, P.; Wang, X.J. The pro-inflammatory role of TGFβ1: a paradox? Int. J. Biol. Sci., 2012, 8(2), 228-35.
[http://dx.doi.org/10.7150/ijbs.8.228] [PMID: 22253566]
[67]
Browning, C.H. Nonsteroidal anti-inflammatory drugs and severe psychiatric side effects. Int. J. Psychiatry Med., 1996, 26(1), 25-34.
[http://dx.doi.org/10.2190/1B32-79EA-B6H5-395V] [PMID: 8707453]
[68]
Jiang, H.K.; Chang, D.M. Non-steroidal anti-inflammatory drugs with adverse psychiatric reactions: five case reports. Clin. Rheumatol., 1999, 18(4), 339-345.
[http://dx.doi.org/10.1007/s100670050114] [PMID: 10468178]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 1
Year: 2020
Page: [44 - 54]
Pages: 11
DOI: 10.2174/1871527319666200102100307
Price: $65

Article Metrics

PDF: 21
HTML: 1