Evaluation of Strategies for Decreasing Blood Glucose Using Albuminbinding Domain

Author(s): Lin Fan, Yani Fan, Hongwei Fan*, Kaizong Huang*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: Frequent administrations for DPPIV-resistant GLP-1 analogs are necessary to maintain the blood concentrations due to the short half-life of less than 5 minutes. However, most delivery systems that possess the ability of sustainable release of GLP-1 have drawbacks such as low yield, high cost and undesirable side effects. Therefore, we aimed to prepare a simple and efficient delivery system that could be feasibly applied to reduce blood glucose.

Methods: A novel GLP-1 delivery system (GLP-1-ELPs-SA) was prepared and characterized by circular dichroism. Furthermore, the activity and property of GLP-1-ELPs-SA were evaluated in vitro and in vivo.

Results: GLP-1-ELPs-SA are easily expressed in E. coli in a soluble formulation and purified through the inverse transition cycle. GLP-1-ELPs-SA spontaneously generated depot under physiological conditions. GLP-1-ELPs-SA was also found to be dispersed in the blood vessels from the depot and showed a high affinity to bind with mice (C57BL/6J) albumin, which shows that GLP-1-ELPs-SA has a long circulation time in vivo.

Conclusion: Our delivery system could markedly decrease the clearance of recombinant proteins based on serum albumin, without substantially increasing the protein molecular weight and remarkably reducing the blood glucose within 120 h.

Keywords: Albumin, depot, SA motif, inverse transition cycle, GLP-1, circulation time.

[1]
Hays, N.P.; Galassetti, P.R.; Coker, R.H. Prevention and treatment of type 2 diabetes: current role of lifestyle, natural product, and pharmacological interventions. Pharmacol. Ther., 2008, 118(2), 181-191.
[http://dx.doi.org/10.1016/j.pharmthera.2008.02.003] [PMID: 18423879]
[2]
Ganguly, S.; Tan, H.C.; Lee, P.C.; Tham, K.W. Metabolic bariatric surgery and type 2 diabetes mellitus: an endocrinologist’s perspective. J. Biomed. Res., 2015, 29(2), 105-111.
[PMID: 25859264]
[3]
Neumiller, J.J. Clinical pharmacology of incretin therapies for type 2 diabetes mellitus: implications for treatment. Clin. Ther., 2011, 33(5), 528-576.
[http://dx.doi.org/10.1016/j.clinthera.2011.04.024] [PMID: 21665041]
[4]
(a) Gallwitz, B. Glucagon-like peptide-1-based therapies for the treatment of type 2 diabetes mellitus. Treat. Endocrinol., 2005, 4(6), 361-370.
[http://dx.doi.org/10.2165/00024677-200504060-00005] [PMID: 16318402]
(b) Nauck, M.A.; Kleine, N.; Orskov, C.; Holst, J.J.; Willms, B.; Creutzfeldt, W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1993, 36(8), 741-744.
[http://dx.doi.org/10.1007/BF00401145] [PMID: 8405741]
[5]
Miranda, L.P.; Winters, K.A.; Gegg, C.V.; Patel, A.; Aral, J.; Long, J.; Zhang, J.; Diamond, S.; Guido, M.; Stanislaus, S.; Ma, M.; Li, H.; Rose, M.J.; Poppe, L.; Véniant, M.M. Design and synthesis of conformationally constrained glucagon-like peptide-1 derivatives with increased plasma stability and prolonged in vivo activity. J. Med. Chem., 2008, 51(9), 2758-2765.
[http://dx.doi.org/10.1021/jm701522b] [PMID: 18412318]
[6]
Fala, L. Tanzeum (Albiglutide): A Once-Weekly GLP-1 receptor agonist subcutaneous injection approved for the treatment of patients with type 2 diabetes. Am. Health & Drug Benefits, 2015, 8(Spec Feature), 126-30.
[7]
(a) Fala, L. Trulicity (Dulaglutide): A new GLP-1 receptor agonist once-weekly subcutaneous injection approved for the treatment of patients with type 2 diabetes. Am. Health & Drug Benefits, 2015, 8(Spec Feature), 131-4. (b) Dungan, K.M.; Weitgasser, R.; Perez Manghi, F.; Pintilei, E.; Fahrbach, J.L.; Jiang, H.H.; Shell, J.; Robertson, K.E. A 24-week study to evaluate the efficacy and safety of once-weekly dulaglutide added on to glimepiride in type 2 diabetes (AWARD-8). Diabetes Obes. Metab., 2016, 18(5), 475-482.
[http://dx.doi.org/10.1111/dom.12634] [PMID: 26799540]
[8]
Amiram, M.; Luginbuhl, K.M.; Li, X.; Feinglos, M.N.; Chilkoti, A. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection. J. Control. Rel. Soc., 2013, 172(1), 144-151.
[9]
Diao, L.; Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet., 2013, 52(10), 855-868.
[http://dx.doi.org/10.1007/s40262-013-0079-0] [PMID: 23719681]
[10]
Luginbuhl, K.M.; Schaal, J.L.; Umstead, B.; Mastria, E.M.; Li, X.; Banskota, S.; Arnold, S.; Feinglos, M.; D’Alessio, D.; Chilkoti, A. One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat. Biomed. Eng., 2017, 1, 1.
[http://dx.doi.org/10.1038/s41551-017-0078] [PMID: 29062587]
[11]
Pollaro, L.; Raghunathan, S.; Morales-Sanfrutos, J.; Angelini, A.; Kontos, S.; Heinis, C. Bicyclic peptides conjugated to an albumin-binding tag diffuse efficiently into solid tumors. Mol. Cancer Ther., 2015, 14(1), 151-161.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0534] [PMID: 25381263]
[12]
(a) Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Rel. Soc, 2008, 132(3), 171-183.
(b) Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: Harnessing nature to cure disease. Mol. Cell. Ther., 2016, 4, 3.
[http://dx.doi.org/10.1186/s40591-016-0048-8] [PMID: 26925240]
[13]
Kim, J.; Hayton, W.L.; Robinson, J.M.; Anderson, C.L. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin. Immunol., 2007, 122(2), 146-155.
[http://dx.doi.org/10.1016/j.clim.2006.09.001] [PMID: 17046328]
[14]
(a) Huang, K.Z; Zhu, L.L.; Wang, Y.K; Mo, R.; Hua, Z.C Targeted delivery and release of doxorubicin using a pH-responsive and self-assembling copolymer. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(31), 6356-6365.
[http://dx.doi.org/10.1039/C7TB00190H]
(b) Huang, K.; Duan, N.; Zhang, C.; Mo, R.; Hua, Z. Improved antitumor activity of TRAIL fusion protein via formation of self-assembling nanoparticle. Sci. Rep., 2017, 7, 41904.
[http://dx.doi.org/10.1038/srep41904] [PMID: 28225020]
[15]
Han, J.; Sun, L.; Huang, X.; Li, Z.; Zhang, C.; Qian, H.; Huang, W. Novel coumarin modified GLP-1 derivatives with enhanced plasma stability and prolonged in vivo glucose-lowering ability. Br. J. Pharmacol., 2014, 171(23), 5252-5264.
[http://dx.doi.org/10.1111/bph.12843] [PMID: 25039358]
[16]
de Lange, O.; Wolf, C.; Thiel, P.; Krüger, J.; Kleusch, C.; Kohlbacher, O.; Lahaye, T. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nucleic Acids Res., 2015, 43(20), 10065-10080.
[http://dx.doi.org/10.1093/nar/gkv1053] [PMID: 26481363]
[17]
MacKay, J.A.; Chen, M.; McDaniel, J.R.; Liu, W.; Simnick, A.J.; Chilkoti, A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater., 2009, 8(12), 993-999.
[http://dx.doi.org/10.1038/nmat2569] [PMID: 19898461]
[18]
Schnell, O.; Alawi, H.; Battelino, T.; Ceriello, A.; Diem, P.; Felton, A.M.; Grzeszczak, W.; Harno, K.; Kempler, P.; Satman, I.; Vergès, B. The role of self-monitoring of blood glucose in glucagon-like peptide-1-based treatment approaches: a European expert recommendation. J. Diabetes Sci. Technol., 2012, 6(3), 665-673.
[http://dx.doi.org/10.1177/193229681200600323] [PMID: 22768899]
[19]
Zorzi, A.; Middendorp, S.J.; Wilbs, J.; Deyle, K.; Heinis, C. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides. Nat. Commun., 2017, 8, 16092.
[http://dx.doi.org/10.1038/ncomms16092] [PMID: 28714475]
[20]
Fineman, M.S.; Shen, L.Z.; Taylor, K.; Kim, D.D.; Baron, A.D. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes. Diabetes Metab. Res. Rev., 2004, 20(5), 411-417.
[http://dx.doi.org/10.1002/dmrr.499] [PMID: 15343588]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 7
Year: 2020
Published on: 16 June, 2020
Page: [605 - 612]
Pages: 8
DOI: 10.2174/1389201021666200101105018
Price: $65

Article Metrics

PDF: 23
HTML: 2