Disintegrin Tablysin-15 Suppresses Cancer Hallmarks in Melanoma Cells by Blocking FAK/Akt/ERK and NF-κB Signaling

Author(s): Zhenhui Deng, Qingye Zeng, Jinwei Chai, Bei Zhang, Wenhong Zheng, Xueqing Xu*, Jiguo Wu*

Journal Name: Current Cancer Drug Targets

Volume 20 , Issue 4 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Integrins are crucial anti-cancer therapy targets. We previously showed that tablysin-15 is an integrin antagonist with its Arg-Gly-Asp motif in a novel structural context.

Objective: Here we investigated the anti-cancer effects and mechanisms of action of tablysin-15 in melanoma cells.

Methods: Cell adhesion, competitive binding, cell viability, and ATP chemiluminescence assays were used to analyze the binding of tablysin-15 to αvβ3 integrin and its phenotypic effects. Wound healing, transwells, and zymography were performed to detect motility and matrix metalloproteinase- 2/-9 activities. PARP and caspase-3 cleavage were used as apoptosis assays, while LDH release and flow cytometry were used for necrosis and cell cycle analysis. The expression of mRNAs and proteins of target molecules was measured by qRT-PCR and western blotting, respectively.

Results: Tablysin-15 dose-dependently inhibited the proliferation, migration, and invasion of M21 cells through integrin αvβ3. The proliferation inhibition caused by tablysin-15 was attributable to G0/G1 phase arrest rather than apoptosis or necrosis. Furthermore, tablysin-15 suppressed MMP-2/- 9 activities and the mRNA expression of MMP-2/-9 and COX-2 but was upregulated TIMP-1 in M21 cells. Meanwhile, tablysin-15 suppressed the expression of cyclin D1/E and CDK 2/6, the phosphorylation of FAK, Akt, and ERK, and nuclear translocation of NF-κB, while increasing the expression of the CDK inhibitor p21waf1/C1. Taken together, tablysin-15 might inhibit melanoma cell metastasis and proliferation by competing with αvβ3 integrin, thereby blocking FAK-associated signaling pathways and nuclear translocation of NF-κB.

Conclusion: Tablysin-15 has reliable anti-cancer effects against M21 melanoma cells, suggesting tablysin-15 is a promising anti-tumor drug.

Keywords: Tablysin-15, αvβ3, melanoma, RGD, FAK/Akt/ERK, NF-κB.

GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1545-1602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
Kalal, B.S.; Upadhya, D.; Pai, V.R. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol. Rev., 2017, 11(1), 326.
[http://dx.doi.org/10.4081/oncol.2017.326] [PMID: 28382191]
Huang, R.; Rofstad, E.K. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 92.
[http://dx.doi.org/10.1186/s13046-018-0763-x] [PMID: 29703238]
Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science, 1999, 285(5430), 1028-1032.
[http://dx.doi.org/10.1126/science.285.5430.1028] [PMID: 10446041]
Rathinam, R.; Alahari, S.K. Important role of integrins in the cancer biology. Cancer Metastasis Rev., 2010, 29(1), 223-237.
[http://dx.doi.org/10.1007/s10555-010-9211-x] [PMID: 20112053]
van der Flier, A.; Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res., 2001, 305(3), 285-298.
[http://dx.doi.org/10.1007/s004410100417] [PMID: 11572082]
Desgrosellier, J.S.; Barnes, L.A.; Shields, D.J.; Huang, M.; Lau, S.K.; Prévost, N.; Tarin, D.; Shattil, S.J.; Cheresh, D.A. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat. Med., 2009, 15(10), 1163-1169.
[http://dx.doi.org/10.1038/nm.2009] [PMID: 19734908]
Ali, Z.; Yousaf, N.; Larkin, J. Melanoma epidemiology, biology and prognosis. EJC Suppl, 2013, 11(2), 81-91.
[http://dx.doi.org/10.1016/j.ejcsup.2013.07.012] [PMID: 26217116]
Vizkeleti, L.; Kiss, T.; Koroknai, V.; Ecsedi, S.; Papp, O.; Szasz, I.; Adany, R.; Balazs, M. Altered integrin expression patterns shown by microarray in human cutaneous melanoma. Melanoma Res., 2017, 27(3), 180-188.
[http://dx.doi.org/10.1097/CMR.0000000000000322] [PMID: 28234767]
Nikkola, J.; Vihinen, P.; Vlaykova, T.; Hahka-Kemppinen, M.; Heino, J.; Pyrhönen, S. Integrin chains beta1 and alphav as prognostic factors in human metastatic melanoma. Melanoma Res., 2004, 14(1), 29-37.
[http://dx.doi.org/10.1097/00008390-200402000-00005] [PMID: 15091191]
Van Belle, P.A.; Elenitsas, R.; Satyamoorthy, K.; Wolfe, J.T.; Guerry, D., IV; Schuchter, L.; Van Belle, T.J.; Albelda, S.; Tahin, P.; Herlyn, M.; Elder, D.E. Progression-related expression of beta3 integrin in melanomas and nevi. Hum. Pathol., 1999, 30(5), 562-567.
[http://dx.doi.org/10.1016/S0046-8177(99)90202-2] [PMID: 10333228]
Hersey, P.; Sosman, J.; O’Day, S.; Richards, J.; Bedikian, A.; Gonzalez, R.; Sharfman, W.; Weber, R.; Logan, T.; Buzoianu, M.; Hammershaimb, L.; Kirkwood, J.M. Etaracizumab Melanoma Study Group. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or - dacarbazine in patients with stage IV metastatic melanoma. Cancer, 2010, 116(6), 1526-1534.
[http://dx.doi.org/10.1002/cncr.24821] [PMID: 20108344]
Łasiñska, I.; Mackiewicz, J. Integrins as a new target for cancer treatment. Anticancer. Agents Med. Chem., 2019, 19(5), 580-586.
[http://dx.doi.org/10.2174/1871520618666181119103413] [PMID: 30451118]
Sun, C.C.; Qu, X.J.; Gao, Z.H. Arginine-glycine-aspartate-binding integrins as therapeutic and diagnostic targets. Am. J. Ther., 2016, 23(1), e198-e207.
[http://dx.doi.org/10.1097/MJT.0000000000000053] [PMID: 24621642]
Xu, X.; Francischetti, I.M.; Lai, R.; Ribeiro, J.M.; Andersen, J.F. Structure of protein having inhibitory disintegrin and leukotriene scavenging functions contained in single domain. J. Biol. Chem., 2012, 287(14), 10967-10976.
[http://dx.doi.org/10.1074/jbc.M112.340471] [PMID: 22311975]
Ma, D.; Xu, X.; An, S.; Liu, H.; Yang, X.; Andersen, J.F.; Wang, Y.; Tokumasu, F.; Ribeiro, J.M.; Francischetti, I.M.; Lai, R. A novel family of RGD-containing disintegrins (Tablysin-15) from the salivary gland of the horsefly Tabanus yao targets αIIbβ3 or αVβ3 and inhibits platelet aggregation and angiogenesis. Thromb. Haemost., 2011, 105(6), 1032-1045.
[http://dx.doi.org/10.1160/TH11-01-0029] [PMID: 21475772]
Deng, Z.; Chai, J.; Zeng, Q.; Zhang, B.; Ye, T.; Chen, X.; Xu, X. The anticancer properties and mechanism of action of tablysin-15, the RGD-containing disintegrin, in breast cancer cells. Int. J. Biol. Macromol., 2019, 129, 1155-1167.
Reynolds, A.R.; Hart, I.R.; Watson, A.R.; Welti, J.C.; Silva, R.G.; Robinson, S.D.; Da Violante, G.; Gourlaouen, M.; Salih, M.; Jones, M.C.; Jones, D.T.; Saunders, G.; Kostourou, V.; Perron-Sierra, F.; Norman, J.C.; Tucker, G.C.; Hodivala-Dilke, K.M. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med., 2009, 15(4), 392-400.
[http://dx.doi.org/10.1038/nm.1941] [PMID: 19305413]
Zhang, B.; Deng, Z.; Zeng, B.; Yang, S.; Chen, X.; Xu, X.; Wu, J. In-vitro effects of the FS50 protein from salivary glands of Xenopsylla cheopis on voltage-gated sodium channel activity and motility of MDA-MB-231 human breast cancer cells. Anticancer Drugs, 2018, 29(9), 880-889.
[http://dx.doi.org/10.1097/CAD.0000000000000662] [PMID: 29912729]
Hou, C.; Miao, Y.; Wang, X.; Chen, C.; Lin, B.; Hu, Z. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle. Exp. Ther. Med., 2016, 12(1), 231-237.
[http://dx.doi.org/10.3892/etm.2016.3319] [PMID: 27429651]
Trikha, M.; Zhou, Z.; Timar, J.; Raso, E.; Kennel, M.; Emmell, E.; Nakada, M.T. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res., 2002, 62(10), 2824-2833.
[PMID: 12019160]
Reiser, J.; Sever, S.; Faul, C. Signal transduction in podocytes--spotlight on receptor tyrosine kinases. Nat. Rev. Nephrol., 2014, 10(2), 104-115.
[http://dx.doi.org/10.1038/nrneph.2013.274] [PMID: 24394191]
Zhang, J.; Hochwald, S.N. The role of FAK in tumor metabolism and therapy. Pharmacol. Ther., 2014, 142(2), 154-163.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.003] [PMID: 24333503]
Rinkenbaugh, A.L.; Baldwin, A.S. The NF-kappaB pathway and cancer stem cells. CELLS-BASEL, 2016, 5(2), 16.
Nieberler, M.; Reuning, U.; Reichart, F.; Notni, J.; Wester, H.J.; Schwaiger, M.; Weinmüller, M.; Räder, A.; Steiger, K.; Kessler, H. Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel), 2017, 9(9), E116
[http://dx.doi.org/10.3390/cancers9090116] [PMID: 28869579]
Jiang, Q.; Pan, Y.; Cheng, Y.; Li, H.; Liu, D.; Li, H. Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways. Oncol. Rep., 2016, 36(1), 253-262.
[http://dx.doi.org/10.3892/or.2016.4798] [PMID: 27175819]
Li, S.; Wei, J.; Yuan, L.; Sun, H.; Liu, Y.; Zhang, Y.; Li, J.; Liu, X. RGD-modified endostatin peptide 30 derived from endostatin suppresses invasion and migration of HepG2 cells through the αvβ3 pathway. Cancer Biother. Radiopharm., 2011, 26(5), 529-538.
[http://dx.doi.org/10.1089/cbr.2011.0978] [PMID: 21834652]
Saviola, A.J.; Burns, P.D.; Mukherjee, A.K.; Mackessy, S.P. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. INT J BIOL MACROMOL,, 2016.
Khan, Z.; Khan, N.; Tiwari, R.P.; Sah, N.K.; Prasad, G.B.; Bisen, P.S. Biology of Cox-2: an application in cancer therapeutics. Curr. Drug Targets, 2011, 12(7), 1082-1093.
[http://dx.doi.org/10.2174/138945011795677764] [PMID: 21443470]
Hung, Y.C.; Hsu, C.C.; Chung, C.H.; Huang, T.F. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(7), 723-737.
[http://dx.doi.org/10.1007/s00210-016-1233-7] [PMID: 27030393]
Hu, L.; Wang, J.; Wang, Y.; Xu, H. An integrin αvβ3 antagonistic modified peptide inhibits tumor growth through inhibition of the ERK and AKT signaling pathways. Oncol. Rep., 2016, 36(4), 1953-1962.
[http://dx.doi.org/10.3892/or.2016.4994] [PMID: 27499314]
Duronio, R.J.; Xiong, Y. Signaling pathways that control cell proliferation. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a008904
[http://dx.doi.org/10.1101/cshperspect.a008904] [PMID: 23457258]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 31 December, 2019
Page: [306 - 315]
Pages: 10
DOI: 10.2174/1568009620666200101094736
Price: $65

Article Metrics

PDF: 29