Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Peptide Nanomaterials for Drug Delivery Applications

Author(s): Sreekanth Pentlavalli, Sophie Coulter and Garry Laverty*

Volume 21, Issue 4, 2020

Page: [401 - 412] Pages: 12

DOI: 10.2174/1389203721666200101091834

Price: $65

Abstract

Self-assembled peptides have been shown to form well-defined nanostructures which display outstanding characteristics for many biomedical applications and especially in controlled drug delivery. Such biomaterials are becoming increasingly popular due to routine, standardized methods of synthesis, high biocompatibility, biodegradability and ease of upscale. Moreover, one can modify the structure at the molecular level to form various nanostructures with a wide range of applications in the field of medicine. Through environmental modifications such as changes in pH and ionic strength and the introduction of enzymes or light, it is possible to trigger self-assembly and design a host of different self-assembled nanostructures. The resulting nanostructures include nanotubes, nanofibers, hydrogels and nanovesicles which all display a diverse range of physico-chemical and mechanical properties. Depending on their design, peptide self-assembling nanostructures can be manufactured with improved biocompatibility and in vivo stability and the ability to encapsulate drugs with the capacity for sustained drug delivery. These molecules can act as carriers for drug molecules to ferry cargo intracellularly and respond to stimuli changes for both hydrophilic and hydrophobic drugs. This review explores the types of self-assembling nanostructures, the effects of external stimuli on and the mechanisms behind the assembly process, and applications for such technology in drug delivery.

Keywords: Peptide, nanomaterials, self-assembly, stimuli, mechanism, drug delivery.

Graphical Abstract
[1]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.005] [PMID: 16233988]
[2]
Goldberg, M.; Langer, R.; Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed., 2007, 18(3), 241-268.
[http://dx.doi.org/10.1163/156856207779996931] [PMID: 17471764]
[3]
Rafferty, J.; Nagaraj, H.; McCloskey, A.P.; Huwaitat, R.; Porter, S.; Albadr, A.; Laverty, G. Peptide therapeutics and the pharmaceutical industry: barriers encountered translating from the laboratory to patients. Curr. Med. Chem., 2016, 23(37), 4231-4259.
[http://dx.doi.org/10.2174/0929867323666160909155222] [PMID: 27633684]
[4]
Laverty, G.; McCloskey, A.P.; Gilmore, B.F.; Jones, D.S.; Zhou, J.; Xu, B. Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromolecules, 2014, 15(9), 3429-3439.
[http://dx.doi.org/10.1021/bm500981y] [PMID: 25068387]
[5]
Schnaider, L.; Brahmachari, S.; Schmidt, N.W.; Mensa, B.; Shaham-Niv, S.; Bychenko, D.; Adler-Abramovich, L.; Shimon, L.J.W.; Kolusheva, S.; DeGrado, W.F.; Gazit, E. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun., 2017, 8(1), 1365.
[http://dx.doi.org/10.1038/s41467-017-01447-x] [PMID: 29118336]
[6]
Valéry, C.; Pouget, E.; Pandit, A.; Verbavatz, J.M.; Bordes, L.; Boisdé, I.; Cherif-Cheikh, R.; Artzner, F.; Paternostre, M. Molecular origin of the self-assembly of lanreotide into nanotubes: a mutational approach. Biophys. J., 2008, 94(5), 1782-1795.
[http://dx.doi.org/10.1529/biophysj.107.108175] [PMID: 17993497]
[7]
Laverty, G.; Gorman, S.P.; Gilmore, B.F. The potential of antimicrobial peptides as biocides. Int. J. Mol. Sci., 2011, 12(10), 6566-6596.
[http://dx.doi.org/10.3390/ijms12106566] [PMID: 22072905]
[8]
Mandal, D.; Nasrolahi Shirazi, A.; Parang, K. Self-assembly of peptides to nanostructures. Org. Biomol. Chem., 2014, 12(22), 3544-3561.
[http://dx.doi.org/10.1039/C4OB00447G] [PMID: 24756480]
[9]
Hosseinkhani, H.; Hong, P.D.; Yu, D.S. Self-assembled proteins and peptides for regenerative medicine. Chem. Rev., 2013, 113(7), 4837-4861.
[http://dx.doi.org/10.1021/cr300131h] [PMID: 23547530]
[10]
Yan, X.; Zhu, P.; Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev., 2010, 39(6), 1877-1890.
[http://dx.doi.org/10.1039/b915765b] [PMID: 20502791]
[11]
Rubert Pérez, C.M.; Stephanopoulos, N.; Sur, S.; Lee, S.S.; Newcomb, C.; Stupp, S.I. The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann. Biomed. Eng., 2015, 43(3), 501-514.
[http://dx.doi.org/10.1007/s10439-014-1166-6] [PMID: 25366903]
[12]
Castillo, J.; Andersen, K.B.; Svendsen, W.E. Biomaterials Science and Engineering InTech. Self-assembled peptide nanostructures for biomedical applications: advantages and challenges, 1st ed; Rosario Pignatello, 2011.
[13]
Matson, J.B.; Zha, R.H.; Stupp, S.I. Peptide self-assembly for crafting functional biological materials. Curr. Opin. Solid State Mater. Sci., 2011, 15(6), 225-235.
[http://dx.doi.org/10.1016/j.cossms.2011.08.001] [PMID: 22125413]
[14]
Kokkoli, E.; Mardilovich, A.; Wedekind, A.; Rexeisen, E.L.; Garg, A.; Craig, J.A. Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles. Soft Matter, 2006, 2(12), 1015-1024.
[http://dx.doi.org/10.1039/b608929a]
[15]
Pujals, S.; Fernández-Carneado, J.; López-Iglesias, C.; Kogan, M.J.; Giralt, E. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim. Biophys. Acta, 2006, 1758(3), 264-279.
[http://dx.doi.org/10.1016/j.bbamem.2006.01.006] [PMID: 16545772]
[16]
Dehsorkhi, A.; Castelletto, V.; Hamley, I.W. Self-assembling amphiphilic peptides. J. Pept. Sci., 2014, 20(7), 453-467.
[http://dx.doi.org/10.1002/psc.2633] [PMID: 24729276]
[17]
Zapadka, K.L.; Becher, F.J.; Gomes Dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus, 2017, 7(6), 20170030
[http://dx.doi.org/10.1098/rsfs.2017.0030] [PMID: 29147559]
[18]
Panda, J.J.; Chauhan, V.S. Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering. Polym. Chem., 2014, 5(15), 4418-4436.
[http://dx.doi.org/10.1039/C4PY00173G]
[19]
Mandal, D.; Nasrolahi Shirazi, A.; Parang, K. Self-assembly of peptides to nanostructures. Org. Biomol. Chem., 2014, 12(22), 3544-3561.
[http://dx.doi.org/10.1039/C4OB00447G] [PMID: 24756480]
[20]
Ghadiri, M.R.; Granja, J.R.; Milligan, R.A.; McRee, D.E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366(6453), 324-327.
[http://dx.doi.org/10.1038/366324a0] [PMID: 8247126]
[21]
Fernandez-Lopez, S.; Kim, H.S.; Choi, E.C.; Delgado, M.; Granja, J.R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D.A.; Wilcoxen, K.M.; Ghadiri, M.R. Antibacterial agents based on the cyclic D,L-α-peptide architecture. Nature, 2001, 412(6845), 452-455.
[http://dx.doi.org/10.1038/35086601] [PMID: 11473322]
[22]
Hutchinson, J.A.; Burholt, S.; Hamley, I.W. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications. J. Pept. Sci., 2017, 23(2), 82-94.
[http://dx.doi.org/10.1002/psc.2954] [PMID: 28127868]
[23]
Caughey, B.; Lansbury, P.T.J. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci., 2003, 26(1), 267-298.
[http://dx.doi.org/10.1146/annurev.neuro.26.010302.081142] [PMID: 12704221]
[24]
Nelson, R.; Sawaya, M.R.; Balbirnie, M.; Madsen, A.Ø.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-β spine of amyloid-like fibrils. Nature, 2005, 435(7043), 773-778.
[http://dx.doi.org/10.1038/nature03680] [PMID: 15944695]
[25]
Rambaran, R.N.; Serpell, L.C. Amyloid fibrils: abnormal protein assembly. Prion, 2008, 2(3), 112-117.
[http://dx.doi.org/10.4161/pri.2.3.7488] [PMID: 19158505]
[26]
Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619), 625-627.
[http://dx.doi.org/10.1126/science.1082387] [PMID: 12714741]
[27]
Reches, M.; Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett., 2004, 4(4), 581-585.
[http://dx.doi.org/10.1021/nl035159z]
[28]
Hamley, I.W.; Dehsorkhi, A.; Castelletto, V.; Furzeland, S.; Atkins, D.; Seitsonen, J. Reversible helical unwinding transition of a self-assembling peptide amphiphile. Soft Matter, 2013, 9(39), 9290-9293.
[http://dx.doi.org/10.1039/c3sm51725j]
[29]
Fu, I.W.; Markegard, C.B.; Chu, B.K.; Nguyen, H.D. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations. Adv. Healthc. Mater., 2013, 2(10), 1388-1400.
[http://dx.doi.org/10.1002/adhm.201200400] [PMID: 23554376]
[30]
Branco, M.C.; Nettesheim, F.; Pochan, D.J.; Schneider, J.P.; Wagner, N.J. Fast dynamics of semiflexible chain networks of self-assembled peptides. Biomacromolecules, 2009, 10(6), 1374-1380.
[http://dx.doi.org/10.1021/bm801396e] [PMID: 19391585]
[31]
Swanekamp, R.J.; Welch, J.J.; Nilsson, B.L. Proteolytic stability of amphipathic peptide hydrogels composed of self-assembled pleated β-sheet or coassembled rippled β-sheet fibrils. Chem. Commun. (Camb.), 2014, 50(70), 10133-10136.
[http://dx.doi.org/10.1039/C4CC04644G] [PMID: 25050628]
[32]
Kuang, Y.; Gao, Y.; Xu, B. Supramolecular hydrogelators of N-terminated dipeptides selectively inhibit cancer cells. Chem. Commun. (Camb.), 2011, 47(47), 12625-12627.
[http://dx.doi.org/10.1039/c1cc15577f] [PMID: 22037699]
[33]
McCloskey, A.P.; Gilmore, S.M.; Zhou, J.; Draper, E.R.; Porter, S.; Gilmore, B.F. Self-assembling ultrashort NSAID-peptide nanosponges: multifunctional antimicrobial and anti-inflammatory materials. RSC Advances, 2016, 6(115), 114738-114749.
[http://dx.doi.org/10.1039/C6RA20282A]
[34]
Song, Y.; Challa, S.R.; Medforth, C.J.; Qiu, Y.; Watt, R.K.; Peña, D.; Miller, J.E.; van Swol, F.; Shelnutt, J.A. Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem. Commun. (Camb.), 2004, 4(9), 1044-1045.
[http://dx.doi.org/10.1039/B402126F] [PMID: 15116176]
[35]
Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew. Chem. Int. Ed. Engl., 2007, 46(14), 2431-2434.
[http://dx.doi.org/10.1002/anie.200603387] [PMID: 17328086]
[36]
Chen, C.; Pan, F.; Zhang, S.; Hu, J.; Cao, M.; Wang, J.; Xu, H.; Zhao, X.; Lu, J.R. Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules, 2010, 11(2), 402-411.
[http://dx.doi.org/10.1021/bm901130u] [PMID: 20078032]
[37]
Veiga, A.S.; Sinthuvanich, C.; Gaspar, D.; Franquelim, H.G.; Castanho, M.A.; Schneider, J.P. Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials, 2012, 33(35), 8907-8916.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.046] [PMID: 22995710]
[38]
Görbitz, C.H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide. Chem. Commun. (Camb.), 2006, (22), 2332-2334.
[http://dx.doi.org/10.1039/B603080G] [PMID: 16733570]
[39]
Marchesan, S.; Vargiu, A.V.; Styan, K.E. The Phe-Phe motif for peptide self-assembly in nanomedicine. Molecules, 2015, 20(11), 19775-19788.
[http://dx.doi.org/10.3390/molecules201119658] [PMID: 26540034]
[40]
Adler-Abramovich, L.; Aronov, D.; Beker, P.; Yevnin, M.; Stempler, S.; Buzhansky, L.; Rosenman, G.; Gazit, E. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol., 2009, 4(12), 849-854.
[http://dx.doi.org/10.1038/nnano.2009.298] [PMID: 19893524]
[41]
Wang, M.; Du, L.; Wu, X.; Xiong, S.; Chu, P.K. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly. ACS Nano, 2011, 5(6), 4448-4454.
[http://dx.doi.org/10.1021/nn2016524] [PMID: 21591732]
[42]
Zhu, P.; Yan, X.; Su, Y.; Yang, Y.; Li, J. Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chemistry, 2010, 16(10), 3176-3183.
[http://dx.doi.org/10.1002/chem.200902139] [PMID: 20119986]
[43]
Ryu, J.; Park, C.B. High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv. Mater., 2008, 20(19), 3754-3758.
[http://dx.doi.org/10.1002/adma.200800364]
[44]
Li, Z.; Liu, C.; Ma, S.; Zhang, D.; Yamaguchi, Y. Analysis of the inhibition of nucleic acid dyes on polymerase chain reaction by capillary electrophoresis. Anal. Methods, 2016, 8(11), 2330-2334.
[http://dx.doi.org/10.1039/C5AY02705E]
[45]
Adler-Abramovich, L.; Reches, M.; Sedman, V.L.; Allen, S.; Tendler, S.J.B.; Gazit, E. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir, 2006, 22(3), 1313-1320.
[http://dx.doi.org/10.1021/la052409d] [PMID: 16430299]
[46]
Krysmann, M.J.; Castelletto, V.; Kelarakis, A.; Hamley, I.W.; Hule, R.A.; Pochan, D.J. Self-assembly and hydrogelation of an amyloid peptide fragment. Biochemistry, 2008, 47(16), 4597-4605. [ACS]
[http://dx.doi.org/10.1021/bi8000616] [PMID: 18370402]
[47]
Reches, M.; Porat, Y.; Gazit, E. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem., 2002, 277(38), 35475-35480.
[http://dx.doi.org/10.1074/jbc.M206039200] [PMID: 12095997]
[48]
De Santis, P.; Forni, E.; Rizzo, R. Conformational analysis of DNA-basic polypeptide complexes: possible models of nucleoprotamines and nucleohistones. Biopolymers, 1974, 13(2), 313-326.
[http://dx.doi.org/10.1002/bip.1974.360130207] [PMID: 4820064]
[49]
Chapman, R.; Danial, M.; Koh, M.L.; Jolliffe, K.A.; Perrier, S. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem. Soc. Rev., 2012, 41(18), 6023-6041.
[http://dx.doi.org/10.1039/c2cs35172b] [PMID: 22875035]
[50]
Fernandez-Lopez, S.; Kim, H.S.; Choi, E.C.; Delgado, M.; Granja, J.R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D.A.; Wilcoxen, K.M.; Ghadiri, M.R. Antibacterial agents based on the cyclic D,L-α-peptide architecture. Nature, 2001, 412(6845), 452-455.
[http://dx.doi.org/10.1038/35086601] [PMID: 11473322]
[51]
Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science, 2002, 295(5564), 2418-2421.
[http://dx.doi.org/10.1126/science.1070821] [PMID: 11923529]
[52]
Hartgerink, J.D.; Granja, J.R.; Milligan, R.A.; Ghadiri, M.R. Self-assembling peptide nanotubes. J. Am. Chem. Soc., 1996, 118(1), 43-50.
[http://dx.doi.org/10.1021/ja953070s]
[53]
Sun, L.; Fan, Z.; Wang, Y.; Huang, Y.; Schmidt, M.; Zhang, M. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Soft Matter, 2015, 11(19), 3822-3832.
[http://dx.doi.org/10.1039/C5SM00533G] [PMID: 25858105]
[54]
Beck, K.; Brodsky, B. Supercoiled protein motifs: the collagen triple-helix and the α-helical coiled coil. J. Struct. Biol., 1998, 122(1-2), 17-29.
[http://dx.doi.org/10.1006/jsbi.1998.3965] [PMID: 9724603]
[55]
Fairman, R.; Åkerfeldt, K.S. Peptides as novel smart materials. Curr. Opin. Struct. Biol., 2005, 15(4), 453-463.
[http://dx.doi.org/10.1016/j.sbi.2005.07.005] [PMID: 16043341]
[56]
Wagner, D.E.; Phillips, C.L.; Ali, W.M.; Nybakken, G.E.; Crawford, E.D.; Schwab, A.D.; Smith, W.F.; Fairman, R. Toward the development of peptide nanofilaments and nanoropes as smart materials. Proc. Natl. Acad. Sci. USA, 2005, 102(36), 12656-12661.
[http://dx.doi.org/10.1073/pnas.0505871102] [PMID: 16129839]
[57]
Potekhin, S.A.; Melnik, T.N.; Popov, V.; Lanina, N.F.; Vazina, A.A.; Rigler, P.; Verdini, A.S.; Corradin, G.; Kajava, A.V. De novo design of fibrils made of short α-helical coiled coil peptides. Chem. Biol., 2001, 8(11), 1025-1032.
[http://dx.doi.org/10.1016/S1074-5521(01)00073-4] [PMID: 11731294]
[58]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 54(1), 3-12.
[http://dx.doi.org/10.1016/S0169-409X(01)00239-3] [PMID: 11755703]
[59]
Smith, A.M.; Banwell, E.F.; Edwards, W.R. Engineering increased stability into self-assembled protein fibers. Adv. Funct. Mater., 2006, 16(8), 1022-1030.
[http://dx.doi.org/10.1002/adfm.200500568]
[60]
Xu, C.; Breedveld, V.; Kopeček, J. Reversible hydrogels from self-assembling genetically engineered protein block copolymers. Biomacromolecules, 2005, 6(3), 1739-1749.
[http://dx.doi.org/10.1021/bm050017f] [PMID: 15877401]
[61]
Aggeli, A.; Nyrkova, I.A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T.C.B.; Semenov, A.N.; Boden, N. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc. Natl. Acad. Sci. USA, 2001, 98(21), 11857-11862.
[http://dx.doi.org/10.1073/pnas.191250198] [PMID: 11592996]
[62]
Fishwick, C.W.G.; Beevers, A.J.; Carrick, L.M.; Whitehouse, C.D.; Aggeli, A.; Boden, N. Structures of helical β-tapes and twisted ribbons: the role of side-chain interactions on twist and bend behavior. Nano Lett., 2003, 3(11), 1475-1479.
[http://dx.doi.org/10.1021/nl034095p]
[63]
Aggeli, A.; Bell, M.; Carrick, L.M.; Fishwick, C.W.G.; Harding, R.; Mawer, P.J.; Radford, S.E.; Strong, A.E.; Boden, N. pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases. J. Am. Chem. Soc., 2003, 125(32), 9619-9628.
[http://dx.doi.org/10.1021/ja021047i] [PMID: 12904028]
[64]
Lu, K.; Jacob, J.; Thiyagarajan, P.; Conticello, V.P.; Lynn, D.G. Exploiting amyloid fibril lamination for nanotube self-assembly. J. Am. Chem. Soc., 2003, 125(21), 6391-6393.
[http://dx.doi.org/10.1021/ja0341642] [PMID: 12785778]
[65]
Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619), 625-627.
[http://dx.doi.org/10.1126/science.1082387] [PMID: 12714741]
[66]
Xu, G.; Wang, W.; Groves, J.T.; Hecht, M.H. Self-assembled monolayers from a designed combinatorial library of de novo beta-sheet proteins. Proc. Natl. Acad. Sci. USA, 2001, 98(7), 3652-3657.
[http://dx.doi.org/10.1073/pnas.071400098] [PMID: 11274383]
[67]
Ashkenasy, N.; Horne, W.S.; Ghadiri, M.R. Design of self-assembling peptide nanotubes with delocalized electronic states. Small, 2006, 2(1), 99-102.
[http://dx.doi.org/10.1002/smll.200500252] [PMID: 17193563]
[68]
Chung, H.J.; Park, T.G. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today, 2009, 4(5), 429-437.
[http://dx.doi.org/10.1016/j.nantod.2009.08.008]
[69]
Hong, Y.; Pritzker, M.D.; Legge, R.L.; Chen, P. Effect of NaCl and peptide concentration on the self-assembly of an ionic-complementary peptide EAK16-II. Colloids Surf. B Biointerfaces, 2005, 46(3), 152-161.
[http://dx.doi.org/10.1016/j.colsurfb.2005.11.004] [PMID: 16321511]
[70]
Gao, L.; Wu, J.; Gao, D. Enzyme-controlled self-assembly and transformation of nanostructures in a tetramethylbenzidine/horseradish peroxidase/H2O2 system. ACS Nano, 2011, 5(8), 6736-6742.
[http://dx.doi.org/10.1021/nn2023107] [PMID: 21761873]
[71]
Ulijn, R.V.; Smith, A.M. Designing peptide based nanomaterials. Chem. Soc. Rev., 2008, 37(4), 664-675.
[http://dx.doi.org/10.1039/b609047h] [PMID: 18362975]
[72]
Cui, H.; Webber, M.J.; Stupp, S.I. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers, 2010, 94(1), 1-18.
[http://dx.doi.org/10.1002/bip.21328] [PMID: 20091874]
[73]
Haines, L.A.; Rajagopal, K.; Ozbas, B.; Salick, D.A.; Pochan, D.J.; Schneider, J.P. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J. Am. Chem. Soc., 2005, 127(48), 17025-17029.
[http://dx.doi.org/10.1021/ja054719o] [PMID: 16316249]
[74]
Pochan, D.J.; Schneider, J.P.; Kretsinger, J.; Ozbas, B.; Rajagopal, K.; Haines, L. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J. Am. Chem. Soc., 2003, 125(39), 11802-11803.
[http://dx.doi.org/10.1021/ja0353154] [PMID: 14505386]
[75]
Tang, C.; Ulijn, R.V.; Saiani, A. Effect of glycine substitution on Fmoc-diphenylalanine self-assembly and gelation properties. Langmuir, 2011, 27(23), 14438-14449.
[http://dx.doi.org/10.1021/la202113j] [PMID: 21995651]
[76]
Tang, C.; Ulijn, R.V.; Saiani, A. Self-assembly and gelation properties of glycine/leucine Fmoc-dipeptides. Eur. Phys. J., 2013, 36(10), 111.
[http://dx.doi.org/10.1140/epje/i2013-13111-3] [PMID: 24085660]
[77]
Shen, C.L.; Scott, G.L.; Merchant, F.; Murphy, R.M. Light scattering analysis of fibril growth from the amino-terminal fragment beta(1-28) of beta-amyloid peptide. Biophys. J., 1993, 65(6), 2383-2395.
[http://dx.doi.org/10.1016/S0006-3495(93)81312-2] [PMID: 8312477]
[78]
Fung, S.Y.; Keyes, C.; Duhamel, J.; Chen, P. Concentration effect on the aggregation of a self-assembling oligopeptide. Biophys. J., 2003, 85(1), 537-548.
[http://dx.doi.org/10.1016/S0006-3495(03)74498-1] [PMID: 12829508]
[79]
Majhi, P.R.; Ganta, R.R.; Vanam, R.P.; Seyrek, E.; Giger, K.; Dubin, P.L. Electrostatically driven protein aggregation: β-lactoglobulin at low ionic strength. Langmuir, 2006, 22(22), 9150-9159.
[http://dx.doi.org/10.1021/la053528w] [PMID: 17042523]
[80]
Leite, D.M.; Barbu, E.; Pilkington, G.J.; Lalatsa, A. Peptide self-assemblies for drug delivery. Curr. Top. Med. Chem., 2015, 15(22), 2277-2289.
[http://dx.doi.org/10.2174/1568026615666150605120456] [PMID: 26043734]
[81]
McCarthy, H.O.; McCaffrey, J.; McCrudden, C.M.; Zholobenko, A.; Ali, A.A.; McBride, J.W.; Massey, A.S.; Pentlavalli, S.; Chen, K.H.; Cole, G.; Loughran, S.P.; Dunne, N.J.; Donnelly, R.F.; Kett, V.L.; Robson, T. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J. Control. Release, 2014, 189, 141-149.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.048] [PMID: 24995949]
[82]
Massey, A.S.; Pentlavalli, S.; Cunningham, R.; McCrudden, C.M.; McErlean, E.M.; Redpath, P.; Ali, A.A.; Annett, S.; McBride, J.W.; McCaffrey, J.; Robson, T.; Migaud, M.E.; McCarthy, H.O. Potentiating the anticancer properties of bisphosphonates by nanocomplexation with the cationic amphipathic peptide, RALA. Mol. Pharm., 2016, 13(4), 1217-1228.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00670] [PMID: 26954700]
[83]
Lee, J.H.; Choi, Y.J.; Lim, Y.B. Self-assembled filamentous nanostructures for drug/gene delivery applications. Expert Opin. Drug Deliv., 2010, 7(3), 341-351.
[http://dx.doi.org/10.1517/17425240903559841] [PMID: 20201738]
[84]
Wang, Y.; Gong, X. Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(8), 3759-3773.
[http://dx.doi.org/10.1039/C6TA10474F]
[85]
Cheetham, A.G.; Zhang, P.; Lin, Y.A.; Lock, L.L.; Cui, H. Supramolecular nanostructures formed by anticancer drug assembly. J. Am. Chem. Soc., 2013, 135(8), 2907-2910.
[http://dx.doi.org/10.1021/ja3115983] [PMID: 23379791]
[86]
Brack, A.; Orgel, L.E. β structures of alternating polypeptides and their possible prebiotic significance. Nature, 1975, 256(5516), 383-387.
[http://dx.doi.org/10.1038/256383a0] [PMID: 238134]
[87]
Wang, J.; Liu, K.; Xing, R.; Yan, X. Peptide self-assembly: thermodynamics and kinetics. Chem. Soc. Rev., 2016, 45(20), 5589-5604.
[http://dx.doi.org/10.1039/C6CS00176A] [PMID: 27487936]
[88]
Silva, R.F.; Araújo, D.R.; Silva, E.R.; Ando, R.A.; Alves, W.A. L-diphenylalanine microtubes as a potential drug-delivery system: characterization, release kinetics, and cytotoxicity. Langmuir, 2013, 29(32), 10205-10212.
[http://dx.doi.org/10.1021/la4019162] [PMID: 23879638]
[89]
Rong, L.; Qin, S.; Zhang, C.; Cheng, Y.; Feng, J.; Wang, S. Biomedical applications of functional peptides in nano-systems. Mater. Today Chem., 2018, 9, 91-102.
[http://dx.doi.org/10.1016/j.mtchem.2018.06.001]
[90]
Li, J.; Li, X.; Kuang, Y.; Gao, Y.; Du, X.; Shi, J.; Xu, B. Self-delivery multifunctional anti-HIV hydrogels for sustained release. Adv. Healthc. Mater., 2013, 2(12), 1586-1590.
[http://dx.doi.org/10.1002/adhm.201300041] [PMID: 23616384]
[91]
Mammadov, R.; Mammadov, B.; Toksoz, S.; Aydin, B.; Yagci, R.; Tekinay, A.B.; Guler, M.O. Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules, 2011, 12(10), 3508-3519.
[http://dx.doi.org/10.1021/bm200957s] [PMID: 21853983]
[92]
[93]
Shi, J.; Xiao, Z.; Kamaly, N.; Farokhzad, O.C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res., 2011, 44(10), 1123-1134.
[http://dx.doi.org/10.1021/ar200054n] [PMID: 21692448]
[94]
Thundimadathil, J. Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids, 2012, 2012, 967347
[http://dx.doi.org/10.1155/2012/967347] [PMID: 23316341]
[95]
Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016, 11(1), 41-60.
[http://dx.doi.org/10.1016/j.nantod.2016.02.004] [PMID: 27103939]
[96]
Han, L.; Huang, R.; Li, J.; Liu, S.; Huang, S.; Jiang, C. Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer. Biomaterials, 2011, 32(4), 1242-1252.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.070] [PMID: 20971503]
[97]
Jiang, X.; Sha, X.; Xin, H.; Chen, L.; Gao, X.; Wang, X.; Law, K.; Gu, J.; Chen, Y.; Jiang, Y.; Ren, X.; Ren, Q.; Fang, X. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors. Biomaterials, 2011, 32(35), 9457-9469.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.055] [PMID: 21911250]
[98]
Liu, J.; Liu, J.; Xu, H.; Zhang, Y.; Chu, L.; Liu, Q.; Song, N.; Yang, C. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int. J. Nanomedicine, 2014, 9, 197-207.
[PMID: 24399876]
[99]
Kuang, Y.; Xu, B. Disruption of the dynamics of microtubules and selective inhibition of glioblastoma cells by nanofibers of small hydrophobic molecules. Angew. Chem. Int. Ed. Engl., 2013, 52(27), 6944-6948.
[http://dx.doi.org/10.1002/anie.201302658] [PMID: 23686848]
[100]
Li, J.; Kuang, Y.; Shi, J.; Zhou, J.; Medina, J.E.; Zhou, R.; Yuan, D.; Yang, C.; Wang, H.; Yang, Z.; Liu, J.; Dinulescu, D.M.; Xu, B. Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13307-13311.
[http://dx.doi.org/10.1002/anie.201507157] [PMID: 26365295]
[101]
Araste, F.; Abnous, K.; Hashemi, M.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Peptide-based targeted therapeutics: Focus on cancer treatment. J. Control. Release, 2018, 292, 141-162.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.004] [PMID: 30408554]
[102]
Boekhoven, J.; Zha, R.H.; Tantakitti, F.; Zhuang, E.; Zandi, R.; Newcomb, C.J.; Stupp, S.I. Alginate-peptide amphiphile core-shell microparticles as a targeted drug delivery system. RSC Advances, 2015, 5(12), 8753-8756.
[http://dx.doi.org/10.1039/C4RA16593D] [PMID: 25642326]
[103]
Chen, J.; Zou, X. Self-assemble peptide biomaterials and their biomedical applications. Bioact. Mater., 2019, 4, 120-131.
[http://dx.doi.org/10.1016/j.bioactmat.2019.01.002]
[104]
Yishay‐Safranchik, E.; Golan, M.; David, A. Controlled release of doxorubicin and Smac‐derived pro‐apoptotic peptide from self‐assembled KLD‐based peptide hydrogels. Polym. Adv. Technol., 2014, 25(5), 539-544.
[http://dx.doi.org/10.1002/pat.3300]
[105]
Wang, H.; Feng, Z.; Wu, D.; Fritzsching, K.J.; Rigney, M.; Zhou, J.; Jiang, Y.; Schmidt-Rohr, K.; Xu, B. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2016, 138(34), 10758-10761.
[http://dx.doi.org/10.1021/jacs.6b06075] [PMID: 27529637]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy