N and S Co-doped Ordered Mesoporous Carbon: An Efficient Electrocatalyst for Oxygen Reduction Reaction in Microbial Fuel Cells

Author(s): Leila Samiee*, Sedigheh Sadegh Hassani

Journal Name: Current Nanoscience

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Porous carbon materials are promising candidate supports for various applications. In a number of these applications, doping of the carbon framework with heteroatoms provides a facile route to readily tune the carbon properties. The oxygen reduction reaction (ORR), where the reaction can be catalyzed without precious metals is one of the common applications for the heteroatom-doped carbons. Therefore, heteroatom doped catalysts might have a promising potential as a cathode in Microbial fuel cells (MFCs). MFCs have a good potential to produce electricity from biological oxidization of wastes at the anode and chemical reduction at the cathode. To the best of our knowledge, no studies have been yet reported on utilizing Sulfur trioxide pyridine (STP) and CMK-3 for the preparation of (N and S) doped ordered porous carbon materials. The presence of highly ordered mesostructured and the synergistic effect of N and S atoms with specific structures enhance the oxygen adsorption due to improving the electrocatalytic activity. So the optimal catalyst, with significant stability and excellent tolerance of methanol crossover can be a promising candidate for even other storage and conversion devices.

Methods: The physico-chemical properties of the prepared samples were determined by Small Angle X-ray Diffraction (SAXRD), N2 sorption-desorption, Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared samples were further applied for oxygen reduction reaction (ORR) and the optimal cathode was tested with the Microbial Fuel Cell (MFC) system. Furthermore, according to structural analysis, The HRTEM, and SAXRD results confirmed the formation of well-ordered hexagonal (p6mm) arrays of mesopores in the direction of (100). The EDS and XPS approved that N and S were successfully doped into the CMK-3 carbon framework.

Results: Among all the studied CMK-3 based catalysts, the catalyst prepared by STP precursor and pyrolysis at 900°C exhibited the highest ORR activity with the onset potential of 1.02 V vs. RHE and 4 electron transfer number per oxygen molecule in 0.1 M KOH. The high catalyst durability and fuel-crossover tolerance led to stable performance of the optimal cathode after 5000 s operation, while the Pt/C cathode-based was considerably degraded. Finally, the MFC system with the optimal cathode displayed 43.9 mW·m-2 peak power density showing even reasonable performance in comparison to a Pt/C 20 wt.%.cathode.

Conclusion: The results revealed that the synergistic effect of nitrogen and sulfur co-doped on the carbon substrate structure leads to improvement in catalytic activity. Also, it was clearly observed that the porous structure and order level of the carbon substrate could considerably change the ORR performance.

Keywords: Oxygen reduction reaction, CMK-3, Porous graphene, Electrocatalyst, Nitrogen and sulfur co-doped, Microbial fuel cell.

Hussein, A.K. Applications of nanotechnology in renewable energies-A comprehensive overview and understanding. Renew. Sustain. Energy Rev., 2015, 42, 460-476.
Hussein, A.K.; Walunj, A.; Kolsi, L. Applications of nanotechnology to enhance the performance of the direct absorption solar collectors. J. Therm. Eng., 2016, 2, 529-540.
Li, D.; Li, Z.; Zheng, Y.; Liu, C.; Hussein, A.K.; Liu, X. Thermal performance of a PCM-filled double-glazing unit with different thermophysical parameters of PCM. Sol. Energy, 2016, 133, 207-220.
Hussein, A.K. Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview. Renew. Sustain. Energy Rev., 2016, 62, 767-792.
Hussein, A.K.; Li, D.; Kolsi, L.; Kata, S.; Sahoo, B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia, 2017, 109, 417-424.
Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage., 2011, 92(3), 407-418.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011] [PMID: 21138785]
Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature, 2001, 414(6861), 345-352.
[http://dx.doi.org/10.1038/35104620] [PMID: 11713541]
Cheng, F.; Chen, J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev., 2012, 41(6), 2172-2192.
[http://dx.doi.org/10.1039/c1cs15228a] [PMID: 22254234]
Yu, E.H.; Wang, X.; Krewer, U.; Li, L.; Scott, K. Direct oxidation alkaline fuel cells: From materials to systems. Energy Environ. Sci., 2012, 5, 5668-5680.
Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A.R.; Mustain, W.E.; Nijmeijer, K.; Scott, K.; Xu, T.W.; Zhuang, L. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci., 2014, 7, 3135-3191.
Valcarcel, M.; Cardenas, S.; Simonet, B.M.; Moliner-Martínez, Y.; Lucena, R. Carbon Nanostructures as Sorbent Materials in Analytical Processes. TrAC. Trends Analyt. Chem., 2008, 27, 34-43.
Yu, X.; Ye, S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. J. Power Sources, 2007, 172, 133-144.
Biloe, S.; Goetz, V.; Guillot, A. Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon, 2002, 40, 1295-1308.
Su, F.; Zeng, J.; Bao, X.; Yu, Y.; Lee, J.Y.; Zhao, X.S. preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater., 2005, 17, 3960-3967.
Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater., 2003, 15, 2107-2111.
Liu, H.J.; Wang, X.M.; Cui, W.J.; Dou, Y.Q.; Zhao, D.Y.; Xia, Y.Y. Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J. Mater. Chem., 2010, 20, 4223-4230.
Varcoe, J.R.; Slade, R.C.T. Prospects for alkaline anion‐exchange membranes in low temperature fuel cells. Fuel Cells (Weinh.), 2005, 5, 187-200.
Banham, D.; Ye, S.Y.; Pei, K.T.; Ozaki, J.I.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources, 2015, 285, 334-348.
Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev., 2016, 116(6), 3594-3657.
[http://dx.doi.org/10.1021/acs.chemrev.5b00462] [PMID: 26886420]
Shui, J.; Wang, M.; Du, F.; Dai, L. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv., 2015, 1(1)e1400129
[http://dx.doi.org/10.1126/sciadv.1400129] [PMID: 26601132]
Adhami, A.; Darvari, S.; Zirepour, A.; Oh, S.E. Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J., 2015, 54, 745-756.
Deng, Q.; Li, X.Y.; Zuo, J.N.; Ling, A.; Logan, B.E. Power generation using an activated carbon fiber felt cathode in an up-flow microbial fuel cell. J. Power Sources, 2010, 195, 1130-1135.
Wang, X.; Feng, C.; Ding, N.; Zhang, Q.; Li, N.; Li, X.; Zhang, Y.; Zhou, Q. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells. Environ. Sci. Technol., 2014, 48(7), 4191-4198.
[http://dx.doi.org/10.1021/es5002506] [PMID: 24597673]
Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol., 2015, 10(5), 444-452.
[http://dx.doi.org/10.1038/nnano.2015.48] [PMID: 25849787]
Qiao, Y.; Bao, S.J.; Li, C.M. Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry. Energy Environ. Sci., 2010, 3, 544-553.
Guo, Z.; Ren, G.; Jiang, C.; Lu, X.; Zhu, Y.; Jiang, L.; Dai, L. High performance heteroatoms quaternary-doped carbon catalysts derived from Shewanella bacteria for oxygen reduction. Sci. Rep., 2015, 5, 17064.
[http://dx.doi.org/10.1038/srep17064] [PMID: 26602287]
Liang, H.W.; Wu, Z.Y.; Chen, L.F.; Li, C.; Yu, S.H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction reaction electrocatalyst for zinc-air battery. Nano Energy, 2015, 11, 366-376.
Santoro, C.; Serov, A.; Staryha, L.; Kodali, M.; Gordon, J.; Babanova, S.; Bretschger, O.; Artyushkova, K.; Atanassov, P. Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells. Energy Environ. Sci., 2016, 9, 2346-2353.
Huang, J.; Zhu, N.; Yang, T.; Zhang, T.; Wu, P.; Dang, Z. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens. Bioelectron., 2015, 72, 332-339.
[http://dx.doi.org/10.1016/j.bios.2015.05.035] [PMID: 26002018]
Kaare, K.; Kruusenberg, I.; Merisalu, M.; Matisen, L.; Sammelselg, V.; Tammeveski, K. Electrocatalysis of oxygen reduction on multi walled carbon nanotube supported copper and manganese phthalocyanines in alkaline media. J. Solid State Electrochem., 2016, 20, 921-929.
Liang, H.W.; Zhuang, X.; Brüller, S.; Feng, X.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun., 2014, 5, 4973-4979.
[http://dx.doi.org/10.1038/ncomms5973] [PMID: 25229121]
Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. Sulfur-doped graphene as an efficient metal free cathode catalyst for oxygen reduction. ACS Nano, 2012, 6(1), 205-211.
[http://dx.doi.org/10.1021/nn203393d] [PMID: 22201338]
Yang, L.; Jiang, S.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X.; Wu, Q.; Ma, J.; Ma, Y.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7132-7135.
[http://dx.doi.org/10.1002/anie.201101287] [PMID: 21688363]
Yang, D.S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J.S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc., 2012, 134(39), 16127-16130.
[http://dx.doi.org/10.1021/ja306376s] [PMID: 22966761]
Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323(5915), 760-764.
[http://dx.doi.org/10.1126/science.1168049] [PMID: 19197058]
Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. Engl., 2012, 51(46), 11496-11500.
[http://dx.doi.org/10.1002/anie.201206720] [PMID: 23055257]
Xiong, D.; Li, X.; Fan, L.; Bai, Z. Three-dimensional heteroatomdoped nanocarbon for metal-free oxygen reduction electrocatalysis: A review. Catalysts, 2018, 8, 301-324.
Sarapuu, A.; Kibena-Poldsepp, E.; Borghei, M.; Tammeveski, K. Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal-nitrogen-carbon catalysts for alkaline membrane fuel cells. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 776-804.
Liu, Z.; Nie, H.; Yang, Z.; Zhang, J.; Jin, Z.; Lu, Y.; Xiao, Z.; Huang, S. Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 2013, 5(8), 3283-3288.
[http://dx.doi.org/10.1039/c3nr34003a] [PMID: 23474547]
Razmjooei, F.; Singh, K.P.; Song, M.Y.; Yu, J.S. Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon, 2014, 78, 257-267.
Su, Y.; Zhang, Y.; Zhuang, X.; Li, S.; Wu, D.; Zhang, F.; Feng, X. Low-temperature synthesis of nitrogen/sulfur co-doped threedimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2013, 62, 296-301.
Xu, J.; Dong, G.; Jin, C.; Huang, M.; Guan, L. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction. ChemSusChem, 2013, 6(3), 493-499.
[http://dx.doi.org/10.1002/cssc.201200564] [PMID: 23404829]
Qiu, Y.; Huo, J.; Jia, F.; Shanksa, B.H.; Li, W. N- and S-doped mesoporous carbon as metal-free cathode catalysts for direct bio-renewable alcohol fuel cells. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 83-95.
Lu, Y.; Zhu, N.; Yin, F.; Yang, T.; Wu, P.; Dang, Z.; Liu, M.; Wei, X. Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells. Biosens. Bioelectron., 2017, 98, 350-356.
[http://dx.doi.org/10.1016/j.bios.2017.07.006] [PMID: 28704783]
Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc., 2013, 135(21), 7823-7826.
[http://dx.doi.org/10.1021/ja402450a] [PMID: 23646856]
Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C.P. Facile synthesis of nitrogen‐doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen‐reduction reaction. Adv. Energy Mater., 2012, 2, 884-888.
Wang, H.; Bo, X.; Luhana, C.; Guo, L. Nitrogen doped large mesoporous carbon for oxygen reduction electrocatalyst using DNA as carbon and nitrogen precursor. Electrochem. Commun., 2012, 21, 5-8.
Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc., 2012, 134(1), 15-18.
[http://dx.doi.org/10.1021/ja206030c] [PMID: 22136359]
Chen, J.; Wang, X.; Cui, X.; Yang, G.; Zheng, W. Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-free electrocatalyst for oxygen reduction reaction. Chem. Commun. (Camb.), 2014, 50(5), 557-559.
[http://dx.doi.org/10.1039/C3CC47519K] [PMID: 24270453]
Zhou, X.; Yang, Z.; Nie, H.; Yao, Z.; Zhang, L.; Haung, S. Catalyst-free growth of large scale nitrogen-doped carbon spheres as efficient electrocatalysts for oxygen reduction in alkaline medium. J. Power Sources, 2011, 196, 9970-9974.
Yang, W.; Fellinger, T.P.; Antonietti, M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc., 2011, 133(2), 206-209.
[http://dx.doi.org/10.1021/ja108039j] [PMID: 21155583]
Han, C.; Wang, J.; Gong, Y.; Xu, X.; Li, H.; Wang, Y. Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 605-609.
Pan, F.; Jin, J.; Fu, X.; Liu, Q.; Zhang, J. Advanced oxygen reduction electrocatalyst based on nitrogen-doped graphene derived from edible sugar and urea. ACS Appl. Mater. Interfaces, 2013, 5(21), 11108-11114.
[http://dx.doi.org/10.1021/am403340f] [PMID: 24099362]
Cong, H.P.; Wang, P.; Gong, M.; Yu, S.H. Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol–tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy, 2014, 3, 55-63.
Zhang, Y.; Ge, J.; Wang, L.; Wang, D.; Ding, F.; Tao, X.; Chen, W. Manageable N-doped graphene for high performance oxygen reduction reaction. Sci. Rep., 2013, 3, 2771.
[http://dx.doi.org/10.1038/srep02771] [PMID: 24067782]
Higgins, D.; Chen, Z.; Chen, Z. Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction. Electrochim. Acta, 2011, 56, 1570-1575.
Wu, J.; Zhang, D.; Wang, Y.; Hou, B. Electrocatalytic activity of nitrogen-doped graphene synthesized via a one-pot hydrothermal process towards oxygen reduction reaction. J. Power Sources, 2013, 227, 185-190.
Lin, Z.; Waller, G.H.; Liu, Y.; Liu, M.; Wong, C.P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon, 2013, 53, 130-136.
Qu, L.; Liu, Y.; Baek, J.B.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4(3), 1321-1326.
[http://dx.doi.org/10.1021/nn901850u] [PMID: 20155972]
Brun, N.; Wohlgemuth, S.A.; Osiceanu, P.; Titirici, M.M. Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts. Green Chem., 2013, 15, 2514-2524.
Yu, D.; Wei, L.; Jiang, W.; Wang, H.; Sun, B.; Zhang, Q.; Goh, K.; Si, R.; Chen, Y. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale, 2013, 5(8), 3457-3464.
[http://dx.doi.org/10.1039/c3nr34267k] [PMID: 23474688]
Rashidi, A.M.; Mahmudian, L.; Dehghani, H. Producing graphene and nanoporous graphene. US20160060123 March 03. 2016.
Samiee, L.; Tasharrofi, S.; Sadegh Hassani, S.; Fardi, M.; Mazinani, B. Novel and economic approach for synthesis of mesoporous silica template and ordered carbon mesoporous by using cation exchange resin. Curr. Nanosci., 2017, 13, 595-603.
Hassani, S.S.; Ganjali, M.R.; Samiee, L.; Rashidi, A.M.; Tasharrofi, S.; Yadegari, A.; Shoghi, F.; Martel, R. Comparative study of various types of metal-free N and S co-doped porous graphene for high performance oxygen reduction reaction in alkaline solution. J. Nanosci. Nanotechnol., 2018, 18(7), 4565-4579.
[http://dx.doi.org/10.1166/jnn.2018.15316] [PMID: 29442633]
Lin, Z.; Waller, G.H.; Liu, Y.; Liu, M.; Wong, C.P., III Nitrogendoped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy, 2013, 2, 241-248.
Ziaedini, A.; Rashedi, H.; Alaie, E.; Zeinali, M. Continuous bioelectricity generation from phenol-contaminated water by mediatorlessmicrobial fuel cells: A comparative study between air-cathode and bio-cathode systems. Fuel Cells (Weinh.), 2018, 18, 526-534.
Sadegh Hassani, S.; Samiee, L.; Ghasemy, E.; Rashidi, A.M.; Ganjali, M.R.; Tasharrofi, S. Porous nitrogen doped graphene prepared through pyrolysis of ammonium acetate as an efficient ORR nanocatalyst. Int. J. Hydrogen Energy, 2018, 43, 15941-15951.
Wu, Z.S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc., 2012, 134(22), 9082-9085.
[http://dx.doi.org/10.1021/ja3030565] [PMID: 22624986]
Vinu, A.; Hartmann, M. Characterization and microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption. Catal. Today, 2005, 102-103, 189-196.
Vinu, A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv. Funct. Mater., 2008, 18, 816-827.
Vinu, A.; Srinivasu, P.; Takahashi, M.; Mori, T.; Balasubramanian, V.V.; Ariga, K. Controlling the textural parameters of mesoporous carbon materials. Microporous Mesoporous Mater., 2007, 100, 20-26.
Jiang, H.; Zhu, Y.; Feng, Q.; Su, Y.; Yang, X.; Li, C. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions. Chemistry, 2014, 20(11), 3106-3112.
[http://dx.doi.org/10.1002/chem.201304561] [PMID: 24520023]
Liang, H.W.; Wei, W.; Wu, Z.S.; Feng, X.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc., 2013, 135(43), 16002-16005.
[http://dx.doi.org/10.1021/ja407552k] [PMID: 24128393]
Lin, L.; Zhu, Q.; Xu, A.W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc., 2014, 136(31), 11027-11033.
[http://dx.doi.org/10.1021/ja504696r] [PMID: 25058390]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 20 August, 2020
Page: [625 - 638]
Pages: 14
DOI: 10.2174/1573413716666191231094731
Price: $65

Article Metrics

PDF: 13