Thermoelectric Properties of B12N12 Molecule

(E-pub Ahead of Print)

Author(s): Mohammad Reza Niazian, Laleh Farhang Matin*, Mojtaba Yaghobi, Amir Ali Masoudi

Journal Name: Current Nanoscience

Become EABM
Become Reviewer


Background:Recently, molecular electronics have attracted the attention of many researchers, both theoretically and applied electronics.Nanostructures have significant thermal properties, which is why they are considered as good options for designing a new generation of integrated electronic devices.

Objective:In this paper, the focus is on the thermoelectric properties of the molecular junction points with the electrodes. Also, the influence of the number of atom contacts was investigated on the thermoelectric properties of molecule located between two electrodes metallic.Therefore, the thermoelectric characteristics of the B12 N12 molecule are investigated.

Methods:For this purpose, the Green’s function theory as well as mapping technique approach with the wide-band approximation and also the inelastic behaviour is considered for the electron-phonon interactions.

Results & Conclusion:It is observed that the largest values of the total part of conductance as well as its elastic (G(e,n)max) depends on the number of atom contacts and are arranged as: G(e,1)max>G(e,4)max>G(e,6)max. Furthermore, the largest values of the electronic thermal conductance, i.e. Kpmax is seen to be in the order of K(p,4)max < K(p,1)max < K(p,6)max that the number of main peaks increases in four-atom contacts at (E< Ef). Furthermore, it is represented that the thermal conductance shows an oscillatory behavior which is significantly affected by the number of atom contacts.

Keywords: B12N12 fullerene, Non equilibrium Green’s Function, Thermoelectric effect, Electron–phonon interaction, Electrical conductivity, molecular device, the number of atom contacts

Rights & PermissionsPrintExport Cite as

Article Details

(E-pub Ahead of Print)
DOI: 10.2174/1573413716666191230155900
Price: $95