An Effort to Making a Colorimitric Nano-Biosensor for Vibrio cholera Detection

Author(s): Naimeh Mahheidari, Jamal Rashidiani, Hamid Kooshki, Khadijeh Eskandari*

Journal Name: Current Nanoscience

Volume 16 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Today, nanoparticles hold great promise in biomedical researches and applications including bacteria detection. The rapid and sensitive outcomes of bacteria detection strategies using nanoparticle conjugates become determinative, especially in bacterial outbreaks. In the current research, we focused on detecting V. cholera bacteria and its toxin using a thiocyanate/Au nanoparticle. Thiocyanate adsorbed strongly on the surface of gold nanoparticles and changed the surface by enhancing surface plasmon resonance of gold nanoparticles.

Objective: This method is tried to introduce a simple and fast procedure to assay vibrio cholera. So, it is observed by the naked eyes as well.

Methods: We used two antibodies (Ab) for V. cholera detection: a) a primary antibody conjugated to magnetic nanoparticles (MNPs) for trapping V. cholera bacterial cells, and b) a secondary Abconjugated thiocyanate-GNPs as a colorimetric detector. Then, an immuno-magnetic separation system connected to a colorimetric assay was designed based on the GNPs. The results were measured by ultraviolet-visible (UV-Vis) spectroscopy.

Results: The results showed that gold nanoparticles are an appropriate optical assay for detecting biological samples in a minimum concentration and also it can be easily seen by the naked eyes. The linear range of this biosensor is 3.2×104 to 28×104 cells per ml.

Conclusion: In this research, a colorimetric immune assay based on gold nanoparticles was designed to improve the sensitivity of V. cholera detection. Also, this method can be used for the detection of other biological agents.

Keywords: Vibrio cholera, Thiocyanate, UV-Vis spectroscopy, colorimetric analysis, biosensor, gold nanoparticle, magnetic nanoparticle

[1]
Zhang, L.; Sun, Y. Charged surface regulates the molecular interactions of electrostatically repulsive peptides by inducing oriented alignment. Langmuir, 2018, 34(14), 4390-4397.
[http://dx.doi.org/10.1021/acs.langmuir.7b04308] [PMID: 29566489]
[2]
Chau, Y.C.; Wang, C-K.; Shen, L.; Lim, C.M.; Chiang, H-P.; Chao, C.C.; Huang, H.J.; Lin, C-T.; Kumara, N.T.R.N.; Voo, N.Y. Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep., 2017, 7(1), 16817.
[http://dx.doi.org/10.1038/s41598-017-17024-7] [PMID: 29196641]
[3]
Borden, E. Gold nanoparticle colorimetric sensing technology PhD thesis, The State University of New York: Albany,. 2016.
[4]
Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta, 2007, 598(2), 181-192.
[http://dx.doi.org/10.1016/j.aca.2007.07.054] [PMID: 17719891]
[5]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[6]
Srivastava, A.K.; Yadev, R.; Rai, V.N.; Ganguly, T.; Deb, S.K. Surface plasmon resonance in gold nanoparticles. AIP Conf. Proc; , 2012, 1447, pp. 305-306.
[http://dx.doi.org/10.1063/1.4710001]
[7]
Lin, C-T.; Chang, M-N.; Huang, H.J.; Chen, C-H.; Sun, R-J.; Liao, B-H.; Chau, Y-F.C.; Hsiao, C-N.; Shiao, M-H.; Tseng, F-G. Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation. Electrochim. Acta, 2016, 192, 15-21.
[http://dx.doi.org/10.1016/j.electacta.2016.01.043]
[8]
Bansal, A.; Sekhon, J.S.; Verma, S. Scattering efficiency and LSPR tunability of bimetallic Ag, Au, and Cu nanoparticles. Plasmonics, 2014, 9(1), 143-150.
[http://dx.doi.org/10.1007/s11468-013-9607-x]
[9]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, 107(3), 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[10]
Arya, S.; Chung, Y.H. Generic blind spectrum sensing scheme for all optical-wavelength multi-user free space optical communications. Opt. Commun., 2019, 450, 316-321.
[http://dx.doi.org/10.1016/j.optcom.2019.06.012]
[11]
Xia, F.; Zuo, X.; Yang, R.; Xiao, Y.; Kang, D.; Vallée-Bélisle, A.; Gong, X.; Yuen, J.D.; Hsu, B.B.Y.; Heeger, A.J.; Plaxco, K.W. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 10837-10841.
[http://dx.doi.org/10.1073/pnas.1005632107] [PMID: 20534499]
[12]
Kim, H.; Park, M.; Hwang, J.; Kim, J.H.; Chung, D-R.; Lee, K.S.; Kang, M. Development of label-free colorimetric assay for MERS CoV using gold nanoparticles. ACS Sens., 2019, 4(5), 1306-1312.
[http://dx.doi.org/10.1021/acssensors.9b00175] [PMID: 31062580]
[13]
Zeng, S.; Yong, K-T.; Roy, I.; Dinh, X-Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 2011, 6(3), 491.
[http://dx.doi.org/10.1007/s11468-011-9228-1]
[14]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[15]
Zhang, J.; Yang, C.; Wang, X.; Yang, X. Colorimetric recognition and sensing of thiocyanate with a gold nanoparticle probe and its application to the determination of thiocyanate in human urine samples. Anal. Bioanal. Chem., 2012, 403(7), 1971-1981.
[http://dx.doi.org/10.1007/s00216-012-6002-y] [PMID: 22535439]
[16]
Zheng, W.; Li, H.; Chen, W.; Ji, J.; Jiang, X. Recyclable colorimetric detection of trivalent cations in aqueous media using zwitterionic gold nanoparticles. Anal. Chem., 2016, 88(7), 4140-4146.
[http://dx.doi.org/10.1021/acs.analchem.6b00501] [PMID: 26958996]
[17]
Hsu, C-L.; Wu, H-Y.; Fang, C-C.; Chang, S-P. Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles. ACS Appl. Energy Mater., 2018, 1(5), 2087-2095.
[http://dx.doi.org/10.1021/acsaem.8b00180]
[18]
Fang, Y-M.; Song, J.; Chen, J-S.; Li, S-B.; Zhang, L.; Chen, G-N.; Sun, J-J. Gold nanoparticles for highly sensitive and selective copper ions sensing-old materials with new tricks. J. Mater. Chem., 2011, 21(22), 7898-7900.
[http://dx.doi.org/10.1039/c1jm10771b]
[19]
Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B Chem., 2017, 238, 888-902.
[http://dx.doi.org/10.1016/j.snb.2016.06.081]
[20]
Mistry, H.; Reske, R.; Strasser, P.; Cuenya, B.R. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catal. Today, 2017, 288, 30-36.
[http://dx.doi.org/10.1016/j.cattod.2016.09.017]
[21]
Zhang, X.; Geng, P.; Liu, H.; Teng, Y.; Liu, Y.; Wang, Q.; Zhang, W.; Jin, L.; Jiang, L. Development of an electrochemical immunoassay for rapid detection of E. coli using anodic stripping voltammetry based on Cu@Au nanoparticles as antibody labels. Biosens. Bioelectron., 2009, 24(7), 2155-2159.
[http://dx.doi.org/10.1016/j.bios.2008.11.019] [PMID: 19124236]
[22]
Song, J.; Huang, P-C.; Wan, Y-Q.; Wu, F-Y. Colorimetric detection of thiocyanate based on anti-aggregation of gold nanoparticles in the presence of cetyltrimethyl ammonium bromide. Sens. Actuators B Chem., 2016, 222, 790-796.
[http://dx.doi.org/10.1016/j.snb.2015.09.006]
[23]
Caporali, S.; Muniz-Miranda, F.; Pedone, A.; Muniz-Miranda, M. SERS, XPS and DFT study of xanthine adsorbed on citrate stabilized gold nanoparticles. Sensors (Basel), 2019, 19(12), 2700.
[http://dx.doi.org/10.3390/s19122700] [PMID: 31208081]
[24]
Chen, W.; Guo, J.; Zhao, Q.; Gopalan, P.; Fafarman, A.T.; Keller, A.; Zhang, M.; Wu, Y.; Murray, C.B.; Kagan, C.R. Designing strong optical absorbers via continuous tuning of interparticle interaction in colloidal gold nanocrystal assemblies. ACS Nano, 2019, 13(7), 7493-7501.
[http://dx.doi.org/10.1021/acsnano.9b02818] [PMID: 31136152]
[25]
Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem. Rev., 2017, 117(15), 9973-10042.
[http://dx.doi.org/10.1021/acs.chemrev.7b00037] [PMID: 28753280]
[26]
Khan, S.A.; DeGrasse, J.A.; Yakes, B.J.; Croley, T.R. Rapid and sensitive detection of cholera toxin using gold nanoparticle-based simple colorimetric and dynamic light scattering assay. Anal. Chim. Acta, 2015, 892, 167-174.
[http://dx.doi.org/10.1016/j.aca.2015.08.029] [PMID: 26388488]
[27]
Yu, C.Y.; Ang, G.Y.; Chua, A.L.; Tan, E.H.; Lee, S.Y.; Falero-Diaz, G.; Otero, O.; Rodríguez, I.; Reyes, F.; Acosta, A.; Sarmiento, M.E.; Ghosh, S.; Ramamurthy, T.; Yean, Yean. C.; Lalitha, P.; Ravichandran, M. Dry-reagent gold nanoparticle-based lateral flow biosensor for the simultaneous detection of Vibrio cholerae serogroups O1 and O139. J. Microbiol. Methods, 2011, 86(3), 277-282.
[http://dx.doi.org/10.1016/j.mimet.2011.04.020] [PMID: 21571011]
[28]
Wang, S.; Wen, S.; Shen, M.; Guo, R.; Cao, X.; Wang, J.; Shi, X. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay. Int. J. Nanomedicine, 2011, 6, 3449-3459.
[PMID: 22267929]
[29]
Ojea-Jiménez, I.; Bastús, N.G.; Puntes, V. Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles. J. Phys. Chem. C, 2011, 115(32), 15752-15757.
[http://dx.doi.org/10.1021/jp2017242]
[30]
Sashuk, V.; Rogaczewski, K. A halogen-free synthesis of gold nanoparticles using gold(III) oxide. J. Nanopart. Res., 2016, 18(9), 261.
[http://dx.doi.org/10.1007/s11051-016-3576-x] [PMID: 27642258]
[31]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[32]
Chau, Y-F.C.; Chao, C.T.C.; Huang, H.J.; Wang, Y-C.; Chiang, H P.; Idris, M.N.S.M.; Masri, Z.; Lim, C.M. Strong and tunable plasmonic field coupling and enhancement generating from the protruded metal nanorods and dielectric cores. Results Phys., 2019, 13, 102290.
[http://dx.doi.org/10.1016/j.rinp.2019.102290]
[33]
Yamaura, M.; Camilo, R.L.; Sampaio, L.C.; Macedo, M.A.; Nakamura, M.; Toma, H.E. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater., 2004, 279(2-3), 210-217.
[http://dx.doi.org/10.1016/j.jmmm.2004.01.094]
[34]
Denison, M.I.J.; Raman, S.; Duraisamy, N.; Thangavelu, R.M.; Riyaz, S.U.M.; Gunasekaran, D.; Krishnan, K. Preparation, characterization and application of antibody-conjugated magnetic nanoparticles in the purification of begomovirus. RSC Advances, 2015, 5(121), 99820-99831.
[http://dx.doi.org/10.1039/C5RA17982C]
[35]
Nghiem, T.H.L.; La, T.H.; Vu, X.H.; Chu, V.H.; Nguyen, T.H.; Le, Q.H.; Fort, E.; Do, Q.H.; Tran, H.N. Synthesis, capping and binding of colloidal gold nanoparticles to proteins. Adv. Nat. Sci. Nanosci. Nanotechnol., 2010, 1(2), 025009.
[http://dx.doi.org/10.1088/2043-6254/1/2/025009]
[36]
Li, Z.; He, L.; He, N.; Shi, Z.; Wang, H.; Li, S.; Liu, H.; Li, X.; Dai, Y.; Wang, Z. Chemiluminescent detect of E. coli O157:H7 using immunological method based on magnetic nanoparticles. J. Nanosci. Nanotechnol., 2010, 10(2), 696-701.
[http://dx.doi.org/10.1166/jnn.2010.1811] [PMID: 20352706]
[37]
Brumfield, K.D.; Carignan, B.M.; Ray, J.N.; Jumpre, P.E.; Son, M.S. Laboratory techniques used to maintain and differentiate biotypes of Vibrio cholerae clinical and environmental isolates. J. Vis. Exp., 2017, 30(123), 55760.
[http://dx.doi.org/10.3791/55760] [PMID: 28605374]
[38]
Mousavi, S.M.; Zeinoddini, M.; Azizi, A.; Saeedinia, A.; Monazah, A. Molecular detection of zonula occludens toxin (zot) genes in Vibrio cholerae O1 using PCR. Res. Mol. Med., 2017, 5(3), 37-40.
[http://dx.doi.org/10.29252/rmm.5.3.37]
[39]
Zeinoddini, M.; Saeedinia, A.R.; Sadeghi, V.; Shamsara, M.; Hajia, M.; Rahbar, M. Simple and accurate detection of Vibrio cholera using triplex dot blotting assay. BMMJ, 2015, 1(1), 52-57.
[40]
Zeinoddini, M.; Saeedinia, A.R.; Sadeghi, V. Rapid detection of Vibrio cholerae using hexaplex PCR assay. Police Med., 2014, 3(2), 77-84.
[41]
Huq, M.I.; Alam, A.K.; Brenner, D.J.; Morris, G.K. Isolation of Vibrio-like group. Isolation of Vibrio-like group, EF-6, from patients with diarrhea. J. Clin. Microbiol., 1980, 11(6), 621-624.
[PMID: 7430332]
[42]
Harwood, V.J.; Gandhi, J.P.; Wright, A.C. Methods for isolation and confirmation of Vibrio vulnificus from oysters and environmental sources: a review. J. Microbiol. Methods, 2004, 59(3), 301-316.
[http://dx.doi.org/10.1016/j.mimet.2004.08.001] [PMID: 15488274]
[43]
Hollis, D.G.; Weaver, R.E.; Baker, C.N.; Thornsberry, C. Halophilic Vibrio species isolated from blood cultures. J. Clin. Microbiol., 1976, 3(4), 425-431.
[PMID: 1262454]
[44]
Amani, J.; Mirhosseini, S.A.; Imani Fooladi, A.A. A review approaches to identify enteric bacterial pathogens. Jundishapur J. Microbiol., 2014, 8(2), e17473.
[http://dx.doi.org/10.5812/jjm.17473] [PMID: 25793091]
[45]
Kaper, J.B.; Morris, J.G., Jr; Levine, M.M. Cholera. Clin. Microbiol. Rev., 1995, 8(1), 48-86.
[http://dx.doi.org/10.1128/CMR.8.1.48] [PMID: 7704895]
[46]
Gangarosa, E.J.; Dewitt, W.E.; Huq, I.; Zarifi, A. Laboratory methods in cholera: isolation of Vibrio cholerae (el tor and classical) on TCBS medium in minimally equipped laboratories. Trans. R. Soc. Trop. Med. Hyg., 1968, 62(5), 693-699.
[http://dx.doi.org/10.1016/0035-9203(68)90121-1] [PMID: 5707921]
[47]
Hara-Kudo, Y.; Nishina, T.; Nakagawa, H.; Konuma, H.; Hasegawa, J.; Kumagai, S. Improved method for detection of Vibrio parahaemolyticus in seafood. Appl. Environ. Microbiol., 2001, 67(12), 5819-5823.
[http://dx.doi.org/10.1128/AEM.67.12.5819-5823.2001] [PMID: 11722939]
[48]
Chatterjee, S.; Haldar, S. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods., J. Marine Sci. Res. Dev.,, 2012, 1, 002.
[49]
Lesmana, M.; Richie, E.; Subekti, D.; Simanjuntak, C.; Walz, S.E. Comparison of direct-plating and enrichment methods for isolation of Vibrio cholerae from diarrhea patients. J. Clin. Microbiol., 1997, 35(7), 1856-1858.
[PMID: 9196208]
[50]
Alam, M.; Hasan, N.A.; Sultana, M.; Nair, G.B.; Sadique, A.; Faruque, A.S.; Endtz, H.P.; Sack, R.B.; Huq, A.; Colwell, R.R.; Izumiya, H.; Morita, M.; Watanabe, H.; Cravioto, A. Diagnostic limitations to accurate diagnosis of cholera. J. Clin. Microbiol., 2010, 48(11), 3918-3922.
[http://dx.doi.org/10.1128/JCM.00616-10] [PMID: 20739485]
[51]
Keasler, S.P.; Hall, R.H. Detecting and biotyping Vibrio cholerae O1 with multiplex polymerase chain reaction. Lancet, 1993, 341(8861), 1661.
[http://dx.doi.org/10.1016/0140-6736(93)90792-F] [PMID: 8100020]
[52]
Rahman, M.; Kamal, M.; Shoma, S.; Albert, M.J.; Siddique, A.K. Evaluation of direct plating and enrichment methods for isolation of Vibrio cholerae O139 from faecal samples. Bangladesh J. Microbiol., 2006, 23(2), 140-144.
[http://dx.doi.org/10.3329/bjm.v23i2.880]
[53]
Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of pathogens in food and water. Microbial. Technol., 2003, 32(1), 3-13.
[54]
Mirski, T.; Bartoszcze, M.; Bielawska-Drózd, A.; Cieślik, P.; Michalski, A.J.; Niemcewicz, M.; Kocik, J.; Chomiczewski, K. Review of methods used for identification of biothreat agents in environmental protection and human health aspects. Ann. Agric. Environ. Med., 2014, 21(2), 224-234.
[http://dx.doi.org/10.5604/1232-1966.1108581] [PMID: 24959766]
[55]
Clayton, K.N.; Moehling, T.J.; Lee, D.H.; Wereley, S.T.; Linnes, J.C.; Kinzer-Ursem, T.L. Particle diffusometry: An optical detection method for Vibrio cholerae presence in environmental water samples. Sci. Rep., 2019, 9(1), 1739.
[http://dx.doi.org/10.1038/s41598-018-38056-7] [PMID: 30741961]
[56]
Fields, P.I.; Popovic, T.; Wachsmuth, K.; Olsvik, O. Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae O1 strains from the Latin American cholera epidemic. J. Clin. Microbiol., 1992, 30(8), 2118-2121.
[PMID: 1500520]
[57]
Marsh, J.W.; Taylor, R.K. Identification of the Vibrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation. Mol. Microbiol., 1998, 29(6), 1481-1492.
[http://dx.doi.org/10.1046/j.1365-2958.1998.01031.x] [PMID: 9781884]
[58]
Ahmed, A.; Rushworth, J.V.; Hirst, N.A.; Millner, P.A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev., 2014, 27(3), 631-646.
[http://dx.doi.org/10.1128/CMR.00120-13] [PMID: 24982325]
[59]
Verma, M.S.; Rogowski, J.L.; Jones, L.; Gu, F.X. Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol. Adv., 2015, 33(6 Pt 1), 666-680.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.003] [PMID: 25792228]
[60]
Chang, Y.C.; Yang, C.Y.; Sun, R.L.; Cheng, Y.F.; Kao, W.C.; Yang, P.C. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep., 2013, 3, 1863.
[http://dx.doi.org/10.1038/srep01863] [PMID: 23689505]
[61]
Wang, C.; Irudayaraj, J. Gold nanorod probes for the detection of multiple pathogens. Small, 2008, 4(12), 2204-2208.
[http://dx.doi.org/10.1002/smll.200800309] [PMID: 19003819]
[62]
Sanvicens, N.; Pastells, C.; Pascual, N.; Marco, M.P. Nanoparticle-based biosensors for detection of pathogenic bacteria. TRAC Trend Anal. Chem., 2009, 28(11), 1243-1252.
[http://dx.doi.org/10.1016/j.trac.2009.08.002]
[63]
Chansuvarn, W.; Tuntulani, T.; Imyim, A. Colorimetric detection of mercury (II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TRAC Trend Anal. Chem., 2015, 65, 83-96.
[http://dx.doi.org/10.1016/j.trac.2014.10.013]
[64]
Chen, J.; Jackson, A.A.; Rotello, V.M.; Nugen, S.R. Colorimetric detection of Escherichia coli based on the enzyme‐induced metallization of gold nanorods. Small, 2016, 12(18), 2469-2475.
[http://dx.doi.org/10.1002/smll.201503682] [PMID: 26997252]
[65]
Guo, L.; Xu, Y.; Ferhan, A.R.; Chen, G.; Kim, D.H. Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J. Am. Chem. Soc., 2013, 135(33), 12338-12345.
[http://dx.doi.org/10.1021/ja405371g] [PMID: 23927761]
[66]
Nandi, B.; Nandy, R.K.; Mukhopadhyay, S.; Nair, G.B.; Shimada, T.; Ghose, A.C. Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J. Clin. Microbiol., 2000, 38(11), 4145-4151.
[PMID: 11060082]
[67]
Nandi, B.; Nandy, R.K.; Sarkar, A.; Ghose, A.C. Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology, 2005, 151(Pt 9), 2975-2986.
[http://dx.doi.org/10.1099/mic.0.27995-0] [PMID: 16151208]
[68]
Ramaswamy, M.; McDonald, C.; Smith, M.; Thomas, D.; Maxwell, S.; Tenant-Flowers, M.; Geretti, A.M. Diagnosis of genital herpes by real time PCR in routine clinical practice. Sex. Transm. Infect., 2004, 80(5), 406-410.
[http://dx.doi.org/10.1136/sti.2003.008201] [PMID: 15459412]
[69]
Martínez-Govea, A.; Ambrosio, J.; Gutiérrez-Cogco, L.; Flisser, A. Identification and strain differentiation of Vibrio cholerae by using polyclonal antibodies against outer membrane proteins. Clin. Diagn. Lab. Immunol., 2001, 8(4), 768-771.
[PMID: 11427424]
[70]
Laczka, O.F.; Labbate, M.; Seymour, J.R.; Bourne, D.G.; Fielder, S.S.; Doblin, M.A. Surface immuno-functionalisation for the capture and detection of Vibrio species in the marine environment: a new management tool for industrial facilities. PLoS One, 2014, 9(10), e108387.
[http://dx.doi.org/10.1371/journal.pone.0108387] [PMID: 25310801]
[71]
Kumar, B.K.; Raghunath, P.; Devegowda, D.; Deekshit, V.K.; Venugopal, M.N.; Karunasagar, I.; Karunasagar, I. Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. Int. J. Food Microbiol., 2011, 145(1), 244-249.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.12.030] [PMID: 21276628]
[72]
Oku, Y.; Uesaka, Y.; Hirayama, T.; Takeda, Y. Development of a highly sensitive bead-ELISA to detect bacterial protein toxins. Microbiol. Immunol., 1988, 32(8), 807-816.
[http://dx.doi.org/10.1111/j.1348-0421.1988.tb01442.x] [PMID: 3143897]
[73]
Adams, A.; Thompson, K.D.; Morris, D.; Farias, C.; Chen, S.C. Development and use of monoclonal antibody probes for immunohistochemistry, ELISA and IFAT to detect bacterial and parasitic fish pathogens. Fish Shellfish Immunol., 1995, 5(8), 537-547.
[http://dx.doi.org/10.1016/S1050-4648(95)80040-9]
[74]
Cho, I.H.; Irudayaraj, J. In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. Int. J. Food Microbiol., 2013, 164(1), 70-75.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.02.025] [PMID: 23603219]
[75]
Fu, K.; Zheng, Y.; Li, J.; Liu, Y.; Pang, B.; Song, X.; Xu, K.; Wang, J.; Zhao, C. Colorimetric immunoassay for rapid detection of Vibrio parahemolyticus based on Mn2+ mediates the assembly of gold nanoparticles. J. Agric. Food Chem., 2018, 66(36), 9516-9521.
[http://dx.doi.org/10.1021/acs.jafc.8b02494] [PMID: 30133275]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 04 October, 2020
Page: [793 - 804]
Pages: 12
DOI: 10.2174/1573413716666191230154316
Price: $65

Article Metrics

PDF: 17
HTML: 1