Recent Advancements in High-Performance Solid Electrolytes for Li-ion Batteries: Towards a Solid Future

Author(s): Imran Murtaza, Muhammad Umair Ali, Hongtao Yu, Huai Yang, Muhammad Tariq Saeed Chani*, Khasan S. Karimov*, Hong Meng*, Wei Huang, Abdullah M. Asiri

Journal Name: Current Nanoscience

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

With the emergence of non-conventional energy resources and development of energy storage devices, serious efforts on lithium (Li) based rechargeable solid electrolyte batteries (Li- SEBs) are attaining momentum due to their potential as a safe candidate to replace state-of-the-art conventionally existing flammable organic liquid electrolyte-based Li-ion batteries (LIBs). However, Li-ion conduction in solid electrolytes (SEs) has been one of the major bottlenecks in large scale commercialization of next-generation Li-SEBs. Here, in this review, various challenges in the realization of high-performance Li-SEBs are discussed and recent strategies employed for the development of efficient SEs are reviewed. In addition, special focus is laid on the ionic conductivity enhancement techniques for inorganic (including ceramics, glasses, and glass-ceramics) and polymersbased SEs. The development of novel fabrication routes with controlled parameters and highperformance temperature optimized SEs with stable electrolyte-electrode interfaces are proposed to realize highly efficient Li-SEBs.

Keywords: Solid electrolytes, Li-ion, solid-state batteries, ionic conductivity, electrolyte-electrode interface, electrochemical performance, energy storage devices.

[1]
Chani, M.T.S.; Karimov, KhS.; Asiri, A.M.; Ahmed, N.; Bashir, M.M.; Khan, S.B.; Rub, M.A.; Azum, N. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite. PLoS One, 2014, 9(4) e95287
[http://dx.doi.org/10.1371/journal.pone.0095287] [PMID: 24748375]
[2]
Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev., 2011, 15, 1513-1524.
[http://dx.doi.org/10.1016/j.rser.2010.11.037]
[3]
Chani, M.T.S.; Karimov, K.S.; Khan, S.B.; Asiri, A.M. Fabrication and investigation of flexible photo-thermo electrochemical cells based on Cu/orange dye aqueous solution/Cu. Int. J. Electrochem. Sci., 2015, 10, 5694-5701.
[4]
Marwani, H.M.; Chani, M.T.S.; Danish, E.Y.; Karimov, K.S.; Hagfeldt, A.; Asiri, A.M. Tandem heterojunction photoelectric cell based on organic-inorganic hybrid of AlPc-H2Pc and n-Si. Int. J. Electrochem. Sci., 2017, 12, 4096-4106.
[http://dx.doi.org/10.20964/2017.05.20]
[5]
Chani, M.; Marwani, H.; Danish, E.; Karimov, K.S.; Hilal, M.; Hagfeldt, A.; Asiri, A. Organic-inorganic hybrid tandem bulk heterojunction ITO/A1Pc: H2Pc/n-Si/Al photoelectric cell. J. Optoelectron. Adv. Mater., 2017, 19, 178-183.
[6]
Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources, 2013, 226, 272-288.
[http://dx.doi.org/10.1016/j.jpowsour.2012.10.060]
[7]
Vignarooban, K.; Kushagra, R.; Elango, A.; Badami, P.; Mellander, B-E.; Xu, X.; Tucker, T.G.; Nam, C.; Kannan, A.M. Current trends and future challenges of electrolytes for sodium-ion batteries. Int. J. Hydrogen Energy, 2016, 41, 2829-2846.
[http://dx.doi.org/10.1016/j.ijhydene.2015.12.090]
[8]
Sudworth, J.L. The sodium/sulphur battery. J. Power Sources, 1984, 11, 143-154.
[http://dx.doi.org/10.1016/0378-7753(84)80080-4]
[9]
Yamada, T.; Ito, S.; Omoda, R.; Watanabe, T.; Aihara, Y.; Agostini, M.; Ulissi, U.; Hassoun, J.; Scrosati, B. All solid-state lithiumsulfur battery using a glass-type P2S5–Li2S electrolyte: Benefits on anode kinetics batteries and energy storage. J. Electrochem. Soc., 2015, 162, A646-A651.
[http://dx.doi.org/10.1149/2.0441504jes]
[10]
Sathyanarayana, S.; Venugopalan, S.; Gopikanth, M.L. Impedance parameters and the state-of charge. I. nickel-cadmium battery. J. Appl. Electrochem., 1979, 9, 125-139.
[http://dx.doi.org/10.1007/BF00620594]
[11]
Manwell, J.F.; McGowan, J.G. Lead acid battery storage model for hybrid energy systems. Sol. Energy, 1993, 50, 399-405.
[http://dx.doi.org/10.1016/0038-092X(93)90060-2]
[12]
Palacín, M.R. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev., 2009, 38(9), 2565-2575.
[http://dx.doi.org/10.1039/b820555h] [PMID: 19690737]
[13]
Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014, 7, 513-537.
[http://dx.doi.org/10.1039/C3EE40795K]
[14]
Parka, M.; Zhanga, X.; Chunga, M.; Less, G.B.; Sastrya, A.M. A review of conduction phenomena in Li-ion batteries. J. Power Sources, 2010, 195, 7904-7929.
[http://dx.doi.org/10.1016/j.jpowsour.2010.06.060]
[15]
Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. A lithium superionic conductor. Nat. Mater., 2011, 10(9), 682-686.
[http://dx.doi.org/10.1038/nmat3066] [PMID: 21804556]
[16]
Hu, Y-S. Batteries: Getting solid. Nat. Energy, 2016, 1, 16042.
[http://dx.doi.org/10.1038/nenergy.2016.42]
[17]
Janek, J.; Zeier, W.G. A solid future for battery development. Nat. Energy, 2016, 1, 16141.
[http://dx.doi.org/10.1038/nenergy.2016.141]
[18]
Williard, N.; He, W.; Hendricks, C.; Pecht, M. Lessons learned from the 787 Dreamliner issue on lithium-ion battery reliability. Energies, 2013, 6, 4682-4695.
[http://dx.doi.org/10.3390/en6094682]
[19]
Mindemark, J.; Sobkowiak, A.; Oltean, G.; Brandell, D.; Gustafsson, T. Mechanical stabilization of solid polymer electrolytes through gamma irradiation. Electrochim. Acta, 2017, 230, 189-195.
[http://dx.doi.org/10.1016/j.electacta.2017.02.008]
[20]
Kartini, E.; Manawan, M. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit? AIP Conf. Proc., 2016, 1710, 020001
[http://dx.doi.org/10.1063/1.4941462]
[21]
Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy, 2016, 1, 16030.
[http://dx.doi.org/10.1038/nenergy.2016.30]
[22]
Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N.J. Solid electrolyte: The key for high-voltage lithium batteries. Adv. Energy Mater., 2015, 5, 1401408
[http://dx.doi.org/10.1002/aenm.201401408]
[23]
Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater., 2016, 6, 1501590
[http://dx.doi.org/10.1002/aenm.201501590]
[24]
Tealdi, C.; Quartarone, E.; Mustarell, P. Solid-state lithium ion electrolytes. In: Rechargeable Batteries; Zhang, Z.; Zhang, S., Eds.; Springer: Cham, 2015; pp. 311-335.
[http://dx.doi.org/10.1007/978-3-319-15458-9_11]
[25]
Inaguma, Y.; Chen, L.; Itoh, M.; Nakamura, T. Candidate compounds with perovskite structure for high lithium ionic conductivity. Solid State Ion., 1994, 70, 196-202.
[http://dx.doi.org/10.1016/0167-2738(94)90309-3]
[26]
Stramare, S.; Thangadurai, V.; Weppner, W. Lithium lanthanum titanates: A review. Chem. Mater., 2003, 15, 3974-3990.
[http://dx.doi.org/10.1021/cm0300516]
[27]
Adachi, G-Y.; Imanaka, N.; Aono, H. Fast Li⊕ conducting ceramic electrolytes. Adv. Mater., 1996, 8, 127-135.
[http://dx.doi.org/10.1002/adma.19960080205]
[28]
Kanno, R.; Maruyama, M. Lithium ionic conductor Thio-LISICON: The Li2S GeS2 P2S5 system. J. Electrochem. Soc., 2001, 148, A742-A746.
[http://dx.doi.org/10.1149/1.1379028]
[29]
Mariappan, C.R.; Gellert, M.; Yada, C.; Rosciano, F.; Roling, B. Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic. Electrochem. Commun., 2012, 14, 25-28.
[http://dx.doi.org/10.1016/j.elecom.2011.10.022]
[30]
Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater., 2005, 17, 918-921.
[http://dx.doi.org/10.1002/adma.200401286]
[31]
James, P.F. Glass ceramics: New compositions and uses. J. Non-Cryst. Solids, 1995, 181, 1-15.
[http://dx.doi.org/10.1016/0022-3093(94)00515-X]
[32]
Ingram, M.D.; Robertson, A.H.J. Ion transport in glassy electrolytes. Solid State Ion., 1997, 94, 49-54.
[http://dx.doi.org/10.1016/S0167-2738(96)00610-8]
[33]
Chandra, A.; Bhatt, A.; Chandra, A. Ion conduction in superionic glassy electrolytes: An overview. J. Mater. Sci. Technol., 2013, 29, 193-208.
[http://dx.doi.org/10.1016/j.jmst.2013.01.005]
[34]
Kharton, V.V.; Marques, F.M.B.; Atkinson, A. Transport properties of solid oxide electrolyte ceramics: A brief review. Solid State Ion., 2004, 174, 135-149.
[http://dx.doi.org/10.1016/j.ssi.2004.06.015]
[35]
Stephan, A.M.; Nahm, K.S. Review on composite polymer electrolytes for lithium batteries. Polymer (Guildf.), 2006, 47, 5952-5964.
[http://dx.doi.org/10.1016/j.polymer.2006.05.069]
[36]
Feng, S.; Shi, D.; Liu, F.; Zheng, L.; Nie, J.; Feng, W.; Huang, X.; Armand, M.; Zhou, Z. ‎Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim. Acta, 2013, 93, 254-263.
[http://dx.doi.org/10.1016/j.electacta.2013.01.119]
[37]
Jannasch, P. Characteristics of gel electrolytes formed by selfaggregating comb-shaped polyethers with end functionalised side chains. Solid State Ion., 2004, 166, 417-424.
[http://dx.doi.org/10.1016/j.ssi.2003.11.008]
[38]
Ossiander, T.; Perchthaler, M.; Heinzl, C.; Scheu, C. Influence of thermal post-curing on the degradation of a cross-linked polybenzimidazole-based membrane for high temperature polymer electrolyte membrane fuel cells. J. Power Sources, 2014, 267, 323-328.
[http://dx.doi.org/10.1016/j.jpowsour.2014.04.158]
[39]
Armand, M.; Chabagno, J.M.; Duclot, M. Second International Meeting on Solid Electrolytes, September 20-22, 1978
[40]
Meyer, W.H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. , 1998, 10(6), 439-448.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I] [PMID: 21647973]
[41]
Owens, B.B. Solid state electrolytes: Overview of materials and applications during the last third of the twentieth century. J. Power Sources, 2000, 90, 2-8.
[http://dx.doi.org/10.1016/S0378-7753(00)00436-5]
[42]
Agrawal, R.C.; Pandey, G.P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D Appl. Phys., 2008, 41, 223001
[http://dx.doi.org/10.1088/0022-3727/41/22/223001]
[43]
Ngai, K.S.; Ramesh, S.; Ramesh, K.; Juan, J.C. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics, 2016, 22, 1259-1279.
[http://dx.doi.org/10.1007/s11581-016-1756-4]
[44]
Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 10038-10069.
[http://dx.doi.org/10.1039/C6TA02621D]
[45]
Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L.M.; Armand, M.; Zhou, Z. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev., 2017, 46(3), 797-815.
[http://dx.doi.org/10.1039/C6CS00491A] [PMID: 28098280]
[46]
Zhang, J.; Yang, J.; Dong, T.; Zhang, M.; Chai, J.; Dong, S.; Wu, T.; Zhou, X.; Cui, G. Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: Advances and perspective. Small, 2018, 14(36) e1800821
[http://dx.doi.org/10.1002/smll.201800821] [PMID: 30073772]
[47]
Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater., 2015, 14(10), 1026-1031.
[http://dx.doi.org/10.1038/nmat4369] [PMID: 26280225]
[48]
Fergus, J.W. Ceramic and polymeric solid electrolytes for lithiumion batteries. J. Power Sources, 2010, 195, 4554-4569.
[http://dx.doi.org/10.1016/j.jpowsour.2010.01.076]
[49]
Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater., 2018, 30(17) e1705702
[http://dx.doi.org/10.1002/adma.201705702] [PMID: 29468745]
[50]
Goodenough, J.B.; Singh, P. Solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc., 2015, 162, A2387-A2392.
[http://dx.doi.org/10.1149/2.0021514jes]
[51]
Takada, K. Progress and prospective of solid-state lithium batteries. Acta Mater., 2013, 61, 759-770.
[http://dx.doi.org/10.1016/j.actamat.2012.10.034]
[52]
Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D.P.; Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33, 363-386.
[http://dx.doi.org/10.1016/j.nanoen.2017.01.028]
[53]
Dou, S. Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries. J. Solid State Electrochem., 2013, 17, 911-926.
[http://dx.doi.org/10.1007/s10008-012-1977-z]
[54]
Fu, X.; Yu, D.; Zhou, J.; Li, S.; Gao, X.; Han, Y.; Qi, P.; Feng, X.; Wang, B. Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm, 2016, 18, 4236-4258.
[http://dx.doi.org/10.1039/C6CE00171H]
[55]
Bachman, J.C.; Muy, S.; Grimaud, A.; Chang, H.H.; Pour, N.; Lux, S.F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem. Rev., 2016, 116(1), 140-162.
[http://dx.doi.org/10.1021/acs.chemrev.5b00563] [PMID: 26713396]
[56]
Teng, S.; Tan, J.; Tiwari, A. Recent developments in garnet based solid state electrolytes for thin film batteries. Curr. Opin. Solid State Mater. Sci., 2014, 18, 29-38.
[http://dx.doi.org/10.1016/j.cossms.2013.10.002]
[57]
Fan, L.; Wei, S.; Li, S.; Li, Q.; Li, Y. Recent progress of the solidstate electrolytes for high-energy metal-based batteries. Adv. Energy Mater., 2018, 8, 1702657
[http://dx.doi.org/10.1002/aenm.201702657]
[58]
Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy, 2018, 52, 279-291.
[http://dx.doi.org/10.1016/j.nanoen.2018.07.036]
[59]
Dirican, M.; Yan, C.; Zhu, P.; Zhang, X. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. Rep., 2019, 136, 27-46.
[http://dx.doi.org/10.1016/j.mser.2018.10.004]
[60]
Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 3253-3266.
[http://dx.doi.org/10.1039/C5TA08574H]
[61]
Wenzel, S.; Weber, D.A.; Leichtweiss, T.; Busche, M.R.; Sann, J.; Janek, J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion., 2016, 286, 24-33.
[http://dx.doi.org/10.1016/j.ssi.2015.11.034]
[62]
Wenzel, S.; Leichtweiss, T.; Weber, D.A.; Sann, J.; Zeier, W.G.; Janek, J. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl. Mater. Interfaces, 2016, 8(41), 28216-28224.
[http://dx.doi.org/10.1021/acsami.6b10119] [PMID: 27677413]
[63]
Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Interphase formation on lithium solid electrolytes-An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion., 2015, 278, 98-105.
[http://dx.doi.org/10.1016/j.ssi.2015.06.001]
[64]
Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D.A.; Sann, J.; Zeier, W.G.; Janek, J. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater., 2016, 28, 2400-2407.
[http://dx.doi.org/10.1021/acs.chemmater.6b00610]
[65]
Han, F.; Westover, A.S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D.N.; Dudney, N.J.; Wang, H.; Wang, C. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy, 2019, 4, 187-196.
[http://dx.doi.org/10.1038/s41560-018-0312-z]
[66]
Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22, 587-603.
[http://dx.doi.org/10.1021/cm901452z]
[67]
Schwöbel, A.; Jaegermann, W.; Hausbrand, R. Interfacial energy level alignment and energy level diagrams for all-solid Li-ion cells: Impact of Li-ion transfer and double layer formation. Solid State Ion., 2016, 288, 224-228.
[http://dx.doi.org/10.1016/j.ssi.2015.12.029]
[68]
Luntz, A.C.; Voss, J.; Reuter, K. Interfacial challenges in solidstate Li ion batteries. J. Phys. Chem. Lett., 2015, 6(22), 4599-4604.
[http://dx.doi.org/10.1021/acs.jpclett.5b02352] [PMID: 26551954]
[69]
Pervez, S.A.; Kim, D.; Lee, S.M.; Doh, C.H.; Lee, S.; Farooq, U.; Saleem, M. Study of tin-sulphur-carbon nanocomposites based on electrically exploded tin as anode for sodium battery. J. Power Sources, 2016, 315, 218-223.
[http://dx.doi.org/10.1016/j.jpowsour.2016.03.047]
[70]
Berbano, S.S.; Mirsaneh, M.; Lanagan, M.T.; Randall, C.A. Lithium thiophosphate glasses and glass-ceramics as solid electrolytes: Processing, microstructure, and properties. Int. J. Appl. Glass Sci., 2013, 4, 414-425.
[http://dx.doi.org/10.1111/ijag.12037]
[71]
Tatsumisago, M.; Hayashi, A. Sulfide glass-ceramic electrolytes for all-solid-state lithium and sodium batteries. Int. J. Appl. Glass Sci., 2014, 5, 226-235.
[http://dx.doi.org/10.1111/ijag.12084]
[72]
Hayashi, A.; Minami, K.; Mizuno, F.; Tatsumisago, M. Formation of Li+ superionic crystals from the Li2S-P2S5 melt-quenched glasses. J. Mater. Sci., 2008, 43, 1885-1889.
[http://dx.doi.org/10.1007/s10853-007-2421-0]
[73]
Liu, Z.; Tang, Y.; Wang, Y.; Huang, F. High performance Li2SP2S5 solid electrolyte induced by selenide. J. Power Sources, 2014, 260, 264-267.
[http://dx.doi.org/10.1016/j.jpowsour.2014.03.036]
[74]
Suzuki, K.; Sakuma, M.; Hori, S.; Nakazawa, T.; Nagao, M.; Yonemura, M.; Hirayama, M.; Kanno, R. Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family. Solid State Ion., 2016, 288, 229-234.
[http://dx.doi.org/10.1016/j.ssi.2016.02.002]
[75]
Huang, B.; Yao, X.; Huang, Z.; Guan, Y.; Jin, Y.; Xu, X. Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. J. Power Sources, 2015, 284, 206-211.
[http://dx.doi.org/10.1016/j.jpowsour.2015.02.160]
[76]
Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc., 2015, 137(4), 1384-1387.
[http://dx.doi.org/10.1021/ja508723m] [PMID: 25602621]
[77]
Kwon, O.; Hirayama, M.; Suzuki, K.; Kato, Y.; Saito, T.; Yonemura, M.; Kamiyama, T.; Kanno, R. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 438-446.
[http://dx.doi.org/10.1039/C4TA05231E]
[78]
Chadwick, A.V. High-temperature transport in fluorites. Solid State Ion., 1983, 8, 209-220.
[http://dx.doi.org/10.1016/0167-2738(83)90018-8]
[79]
Holzmann, T.; Schoop, L.M.; Ali, M.N.; Moudrakovski, I.; Gregori, G.; Maier, J.; Cava, R.J.; Lotsch, B.V. Li0.6[Li0.2Sn0.8S2]–a layered lithium superionic conductor. Energy Environ. Sci., 2016, 9, 2578-2585.
[http://dx.doi.org/10.1039/C6EE00633G]
[80]
Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc., 2013, 135(42), 15694-15697.
[http://dx.doi.org/10.1021/ja407393y] [PMID: 24079534]
[81]
Yi, E.; Wang, W.; Mohanty, S.; Kieffer, J.; Tamaki, R.; Laine, R.M. Materials that can replace liquid electrolytes in Li batteries: Superionic conductivities in Li1.7Al0.3Ti1.7Si0.4P2.6O12. Processing combustion synthesized nanopowders to free standing thin films. J. Power Sources, 2014, 269, 577-588.
[http://dx.doi.org/10.1016/j.jpowsour.2014.07.029]
[82]
Deng, Y.; Eames, C.; Chotard, J.N.; Lalère, F.; Seznec, V.; Emge, S.; Pecher, O.; Grey, C.P.; Masquelier, C.; Islam, M.S. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes. J. Am. Chem. Soc., 2015, 137(28), 9136-9145.
[http://dx.doi.org/10.1021/jacs.5b04444] [PMID: 26118319]
[83]
Sahu, G.; Rangasamy, E.; Li, J.; Chen, Y.; An, K.; Dudney, N.; Liang, C. A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 10396-10403.
[http://dx.doi.org/10.1039/C4TA01243G]
[84]
Zhou, P.; Wang, J.; Cheng, F.; Li, F.; Chen, J. A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. Chem. Commun. (Camb.), 2016, 52(36), 6091-6094.
[http://dx.doi.org/10.1039/C6CC02131J] [PMID: 27068086]
[85]
Bron, P.; Dehnen, S.; Roling, B. Li10Si0.3Sn0.7P2S12–A low-cost and low-grain-boundary-resistance lithium superionic conductor. J. Power Sources, 2016, 329, 530-535.
[http://dx.doi.org/10.1016/j.jpowsour.2016.08.115]
[86]
Wei, J.; Kim, H.; Lee, D.C.; Hu, R.; Wu, F.; Zhao, H.; Alamgir, F.M.; Yushin, G. Influence of annealing on ionic transfer and storage stability of Li2S–P2S5 solid electrolyte. J. Power Sources, 2015, 294, 494-500.
[http://dx.doi.org/10.1016/j.jpowsour.2015.06.074]
[87]
Hussain, M.A.; Maqbool, A.; Khalid, F.A.; Farooq, M.U.; Abidi, I.H.; Bakhsh, N.; Amin, W.; Kim, J.Y. Improved sinterability of hydroxyapatite functionally graded materials strengthened with SS316L and CNTs fabricated by pressureless sintering. Ceram. Int., 2015, 41, 10125-10132.
[http://dx.doi.org/10.1016/j.ceramint.2015.04.110]
[88]
Minami, K.; Hayashi, A.; Tatsumisago, M. Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids. J. Ceram. Soc. Jpn., 2010, 118, 305-308.
[http://dx.doi.org/10.2109/jcersj2.118.305]
[89]
Ito, S.; Nakakita, M.; Aihara, Y.; Uehara, T.; Machida, N. A synthesis of crystalline Li7P3S11 solid electrolyte from 1, 2-dimethoxyethane solvent. J. Power Sources, 2014, 271, 342-345.
[http://dx.doi.org/10.1016/j.jpowsour.2014.08.024]
[90]
Pervez, S.A.; Kim, D.; Farooq, U.; Yaqub, A.; Choi, J.H.; Lee, Y.J.; Doh, C.H. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB. ACS Appl. Mater. Interfaces. , 2014, 6(14), 11219-11224.
[http://dx.doi.org/10.1021/am501370f] [PMID: 24964233]
[91]
Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. Preparation of Li2SP2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. J. Power Sources, 2014, 248, 939-942.
[http://dx.doi.org/10.1016/j.jpowsour.2013.09.117]
[92]
Xu, R.C.; Xia, X.H.; Wang, X.L.; Xia, Y.; Tu, J.P. Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 2829-2834.
[http://dx.doi.org/10.1039/C6TA10142A]
[93]
Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J. Power Sources, 2015, 293, 941-945.
[http://dx.doi.org/10.1016/j.jpowsour.2015.05.093]
[94]
Zhang, Z.; Zhang, L.; Liu, Y.; Yu, C.; Yan, X.; Xu, B.; Wang, L.M. Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries. J. Alloys Compd., 2018, 747, 227-235.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.027]
[95]
Kraft, M.A.; Culver, S.P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W.G. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X= Cl, Br, I). J. Am. Chem. Soc., 2017, 139(31), 10909-10918.
[http://dx.doi.org/10.1021/jacs.7b06327] [PMID: 28741936]
[96]
Huang, M.; Shoji, M.; Shen, Y.; Nan, C.W.; Munakata, H.; Kanamura, K. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2−xMx)O12 (M= Ta, Nb) solid electrolytes. J. Power Sources, 2014, 261, 206-211.
[http://dx.doi.org/10.1016/j.jpowsour.2014.03.070]
[97]
Li, Y.; Wang, Z.; Cao, Y.; Du, F.; Chen, C.; Cui, Z.; Guo, X. Wdoped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochim. Acta, 2015, 180, 37-42.
[http://dx.doi.org/10.1016/j.electacta.2015.08.046]
[98]
Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett., 2011, 40, 60-62.
[http://dx.doi.org/10.1246/cl.2011.60]
[99]
Wang, D.; Zhong, G.; Dolotko, O.; Li, Y.; McDonald, M.J.; Mi, J.; Fu, R.; Yang, Y. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 20271-20279.
[http://dx.doi.org/10.1039/C4TA03591G]
[100]
Rangasamy, E.; Sahu, G.; Keum, J.K.; Rondinone, A.J.; Dudney, N.J.; Liang, C. A high conductivity oxide-sulfide composite lithium superionic conductor. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 4111-4116.
[http://dx.doi.org/10.1039/C3TA15223E]
[101]
Zhang, Y.; Chen, F.; Tu, R.; Shen, Q.; Zhang, L. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. J. Power Sources, 2014, 268, 960-964.
[http://dx.doi.org/10.1016/j.jpowsour.2014.03.148]
[102]
McOwen, D.W.; Xu, S.; Gong, Y.; Wen, Y.; Godbey, G.L.; Gritton, J.E.; Hamann, T.R.; Dai, J.; Hitz, G.T.; Hu, L.; Wachsman, E.D. 3D-printing electrolytes for solid-state batteries. Adv. Mater., 2018, 30(18) e1707132
[http://dx.doi.org/10.1002/adma.201707132] [PMID: 29575234]
[103]
Botros, M.; Djenadic, R.; Clemens, O.; Möller, M.; Hahn, H. Field assisted sintering of fine-grained Li7−3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. J. Power Sources, 2016, 309, 108-115.
[http://dx.doi.org/10.1016/j.jpowsour.2016.01.086]
[104]
Emly, A.; Kioupakis, E.; Van der Ven, A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chem. Mater., 2013, 25, 4663-4670.
[http://dx.doi.org/10.1021/cm4016222]
[105]
Zhang, Y.; Zhao, Y.; Chen, C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. Phys. Rev. B Condens. Matter Mater. Phys., 2013, 87, 134303
[http://dx.doi.org/10.1103/PhysRevB.87.134303]
[106]
Zhao, Y.; Daemen, L.L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc., 2012, 134(36), 15042-15047.
[http://dx.doi.org/10.1021/ja305709z] [PMID: 22849550]
[107]
Lü, X.; Howard, J.W.; Chen, A.; Zhu, J.; Li, S.; Wu, G.; Dowden, P.; Xu, H.; Zhao, Y.; Jia, Q. Antiperovskite Li3OCl superionic conductor films for solid-state li-ion batteries. Adv. Sci. (Weinh.), 2016, 3(3) 1500359
[http://dx.doi.org/10.1002/advs.201500359] [PMID: 27812460]
[108]
Mouta, R.; Diniz, E.M.; Paschoal, C.W.A. Li+ interstitials as the charge carriers in superionic lithium-rich anti-perovskites. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 1586-1590.
[http://dx.doi.org/10.1039/C5TA07450A]
[109]
Yang, T.; Li, Y.; Chan, C.K. Enhanced lithium ion conductivity in lithium lanthanum titanate solid electrolyte nanowires prepared by electrospinning. J. Power Sources, 2015, 287, 164-169.
[http://dx.doi.org/10.1016/j.jpowsour.2015.04.044]
[110]
Kim, K.M.; Shin, D.O.; Lee, Y.G. Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2-x(PO4)3 solid electrolytes. Electrochim. Acta, 2015, 176, 1364-1373.
[http://dx.doi.org/10.1016/j.electacta.2015.07.170]
[111]
Li, G.; Li, M.; Dong, L.; Li, X.; Li, D. Low energy ion beam assisted deposition of controllable solid state electrolyte LiPON with increased mechanical properties and ionic conductivity. Int. J. Hydrogen Energy, 2014, 39, 17466-17472.
[http://dx.doi.org/10.1016/j.ijhydene.2014.01.012]
[112]
Maqbool, A.; Hussain, M.A.; Khalid, F.A.; Bakhsh, N.; Hussain, A.; Kim, M.H. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites. Mater. Charact., 2013, 86, 39-48.
[http://dx.doi.org/10.1016/j.matchar.2013.09.006]
[113]
Fenton, D.E.; Parker, J.M.; Wright, P.V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer (Guildf.), 1973, 14, 589.
[http://dx.doi.org/10.1016/0032-3861(73)90146-8]
[114]
Armand, M.B.; Chabagno, J.M.; Duclot, M.J. Poly- ethers as solid electrolytes. In: Fast Ion Transport in Solids; Vashishta, P.; Mundy, J.N.; Sheno, G.K., Eds.; North-Holland Publishing Co.: Amsterdam, 1979.
[115]
Armand, M.; Duclot, M. Nouveaux materiaux elastomers a conduction ionique. FR2442512, June 20;1980
[116]
Ma, Q.; Qi, X.; Tong, B.; Zheng, Y.; Feng, W.; Nie, J.; Hu, Y.S.; Li, H.; Huang, X.; Chen, L.; Zhou, Z. Novel Li [(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance. ACS Appl. Mater. Interfaces, 2016, 8(43), 29705-29712.
[http://dx.doi.org/10.1021/acsami.6b10597] [PMID: 27726333]
[117]
Zeng, X.X.; Yin, Y.X.; Li, N.W.; Du, W.C.; Guo, Y.G.; Wan, L.J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc., 2016, 138(49), 15825-15828.
[http://dx.doi.org/10.1021/jacs.6b10088] [PMID: 27960330]
[118]
Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev., 2014, 114(23), 11503-11618.
[http://dx.doi.org/10.1021/cr500003w] [PMID: 25351820]
[119]
Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y.S.; Li, H.; Huang, X.; Chen, L.; Armand, M.; Zhou, Z. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed., 2016, 55(7), 2521-2525.
[http://dx.doi.org/10.1002/anie.201509299] [PMID: 26840215]
[120]
Singh, M.; Odusanya, O.; Wilmes, G.M.; Eitouni, H.B.; Gomez, E.D.; Patel, A.J.; Chen, V.L.; Park, M.J.; Fragouli, P.; Iatrou, H.; Hadjichristidis, N. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules, 2007, 40, 4578-4585.
[http://dx.doi.org/10.1021/ma0629541]
[121]
Young, W.S.; Epps, T.H., III Salt doping in PEO-containing block copolymers: Counterion and concentration effects. Macromolecules, 2009, 42, 2672-2678.
[http://dx.doi.org/10.1021/ma802799p]
[122]
Zardalidis, G.; Gatsouli, K.; Pispas, S.; Mezger, M.; Floudas, G. Ionic conductivity, self-assembly, and viscoelasticity in poly(styrene-b-ethylene oxide) electrolytes doped with LiTf. Macromolecules, 2015, 48, 7164-7171.
[http://dx.doi.org/10.1021/acs.macromol.5b01596]
[123]
Kim, S.K.; Kim, D.G.; Lee, A.; Sohn, H.S.; Wie, J.J.; Nguyen, N.A.; Mackay, M.E.; Lee, J.C. Organic/inorganic hybrid block copolymer electrolytes with nanoscale ion-conducting channels for lithium ion batteries. Macromolecules, 2012, 45, 9347-9356.
[http://dx.doi.org/10.1021/ma301404q]
[124]
Villaluenga, I.; Chen, X.C.; Devaux, D.; Hallinan, D.T.; Balsara, N.P. Nanoparticle-driven assembly of highly conducting hybrid block copolymer electrolytes. Macromolecules, 2015, 48, 358-364.
[http://dx.doi.org/10.1021/ma502234y]
[125]
Irwin, M.T.; Hickey, R.J.; Xie, S.; So, S.; Bates, F.S.; Lodge, T.P. Structure–conductivity relationships in ordered and disordered saltdoped diblock copolymer/homopolymer blends. Macromolecules, 2016, 49, 6928-6939.
[http://dx.doi.org/10.1021/acs.macromol.6b01553]
[126]
Zardalidis, G.; Pipertzis, A.; Mountrichas, G.; Pispas, S.; Mezger, M.; Floudas, G. Effect of polymer architecture on the ionic conductivity. Densely grafted poly(ethylene oxide) brushes doped with LiTf. Macromolecules, 2016, 49, 2679-2687.
[http://dx.doi.org/10.1021/acs.macromol.6b00290]
[127]
Zhou, Q.F.; Li, H.M.; Feng, X.D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules, 1987, 20, 233-234.
[http://dx.doi.org/10.1021/ma00167a042]
[128]
Ye, C.; Zhang, H.L.; Huang, Y.; Chen, E.Q.; Lu, Y.; Shen, D.; Wan, X.H.; Shen, Z.; Cheng, S.Z.; Zhou, Q.F. Molecular weight dependence of phase structures and transitions of mesogen-jacketed liquid crystalline polymers based on 2-vinylterephthalic acids. Macromolecules, 2004, 37, 7188-7196.
[http://dx.doi.org/10.1021/ma049195b]
[129]
Runge, M.B.; Bowden, N.B. Synthesis of high molecular weight comb block copolymers and their assembly into ordered morphologies in the solid state. J. Am. Chem. Soc., 2007, 129(34), 10551-10560.
[http://dx.doi.org/10.1021/ja072929q] [PMID: 17685524]
[130]
Rzayev, J. Synthesis of polystyrene-polylactide bottlebrush block copolymers and their melt self-assembly into large domain nanostructures. Macromolecules, 2009, 42, 2135-2141.
[http://dx.doi.org/10.1021/ma802304y]
[131]
Xia, Y.; Olsen, B.D.; Kornfield, J.A.; Grubbs, R.H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J. Am. Chem. Soc., 2009, 131(51), 18525-18532.
[http://dx.doi.org/10.1021/ja908379q] [PMID: 19947607]
[132]
Ping, J.; Pan, H.; Hou, P.P.; Zhang, M.Y.; Wang, X.; Wang, C.; Chen, J.; Wu, D.; Shen, Z.; Fan, X.H. Solid polymer electrolytes with excellent high-temperature properties based on brush block copolymers having rigid side chains. ACS Appl. Mater. Interfaces, 2017, 9(7), 6130-6137.
[http://dx.doi.org/10.1021/acsami.6b15893] [PMID: 28128925]
[133]
Rocco, A.M.; Pereira, R.P. Solid electrolytes based on poly(ethylene oxide)/poly(4-vinyl phenol-co-2-hydroxyethyl methacrylate) blends and LiClO4. Solid State Ion., 2015, 279, 78-89.
[http://dx.doi.org/10.1016/j.ssi.2015.07.022]
[134]
Buriez, O.; Han, Y.B.; Hou, J.; Kerr, J.B.; Qiao, J.; Sloop, S.E.; Tian, M.; Wang, S. Performance limitations of polymer electrolytes based on ethylene oxide polymers. J. Power Sources, 2000, 89, 149-155.
[http://dx.doi.org/10.1016/S0378-7753(00)00423-7]
[135]
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev., 2004, 104(10), 4303-4417.
[http://dx.doi.org/10.1021/cr030203g] [PMID: 15669157]
[136]
Snyder, J.F.; Carter, R.H.; Wetzel, E.D. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem. Mater., 2007, 19, 3793-3801.
[http://dx.doi.org/10.1021/cm070213o]
[137]
Barteau, K.P.; Wolffs, M.; Lynd, N.A.; Fredrickson, G.H.; Kramer, E.J.; Hawker, C.J. Allyl glycidyl ether-based polymer electrolytes for room temperature lithium batteries. Macromolecules, 2013, 46, 8988-8994.
[http://dx.doi.org/10.1021/ma401267w]
[138]
Sun, B.; Mindemark, J.; Edström, K.; Brandell, D. Polycarbonatebased solid polymer electrolytes for Li-ion batteries. Solid State Ion., 2014, 262, 738-742.
[http://dx.doi.org/10.1016/j.ssi.2013.08.014]
[139]
Tominaga, Y.; Yamazaki, K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. (Camb.), 2014, 50(34), 4448-4450.
[http://dx.doi.org/10.1039/C3CC49588D] [PMID: 24653996]
[140]
Lin, C.K.; Wu, I.D. Investigating the effect of interaction behavior on the ionic conductivity of Polyester/LiClO4 blend systems. Polymer (Guildf.), 2011, 52, 4106-4113.
[http://dx.doi.org/10.1016/j.polymer.2011.06.055]
[141]
Mindemark, J.; Törmä, E.; Sun, B.; Brandell, D. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polymer (Guildf.), 2015, 63, 91-98.
[http://dx.doi.org/10.1016/j.polymer.2015.02.052]
[142]
Evans, J.; Vincent, C.A.; Bruce, P.G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer (Guildf.), 1987, 28, 2324-2328.
[http://dx.doi.org/10.1016/0032-3861(87)90394-6]
[143]
Mindemark, J.; Sun, B.; Törmä, E.; Brandell, D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources, 2015, 298, 166-170.
[http://dx.doi.org/10.1016/j.jpowsour.2015.08.035]
[144]
Devaux, D.; Glé, D.; Phan, T.N.; Gigmes, D.; Giroud, E.; Deschamps, M.; Denoyel, R.; Bouchet, R. Optimization of block copolymer electrolytes for lithium metal batteries. Chem. Mater., 2015, 27, 4682-4692.
[http://dx.doi.org/10.1021/acs.chemmater.5b01273]
[145]
Agapov, A.L.; Sokolov, A.P. Decoupling ionic conductivity from structural relaxation: A way to solid polymer electrolytes. Macromolecules, 2011, 44, 4410-4414.
[http://dx.doi.org/10.1021/ma2001096]
[146]
Mindemark, J.; Imholt, L.; Brandell, D. Synthesis of high molecular flexibility polycarbonates for solid polymer electrolytes. Electrochim. Acta, 2015, 175, 247-253.
[http://dx.doi.org/10.1016/j.electacta.2015.01.074]
[147]
Bergman, M.; Bergfelt, A.; Sun, B.; Bowden, T.; Brandell, D.; Johansson, P. Graft copolymer electrolytes for high temperature Libattery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol) methyl ether methacrylate and lithium bis(trifluoromethanesulfonimide). Electrochim. Acta, 2015, 175, 96-103.
[http://dx.doi.org/10.1016/j.electacta.2015.01.226]
[148]
Choi, S.W.; Luu, D.X.; Le Mong, A.; Kwon, B.; Kim, D. Ionic liquid impregnated lithium ion conductive solid electrolytes based on poly(acetyl ethylene glycol methacrylate–co-methyl acrylate). Solid State Ion., 2015, 279, 18-24.
[http://dx.doi.org/10.1016/j.ssi.2015.07.011]
[149]
Chinnam, P.R.; Zhang, H.; Wunder, S.L. Blends of pegylated polyoctahedralsilsesquioxanes (POSS-PEG) and methyl cellulose as solid polymer electrolytes for lithium batteries. Electrochim. Acta, 2015, 170, 191-201.
[http://dx.doi.org/10.1016/j.electacta.2015.04.010]
[150]
Zhao, J.; Zhang, J.; Hu, P.; Ma, J.; Wang, X.; Yue, L.; Xu, G.; Qin, B.; Liu, Z.; Zhou, X.; Cui, G. A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim. Acta, 2016, 188, 23-30.
[http://dx.doi.org/10.1016/j.electacta.2015.11.088]
[151]
Ma, Y.; Li, L.B.; Gao, G.X.; Yang, X.Y.; You, Y. Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries. Electrochim. Acta, 2016, 187, 535-542.
[http://dx.doi.org/10.1016/j.electacta.2015.11.099]
[152]
Han, P.; Zhu, Y.; Liu, J. An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method. J. Power Sources, 2015, 284, 459-465.
[http://dx.doi.org/10.1016/j.jpowsour.2015.03.058]
[153]
Daigle, J.C.; Vijh, A.; Hovington, P.; Gagnon, C.; Hamel-Pâquet, J.; Verreault, S.; Turcotte, N.; Clément, D.; Guerfi, A.; Zaghib, K. Lithium battery with solid polymer electrolyte based on comb-like copolymers. J. Power Sources, 2015, 279, 372-383.
[http://dx.doi.org/10.1016/j.jpowsour.2014.12.061]
[154]
Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998, 394, 456-458.
[http://dx.doi.org/10.1038/28818]
[155]
Kim, S.H.; Choi, K.H.; Cho, S.J.; Kil, E.H.; Lee, S.Y. Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 4949-4955.
[http://dx.doi.org/10.1039/c3ta10612h]
[156]
Varzi, A.; Raccichini, R.; Passerini, S.; Scrosati, B. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 17251-17259.
[http://dx.doi.org/10.1039/C6TA07384K]
[157]
Liu, W.; Liu, N.; Sun, J.; Hsu, P.C.; Li, Y.; Lee, H.W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett., 2015, 15(4), 2740-2745.
[http://dx.doi.org/10.1021/acs.nanolett.5b00600] [PMID: 25782069]
[158]
Liu, X.; Li, X.; Li, H.; Wu, H.B. Recent progress of hybrid solidstate electrolytes for lithium batteries. Chemistry, 2018, 24(69), 18293-18306.
[http://dx.doi.org/10.1002/chem.201803616] [PMID: 30221404]
[159]
Wieczorek, W.; Stevens, J.R.; Florjańczyk, Z. Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ion., 1996, 85, 67-72.
[http://dx.doi.org/10.1016/0167-2738(96)00042-2]
[160]
Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle polymer composites: where two small worlds meet. Science, 2006, 314(5802), 1107-1110.
[http://dx.doi.org/10.1126/science.1130557] [PMID: 17110567]
[161]
Wang, Z.; Huang, X.; Chen, L. Understanding of effects of nano-Al2O3 particles on ionic conductivity of composite polymer electrolytes. Electrochem. Solid-State Lett., 2003, 6, E40-E44.
[http://dx.doi.org/10.1149/1.1615352]
[162]
Xi, J.; Tang, X. Nanocomposite polymer electrolyte based on poly(ethylene oxide) and solid super acid for lithium polymer battery. Chem. Phys. Lett., 2004, 393, 271-276.
[http://dx.doi.org/10.1016/j.cplett.2004.06.054]
[163]
Chu, P.P.; Reddy, M.J. Sm2O3 composite PEO solid polymer electrolyte. J. Power Sources, 2003, 115, 288-294.
[164]
Liu, Y.; Lee, J.Y.; Hong, L. In situ preparation of poly (ethylene oxide)–SiO2 composite polymer electrolytes. J. Power Sources, 2004, 129, 303-311.
[http://dx.doi.org/10.1016/j.jpowsour.2003.11.026]
[165]
Marcinek, M.; Bac, A.; Lipka, P.; Zalewska, A.; Zukowska, G.; Borkowska, R.; Wieczorek, W. Effect of filler surface group on ionic interactions in PEG-LiClO4-Al2O3 composite polyether electrolytes. J. Phys. Chem. B, 2000, 104, 11088-11093.
[http://dx.doi.org/10.1021/jp0021493]
[166]
Steele, B.C.; Heinzel, A. Materials for fuel-cell technologies. Nature, 2001, 414(6861), 345-352.
[http://dx.doi.org/10.1038/35104620] [PMID: 11713541]
[167]
Goodenough, J.B. Oxide-ion electrolytes. Annu. Rev. Mater. Res., 2003, 33, 91-128.
[http://dx.doi.org/10.1146/annurev.matsci.33.022802.091651]
[168]
Ochrombel, R.; Schneider, J.; Hildmann, B.; Saruhan, B. Thermal expansion of EB-PVD yttria stabilized zirconia. J. Eur. Ceram. Soc., 2010, 30, 2491-2496.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2010.05.008]
[169]
Liu, W.; Lin, D.; Sun, J.; Zhou, G.; Cui, Y. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano, 2016, 10(12), 11407-11413.
[http://dx.doi.org/10.1021/acsnano.6b06797] [PMID: 28024352]
[170]
Liu, W.; Lee, S.W.; Lin, D.; Shi, F.; Wang, S.; Sendek, A.D.; Cui, Y. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy, 2017, 2, 17035.
[http://dx.doi.org/10.1038/nenergy.2017.35]
[171]
Lin, D.; Liu, W.; Liu, Y.; Lee, H.R.; Hsu, P.C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide). Nano Lett., 2016, 16(1), 459-465.
[http://dx.doi.org/10.1021/acs.nanolett.5b04117] [PMID: 26595277]
[172]
Armand, M. Polymer solid electrolytes-an overview. Solid State Ion., 1983, 9, 745-754.
[http://dx.doi.org/10.1016/0167-2738(83)90083-8]
[173]
Park, C.H.; Kim, D.W.; Prakash, J.; Sun, Y.K. Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ion., 2003, 159, 111-119.
[http://dx.doi.org/10.1016/S0167-2738(03)00025-0]
[174]
Fu, K.K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C.; Li, Y.; Wachsman, E.D.; Hu, L. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA, 2016, 113(26), 7094-7099.
[http://dx.doi.org/10.1073/pnas.1600422113] [PMID: 27307440]
[175]
Kim, J.K.; Scheers, J.; Park, T.J.; Kim, Y. Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries. ChemSusChem, 2015, 8(4), 636-641.
[http://dx.doi.org/10.1002/cssc.201402969] [PMID: 25394334]
[176]
Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J.B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc., 2016, 138(30), 9385-9388.
[http://dx.doi.org/10.1021/jacs.6b05341] [PMID: 27440104]
[177]
Doyle, M.; Fuller, T.F.; Newman, J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta, 1994, 39, 2073-2081.
[http://dx.doi.org/10.1016/0013-4686(94)85091-7]
[178]
Chen, L.; Li, Y.; Li, S.P.; Fan, L.Z.; Nan, C.W.; Goodenough, J.B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018, 46, 176-184.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.037]
[179]
Zhang, J.; Zang, X.; Wen, H.; Dong, T.; Chai, J.; Li, Y.; Chen, B.; Zhao, J.; Dong, S.; Ma, J.; Yue, L. High-voltage and free-standing poly (propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 4940-4948.
[http://dx.doi.org/10.1039/C6TA10066J]
[180]
Cheng, M.; Jiang, Y.; Yao, W.; Yuan, Y.; Deivanayagam, R.; Foroozan, T.; Huang, Z.; Song, B.; Rojaee, R.; Shokuhfar, T.; Pan, Y.; Lu, J.; Shahbazian-Yassar, R. Elevated-temperature 3D printing of hybrid solid-state electrolyte for li-ion batteries. Adv. Mater., 2018, 30(39) e1800615
[http://dx.doi.org/10.1002/adma.201800615] [PMID: 30132998]
[181]
Yan, Y.; Kühnel, R.S.; Remhof, A.; Duchêne, L.; Reyes, E.C.; Rentsch, D.; Łodziana, Z.; Battaglia, C. A lithium amideborohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes. Adv. Energy Mater., 2017, 7, 1700294
[http://dx.doi.org/10.1002/aenm.201700294]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 20 August, 2020
Page: [507 - 533]
Pages: 27
DOI: 10.2174/1573413716666191230153257
Price: $65

Article Metrics

PDF: 18
HTML: 1