Graphitic Carbon Nitride-based New Advanced Materials for Photocatalytic Applications

Author(s): Pankaj Raizada*, Abhinandan Kumar, Pardeep Singh

Journal Name: Current Analytical Chemistry

Volume 17 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The present scenario of rapid industrial and population growth has become a serious threat to environmental and energy concerns. Extremely noxious pollutants like dyes, heavy metal ions, phenols, antibiotics and pesticides in water are the reason behind deprived water quality leading to inadequate access to clean water. Photocatalysis is a prominent strategy for environmental remediation as photocatalytic materials not only convert solar energy into usable energy expedient but also shows potential application in pollutant mitigation. An effectual photocatalytic system must possess wide visible absorption range, high physio-chemical firmness, and effective space-charge separation along with strong redox ability. Polymeric graphitic carbon nitride a metal-free semiconductor photocatalyst has outshined as a robust photocatalyst for various photocatalytic applications.

Methods: Hybridizing polymeric g-C3N4 with other semiconductor photocatalysts has not only conquer the limitations related to pristine g-C3N4 but also displayed improved photoactivity. Different photocatalytic systems involving g-C3N4 coupled metal-oxides, metal-free systems and complex heterojunction systems are reviewed. Moreover, an all-embracing study based on g-C3N4 based nanocatalysts is explored via heterojunction formation taking g-C3N4 as one component.

Results: Photocatalytic experiments involving photodegradation of pollutants, revealed the significance of metal-free g-C3N4 in the heterojunction system which remarkably boost the photoactivity through effective separation and migration of photocarriers. Moreover, from recyclability experiments, exceptional photostability of g-C3N4 based photocatalysts was observed. Photocatalytic pollutant degradation is a complex phenomenon which requires significant experimental techniques to support the mechanism. With the help of photoelectrochemical analysis, the mechanisms behind photodegradation can be evaluated and explored.

Conclusion: Metal-free polymeric g-C3N4 is a potential semiconductor photocatalyst which can be optimally utilized for wastewater treatment. Coupling g-C3N4 with another semiconductor material with an appropriate band edge can effectively enhance the photocatalytic efficacy. Herein, g-C3N4 derived metal-oxide, metal-free and complex heterojunction systems are explored and their photocatalytic efficiency is evaluated for pollutant degradation. However, more effective research efforts are needed for large-scale applications of g-C3N4 based photocatalysts.

Keywords: Complex photocatalytic systems, metal-free photocatalytic systems, metal-oxide photocatalytic systems, pollutant degradation, polymeric graphitic carbon nitride, photocatalytic applications.

[1]
Huang, J.; Ho, W.; Wang, X. Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem. Commun. (Camb.), 2014, 50(33), 4338-4340.
[http://dx.doi.org/10.1039/c3cc48374f] [PMID: 24643279]
[2]
Raizada, P.; Singh, P.; Kumar, A.; Sharma, G.; Pare, B.; Jonnalagadda, S.B.; Thakur, P. Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: Role of adsorption in dye degradation. Appl. Catal. A, 2014, 486, 159-169.
[http://dx.doi.org/10.1016/j.apcata.2014.08.043]
[3]
Singh, P.; Raizada, P.; Kumari, S.; Kumar, A.; Pathania, D.; Thakur, P. Solar-Fenton removal of malachite green with novel FeO-activated carbon nanocomposite. Appl. Catal. A, 2014, 476, 9-18.
[http://dx.doi.org/10.1016/j.apcata.2014.02.009]
[4]
Ding, F.; Yang, D.; Tong, Z.; Nan, Y.; Wang, Y.; Zou, X.; Jiang, Z. Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ. Sci. Nano, 2017, 4, 1455-1469.
[http://dx.doi.org/10.1039/C7EN00255F]
[5]
Priya, B.; Raizada, P.; Singh, N.; Thakur, P.; Singh, P. Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan. J. Colloid Interface Sci., 2016, 479, 271-283.
[http://dx.doi.org/10.1016/j.jcis.2016.06.067] [PMID: 27393889]
[6]
Raizada, P.; Singh, P.; Kumar, A.; Pare, B.; Jonnalagadda, S.B. Zero valent iron-brick grain nanocomposite for enhanced solar-Fenton removal of malachite green. Separ. Purif. Tech., 2014, 133, 429-437.
[http://dx.doi.org/10.1016/j.seppur.2014.07.012]
[7]
Raizada, P.; Kumari, J.; Shandilya, P.; Dhiman, R.; Singh, V.P.; Singh, P. Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin. Process Saf. Environ., 2017, 106, 104-116.
[http://dx.doi.org/10.1016/j.psep.2016.12.012]
[8]
Gautam, S.; Shandilya, P.; Singh, V.P.; Raizada, P.; Singh, P. Solar photocatalytic mineralization of antibiotics using magnetically separable NiFe2O4 supported onto graphene sand composite and bentonite. J. Water Process Eng., 2016, 14, 86-100.
[http://dx.doi.org/10.1016/j.jwpe.2016.10.008]
[9]
Sudhaik, A.; Raizada, P.; Shandilya, P.; Jeong, D.Y.; Lim, J.H.; Singh, P. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J. Ind. Eng. Chem., 2018, 67, 28-51.
[http://dx.doi.org/10.1016/j.jiec.2018.07.007]
[10]
Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Thakur, V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Appl. Mater. Today, 2019, 15, 494-524.
[http://dx.doi.org/10.1016/j.apmt.2019.04.003]
[11]
Sudhaik, A.; Raizada, P.; Shandilya, P.; Singh, P. Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light. J. Environ. Chem. Eng., 2018, 6, 3874-3883.
[http://dx.doi.org/10.1016/j.jece.2018.05.039]
[12]
Raizada, P.; Sudhaik, A.; Singh, P.; Shandilya, P.; Saini, A.K.; Gupta, V.K.; Hosseini-Bandegharaei, A. Fabrication of Ag3VO4 decorated phosphorus and sulphur co-doped graphitic carbon nitride as a high-dispersed photocatalyst for phenol mineralization and E. coli disinfection. Separ. Purif. Tech., 2019, 212, 887-900.
[http://dx.doi.org/10.1016/j.seppur.2018.12.007]
[13]
Raizada, P.; Sudhaik, A.; Singh, P.; Shandilya, P.; Thakur, P.; Jung, H. Visible light assisted photodegradation of 2, 4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater. Arab. J. Chem., 2020, 13(1), 3196-3209.
[http://dx.doi.org/10.1016/j.arabjc.2018.10.004]]
[14]
Hou, Y.; Wen, Z.; Cui, S.; Guo, X.; Chen, J. Constructing 2D porous graphitic C3 N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater., 2013, 25(43), 6291-6297.
[http://dx.doi.org/10.1002/adma.201303116] [PMID: 23996281]
[15]
Ren, Y.; Zeng, D.; Ong, W.J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal., 2019, 40, 289-319.
[http://dx.doi.org/10.1016/S1872-2067(19)63293-6]
[16]
Huang, D.; Tang, Z.; Peng, Z.; Lai, C.; Zeng, G.; Zhang, C.; Xu, P.; Cheng, M.; Wan, J.; Wang, R. Fabrication of water-compatible molecularly imprinted polymer based on β-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution. J. Taiwan Inst. Chem. E., 2017, 77, 113-121.
[http://dx.doi.org/10.1016/j.jtice.2017.04.030]
[17]
Jamwal, D.; Kaur, G.; Raizada, P.; Singh, P.; Pathak, D.; Thakur, P. Twin-tail surfactant peculiarity in superficial fabrication of semiconductor quantum dots: toward structural, optical, and electrical features. J. Phys. Chem. C, 2015, 119, 5062-5073.
[http://dx.doi.org/10.1021/jp510428z]
[18]
Gupta, V.K.; Pathania, D.; Singh, P. Pectin–cerium (IV) tungstate nanocomposite and its adsorptional activity for removal of methylene blue dye. Int. J. Environ. Sci. Technol., 2014, 11, 2015-2024.
[http://dx.doi.org/10.1007/s13762-013-0351-8]
[19]
Natarajan, T.S.; Thampi, K.R.; Tayade, R.J. Visible light driven redox-mediator-free dual semiconductor photocatalytic systems for pollutant degradation and the ambiguity in applying Z-scheme concept. Appl. Catal. B, 2018, 227, 296-311.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.015]
[20]
Sharma, R.K.; Gulati, S.; Puri, A. Green Chemistry Solutions to Water Pollution. Water Reclam; Sustain, 2014, pp. 57-75.
[21]
Sawhney, K.K.R.C.R.; Kabra, K.; Chaudhary, R. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Ind. Eng. Chem. Res., 2004, 43, 7683-7696.
[http://dx.doi.org/10.1021/ie0498551]
[22]
Udom, I.; Ram, M.K.; Stefanakos, E.K.; Hepp, A.F.; Goswami, D.Y. One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater. Sci. Semicond. Process., 2013, 16, 2070-2083.
[http://dx.doi.org/10.1016/j.mssp.2013.06.017]
[23]
Singh, P.; Raizada, P.; Pathania, D.; Sharma, G.; Sharma, P. Microwave induced KOH activation of guava peel carbon as an adsorbent for congo red dye removal from aqueous phase. Indian J. Chem. Technol., 2013, 20, 305-311.
[24]
Raizada, P.; Sudhaik, A.; Singh, P.; Hosseini-Bandegharaei, A.; Thakur, P. Converting type II AgBr/VO into ternary Z-scheme photocatalyst via coupling with phosphorus doped g-C3N4 for enhanced photocatalytic activity. Separ. Purif. Tech., 2019, 227115692
[http://dx.doi.org/10.1016/j.seppur.2019.115692]]
[25]
Singh, P.; Priya, B.; Shandilya, P.; Raizada, P.; Singh, N.; Pare, B.; Jonnalagadda, S.B. Photocatalytic mineralization of antibiotics using 60% WO3/BiOCl stacked to graphene sand composite and chitosan. Arab. J. Chem., 2019, 12(8), 4627-4645.
[http://dx.doi.org/10.1016/j.arabjc.2016.08.005]]
[26]
Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater., 2014, 24, 2421-2440.
[http://dx.doi.org/10.1002/adfm.201303214]
[27]
Bard, A.J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem., 1979, 10, 59-75.
[http://dx.doi.org/10.1016/0047-2670(79)80037-4]
[28]
Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater., 2006, 5(10), 782-786.
[http://dx.doi.org/10.1038/nmat1734] [PMID: 16964238]
[29]
Tu, W.; Zhou, Y.; Feng, S.; Xu, Q.; Li, P.; Wang, X.; Xiao, M.; Zou, Z. Hollow spheres consisting of Ti0.91O2/CdS nanohybrids for CO2 photofixation. Chem. Commun. (Camb.), 2015, 51(69), 13354-13357.
[http://dx.doi.org/10.1039/C5CC03905C] [PMID: 26166366]
[30]
Liu, C.; Tang, J.; Chen, H.M.; Liu, B.; Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett., 2013, 13(6), 2989-2992.
[http://dx.doi.org/10.1021/nl401615t] [PMID: 23647159]
[31]
Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev., 2015, 44(10), 2893-2939.
[http://dx.doi.org/10.1039/C5CS00064E] [PMID: 25904385]
[32]
Fan, Q.; Liu, J.; Yu, Y.; Zuo, S.; Li, B. A simple fabrication for sulfur doped graphitic carbon nitride porous rods with excellent photocatalytic activity degrading RhB dye. Appl. Surf. Sci., 2017, 391, 360-368.
[http://dx.doi.org/10.1016/j.apsusc.2016.04.055]
[33]
Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Z‐Scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv. Sci. (Weinh.), 2016, 3(11)1500389 http://dx.doi.org/10.1002/advs.201500389 PMID: 27980982.
[34]
Xia, X.; Song, M.; Wang, H.; Zhang, X.; Sui, N.; Zhang, Q.; Colvin, V.L.; Yu, W.W. Latest progress in constructing solid-state Z scheme photocatalysts for water splitting. Nanoscale, 2019, 11(23), 11071-11082.
[http://dx.doi.org/10.1039/C9NR03218E] [PMID: 31149691]
[35]
Raizada, P.; Sudhaik, A.; Singh, P.; Shandilya, P.; Gupta, V.K.; Hosseini-Bandegharaei, A.; Agrawal, S. Ag3PO4 modified phosphorus and sulphur Co-doped graphitic carbon nitride as a direct Zscheme photocatalyst for 2, 4-dimethyl phenol degradation. J. Photochem. Photobiol. Chem., 2019, 374, 22-35. http://dx.doi.org/10.1016/j.jphotochem.2019.01.015.
[36]
Xu, F.; Xiao, W.; Cheng, B.; Yu, J. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int. J. Hydrogen Energy, 2014, 39, 15394-15402.
[http://dx.doi.org/10.1016/j.ijhydene.2014.07.166]
[37]
Yu, W.; Xu, D.; Peng, T. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism. J. Mater. Chem., 2015, 3, 19936-19947.
[http://dx.doi.org/10.1039/C5TA05503B]
[38]
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 2014, 43(22), 7520-7535.
[http://dx.doi.org/10.1039/C3CS60378D] [PMID: 24413305]
[39]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[40]
Giannakas, A.; Bairamis, F.; Papakostas, I.; Zerva, T.; Konstantinou, I. Evaluation of TiO2/V2O5 and N, F-doped-TiO2/V2O5 nanocomposite photocatalysts toward reduction of Cr (VI) and oxidation reactions by OH radicals. J. Ind. Eng. Chem., 2018, 65, 370-379.
[http://dx.doi.org/10.1016/j.jiec.2018.05.008]
[41]
Pare, B.; Singh, P.; Jonnalgadda, S.B. Artificial light assisted photocatalytic degradation of lissamine fast yellow dye in ZnO suspension in a slurry batch reactor. Indian J. Chem., 2009, 48A, 1364-1369.
[42]
Fu, X.; Clark, L.A.; Yang, Q.; Anderson, M.A. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol., 1996, 30, 647-653.
[http://dx.doi.org/10.1021/es950391v]
[43]
Kitano, M.; Matsuoka, M.; Ueshima, M.; Anpo, M. Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A, 2007, 325, 1-14.
[http://dx.doi.org/10.1016/j.apcata.2007.03.013]
[44]
Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem., 2014, 204, 250-272.
[http://dx.doi.org/10.1016/j.snb.2014.07.074]
[45]
Bagheri, S. TermehYousefi, A.; Do, T. O. Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: Structure, kinetics and mechanism approach. Catal. Sci. Technol., 2017, 7, 4548-4569.
[http://dx.doi.org/10.1039/C7CY00468K]
[46]
Chen, H.; Nanayakkara, C.E.; Grassian, V.H. Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev., 2012, 112(11), 5919-5948.
[http://dx.doi.org/10.1021/cr3002092] [PMID: 23088691]
[47]
Singh, P.; Gautam, S.; Shandilya, P.; Priya, B.; Singh, V.P.; Raizada, P. Graphene bentonite supported ZnFe2O4 as superparamagnetic photocatalyst for antibiotic degradation. Adv. Mater. Lett., 2017, 8, 229-238.
[http://dx.doi.org/10.5185/amlett.2017.1467]
[48]
Raizada, P.; Shandilya, P.; Singh, S. Hybrid metal oxide semiconductors for waste water treatment. Environ. Sci. Eng, 2017, 4, 187-206.
[49]
He, Y.; Zhang, L.; Wang, X.; Wu, Y.; Lin, H.; Zhao, L.; Weng, W.; Wan, H.; Fan, M. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3–g-C3N4 composite under visible light irradiation. RSC Advances, 2014, 4, 13610-13619.
[http://dx.doi.org/10.1039/C4RA00693C]
[50]
Xia, P.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain. Chem.& Eng., 2017, 6, 965-973.
[http://dx.doi.org/10.1021/acssuschemeng.7b03289]
[51]
Zou, X.; Dong, Y.; Li, S.; Ke, J.; Cui, Y.; Ou, X. Fabrication of V2O5/g-C3N4 heterojunction composites and its enhanced visible light photocatalytic performance for degradation of gaseous ortho-dichlorobenzene. J. Taiwan Inst. Chem. E., 2018, 93, 158-165.
[http://dx.doi.org/10.1016/j.jtice.2018.05.041]
[52]
Sharma, K.; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Singh, P. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review. J. Ind. Eng. Chem., In Press
[http://dx.doi.org/10.1016/j.jiec.2019.06.022]]
[53]
Singh, P.; Raizada, P.; Pathania, D.; Kumar, A.; Thakur, P. Preparation of BSA-ZnWO4 nanocomposites with enhanced adsorptional photocatalytic activity for methylene blue degradation. Int. J. Photoenergy, 2013, 2013Article ID 726250
[http://dx.doi.org/10.1155/2013/726250]]
[54]
Hasija, V.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Singh, P. Carbon quantum dots supported AgI/ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. J. Environ. Chem. Eng., 2019, 7103272
[http://dx.doi.org/10.1016/j.jece.2019.103272]]
[55]
Raizada, P.; Priya, B.; Thakur, P.; Singh, P. Solar light induced photodegradation of oxytetracyline using Zr doped TiO2/CaO based nanocomposite. Indian J. Chem., 2016, 55A, 803-809.
[56]
Liu, C.; Dong, S.; Chen, Y. Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact. Chem. Eng. J., 2019, 371, 706-718.
[http://dx.doi.org/10.1016/j.cej.2019.04.089]
[57]
Raizada, P.; Shandilya, P.; Singh, P.; Thakur, P. Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing a H2O2/ZnWO4/CaO catalytic system. J. Taibah Uni. Sci., 2017, 11, 689-699.
[http://dx.doi.org/10.1016/j.jtusci.2016.06.004]
[58]
Raizada, P.; Kumari, J.; Shandilya, P.; Singh, P. Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO. Desalination Water Treat., 2017, 79, 204-213.
[http://dx.doi.org/10.5004/dwt.2017.20831]
[59]
Singh, P.; Raizada, P.; Sudhaik, A.; Shandilya, P.; Thakur, P.; Agarwal, S.; Gupta, V.K. Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light. J. Saudi Chem. Soc., 2019, 23(5), 586-599.
[http://dx.doi.org/10.1016/j.jscs.2018.10.005]
[60]
Sonu; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Gupta, V.K.; Singh, P. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc., 2019, 23(8), 1119-1136.
[http://dx.doi.org/10.1016/j.jscs.2019.07.003]]
[61]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009, 8(1), 76-80.
[http://dx.doi.org/10.1038/nmat2317] [PMID: 18997776]
[62]
Kessler, F.K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X.; Bojdys, M.J. Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater., 2017, 2, 17030.
[http://dx.doi.org/10.1038/natrevmats.2017.30]
[63]
Liu, G.; Niu, P.; Cheng, H.M. Visible-light-active elemental photocatalysts. ChemPhysChem, 2013, 14(5), 885-892.
[http://dx.doi.org/10.1002/cphc.201201075] [PMID: 23418060]
[64]
Zhang, N.; Zhang, Y.; Xu, Y.J. Recent progress on graphene-based photocatalysts: Current status and future perspectives. Nanoscale, 2012, 4(19), 5792-5813.
[http://dx.doi.org/10.1039/c2nr31480k] [PMID: 22907128]
[65]
Shaban, M.; Ashraf, A.M.; Abukhadra, M.R. TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci. Rep., 2018, 8(1), 781.
[http://dx.doi.org/10.1038/s41598-018-19172-w] [PMID: 29335510]
[66]
Hong, Y.; Meng, Y.; Zhang, G.; Yin, B.; Zhao, Y.; Shi, W.; Li, C. Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity. Separ. Purif. Tech., 2016, 171, 229-237.
[http://dx.doi.org/10.1016/j.seppur.2016.07.025]
[67]
Wang, F.; Ng, W.K.H.; Jimmy, C.Y.; Zhu, H.; Li, C.; Zhang, L.; Liu, Z.; Li, Q. Red phosphorus: An elemental photocatalyst for hydrogen formation from water. Appl. Catal. B, 2012, 111, 409-414.
[http://dx.doi.org/10.1016/j.apcatb.2011.10.028]
[68]
Yuan, Y.P.; Cao, S.W.; Liao, Y.S.; Yin, L.S.; Xue, C. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Appl. Catal. B, 2013, 140, 164-168.
[http://dx.doi.org/10.1016/j.apcatb.2013.04.006]
[69]
Xia, D.; Shen, Z.; Huang, G.; Wang, W.; Yu, J.C.; Wong, P.K. Red phosphorus: An earth-abundant elemental photocatalyst for “green” bacterial inactivation under visible light. Environ. Sci. Technol., 2015, 49(10), 6264-6273.
[http://dx.doi.org/10.1021/acs.est.5b00531] [PMID: 25894494]
[70]
Zong, S.; Wei, W.; Cui, H.; Jiang, Z.; Lü, X.; Zhang, M.; Xie, J. A novel synthesis of P/BiPO4 nanocomposites with enhanced visible-light photocatalysis. Mater. Res. Innov., 2015, 19, 361-367.
[http://dx.doi.org/10.1179/1433075X15Y.0000000013]
[71]
Shen, Z.; Sun, S.; Wang, W.; Liu, J.; Liu, Z.; Jimmy, C.Y. A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 3285-3288.
[http://dx.doi.org/10.1039/C4TA06871H]
[72]
Dang, H.; Dong, X.; Dong, Y.; Fan, H.; Qiu, Y. Enhancing the photocatalytic H2 evolution activity of red phosphorous by using noble-metal-free Ni(OH)2 under photoexcitation up to 700 nm. RSC Advances, 2014, 4, 44823-44826.
[http://dx.doi.org/10.1039/C4RA06867J]
[73]
Chan, D.K.L.; Yu, J.C.; Li, Y.; Hu, Z. A metal-free composite photocatalyst of graphene quantum dots deposited on red phosphorus. J. Environ. Sci. (China), 2017, 60, 91-97.
[http://dx.doi.org/10.1016/j.jes.2016.11.025] [PMID: 29031451]
[74]
Ansari, S.A.; Ansari, M.S.; Cho, M.H. Metal free earth abundant elemental red phosphorus: A new class of visible light photocatalyst and photoelectrode materials. Phys. Chem. Chem. Phys., 2016, 18(5), 3921-3928.
[http://dx.doi.org/10.1039/C5CP06796K] [PMID: 26765211]
[75]
Wang, W.; Li, G.; An, T.; Chan, D.K.; Jimmy, C.Y.; Wong, P.K. Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: The role of type I band alignment. Appl. Catal. B, 2018, 238, 126-135.
[http://dx.doi.org/10.1016/j.apcatb.2018.07.004]
[76]
Liu, E.; Du, Y.; Bai, X.; Fan, J.; Hu, X. Synergistic improvement of Cr (VI) reduction and RhB degradation using RP/g-C3N4 photocatalyst under visible light irradiation. Arab. J. Chem., In Press
[http://dx.doi.org/10.1016/j.arabjc.2019.02.001]]
[77]
Shi, L.; Liang, L.; Ma, J.; Wang, F.; Sun, J. Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/g-C3N4 composite photocatalysts under visible light. Dalton Trans., 2014, 43(19), 7236-7244.
[http://dx.doi.org/10.1039/C4DT00087K] [PMID: 24681708]
[78]
Zhu, Z.; Fan, W.; Liu, Z.; Yu, Y.; Dong, H.; Huo, P.; Yan, Y. Fabrication of the metal-free biochar-based graphitic carbon nitride for improved 2-Mercaptobenzothiazole degradation activity. J. Photochem. Photobiol. Chem., 2018, 358, 284-293.
[http://dx.doi.org/10.1016/j.jphotochem.2018.03.027]
[79]
Vidyasagar, D.; Gupta, A.; Balapure, A.; Ghugal, S.G.; Shende, A.G.; Umare, S.S. 2D/2D Wg-C3N4/g-C3N4 composite as “Adsorb and Shuttle” model photocatalyst for pollution mitigation. J. Photochem. Photobiol. Chem., 2019, 370, 117-126.
[http://dx.doi.org/10.1016/j.jphotochem.2018.10.038]
[80]
Balu, S.; Velmurugan, S.; Palanisamy, S.; Chen, S.W.; Velusamy, V.; Yang, T.C.; El-Shafey, E.S.I. Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media. J. Taiwan Inst. Chem. E., 2019, 99, 258-267.
[http://dx.doi.org/10.1016/j.jtice.2019.03.011]
[81]
Singh, P.; Sudhaik, A.; Raizada, P.; Shandilya, P.; Sharma, R.; Hosseini-Bandegharaei, A. Photocatalytic performance and quick recovery of BiOI/Fe3O4@ graphene oxide ternary photocatalyst for photodegradation of 2, 4-dintirophenol under visible light. Mater. Today Chem., 2019, 12, 85-95.
[http://dx.doi.org/10.1016/j.mtchem.2018.12.006]
[82]
Akhundi, A.; Habibi-Yangjeh, A. High performance magnetically recoverable g-C3N4/Fe3O4/Ag/Ag2SO3 plasmonic photocatalyst for enhanced photocatalytic degradation of water pollutants. Adv. Powder Technol., 2017, 28, 565-574.
[http://dx.doi.org/10.1016/j.apt.2016.10.025]
[83]
Akhundi, A.; Habibi-Yangjeh, A. Ternary magnetic g-C3N4/Fe3O4/AgI nanocomposites: Novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light. Mater. Chem. Phys., 2016, 174, 59-69.
[http://dx.doi.org/10.1016/j.matchemphys.2016.02.052]
[84]
Akhundi, A.; Habibi-Yangjeh, A. Novel magnetically separable g-C3N4/AgBr/Fe3O4 nanocomposites as visible-light-driven photocatalysts with highly enhanced activities. Ceram. Int., 2015, 41, 5634-5643.
[http://dx.doi.org/10.1016/j.ceramint.2014.12.145]
[85]
Chandel, N.; Sharma, K.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V.K.; Singh, P. Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arab. J. Chem., 2020, 13(2), 4324-4340.
[http://dx.doi.org/10.1016/j.arabjc.2019.08.005]]
[86]
Kuang, J.; Xing, Z.; Yin, J.; Li, Z.; Zhu, Q.; Zhou, W. Surface plasma Ag-decorated single-crystalline TiO2-x(B) nanorod/defect-rich g-C3N4 nanosheet ternary superstructure 3D heterojunctions as enhanced visible-light-driven photocatalyst. J. Colloid Interface Sci., 2019, 542, 63-72.
[http://dx.doi.org/10.1016/j.jcis.2019.01.124] [PMID: 30731354]
[87]
Mamba, G.; Mishra, A. Advances in magnetically separable photocatalysts: smart, recyclable materials for water pollution mitigation. Catalysts, 2016, 6, 79.
[http://dx.doi.org/10.3390/catal6060079]
[88]
Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I.; Dionysiou, D.D. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J., 2017, 310, 407-427.
[http://dx.doi.org/10.1016/j.cej.2016.04.140]
[89]
Mousavi, M.; Habibi-Yangjeh, A. Novel magnetically separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: Visible-light-driven photocatalysts with highly enhanced activity. Adv. Powder Technol., 2017, 28, 1540-1553.
[http://dx.doi.org/10.1016/j.apt.2017.03.025]
[90]
Kumar, A.; Kumar, A.; Sharma, G.; Ala’a, H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J., 2018, 1, 462-478.
[91]
Wang, M.; Tan, G.; Ren, H.; Xia, A.; Liu, Y. Direct double Z-scheme Og-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity. Appl. Surf. Sci., 2019, 492, 690-702.
[http://dx.doi.org/10.1016/j.apsusc.2019.06.260]]
[92]
Lv, J.; Dai, K.; Zhang, J.; Geng, L.; Liang, C.; Liu, Q.; Zhu, G.; Chen, C. Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties. Appl. Surf. Sci., 2015, 358, 377-384.
[http://dx.doi.org/10.1016/j.apsusc.2015.06.183]
[93]
Jo, W.K.; Natarajan, T.S. Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem. Eng. J., 2015, 281, 549-565.
[http://dx.doi.org/10.1016/j.cej.2015.06.120]
[94]
Huang, L.; Xu, H.; Zhang, R.; Cheng, X.; Xia, J.; Xu, Y.; Li, H. Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity. Appl. Surf. Sci., 2013, 283, 25-32.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.106]
[95]
Chen, H.Y.; Qiu, L.G.; Xiao, J.D.; Ye, S.; Jiang, X.; Yuan, Y.P. Inorganic-organic hybrid NiO-g-C3N4 photocatalyst for efficient methylene blue degradation using visible light. RSC Advances, 2014, 4, 22491-22496.
[http://dx.doi.org/10.1039/C4RA01519C]
[96]
Tian, Y.; Chang, B.; Lu, J.; Fu, J.; Xi, F.; Dong, X. Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces, 2013, 5(15), 7079-7085.
[http://dx.doi.org/10.1021/am4013819] [PMID: 23841689]
[97]
Dong, F.; Zhao, Z.; Xiong, T.; Ni, Z.; Zhang, W.; Sun, Y.; Ho, W.K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces, 2013, 5(21), 11392-11401.
[http://dx.doi.org/10.1021/am403653a] [PMID: 24144400]
[98]
Min, Y.; Qi, X.F.; Xu, Q.; Chen, Y. Enhanced reactive oxygen species on a phosphate modified C3N4/graphene photocatalyst for pollutant degradation. CrystEngComm, 2014, 16, 1287-1295.
[http://dx.doi.org/10.1039/c3ce41964a]
[99]
Tong, Z.; Yang, D.; Shi, J.; Nan, Y.; Sun, Y.; Jiang, Z. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl. Mater. Interfaces, 2015, 7(46), 25693-25701.
[http://dx.doi.org/10.1021/acsami.5b09503] [PMID: 26545166]
[100]
Dai, K.; Lu, L.; Liu, Q.; Zhu, G.; Wei, X.; Bai, J.; Xuan, L.; Wang, H. Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications. Dalton Trans., 2014, 43(17), 6295-6299.
[http://dx.doi.org/10.1039/c3dt53106f] [PMID: 24626428]
[101]
Li, Y.; Zhang, H.; Liu, P.; Wang, D.; Li, Y.; Zhao, H. Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small, 2013, 9(19), 3336-3344.
[PMID: 23630157]
[102]
Akhundi, A.; Habibi-Yangjeh, A. Codeposition of AgI and Ag2CrO4 on g-C3N4/Fe3O4 nanocomposite: Novel magnetically separable visible-light-driven photocatalysts with enhanced activity. Adv. Powder Technol., 2016, 27, 2496-2506.
[http://dx.doi.org/10.1016/j.apt.2016.09.025]
[103]
Akhundi, A.; Habibi-Yangjeh, A. Facile preparation of novel quaternary g-C3N4/Fe3O4/AgI/Bi2S3 nanocomposites: magnetically separable visible-light-driven photocatalysts with significantly enhanced activity. RSC Advances, 2016, 6(108), 106572-106583.
[http://dx.doi.org/10.1039/C6RA12414C]
[104]
Zhang, D.; Cui, S.; Yang, J. Preparation of Ag2O/g-C3N4/Fe3O4 composites and the application in the photocatalytic degradation of Rhodamine B under visible light. J. Alloys Compd., 2017, 708, 1141-1149.
[http://dx.doi.org/10.1016/j.jallcom.2017.03.095]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2021
Published on: 30 December, 2019
Page: [150 - 165]
Pages: 16
DOI: 10.2174/1573411016666191230152919
Price: $65

Article Metrics

PDF: 25
HTML: 1