Role of Nano-Photocatalysts in Detoxification of Toxic Heavy Metals

Author(s): Muhammad B. Tahir*, Abdullah M. Asiri, Muhammad F. Malik, Nadeem R. Khalid, Tahir Iqbal, Muhammad Rafique, Habiba Kiran, Shabbir Muhammad, Saifeldin M. Siddeeg, Khurram Shahzad

Journal Name: Current Analytical Chemistry

Volume 17 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Nano-photocatalysis through semiconductor-based materials has become an emerging and eye-catching approach for detoxification of hazardous heavy metals in the aqueous environment.

Methods: In this article, photocatalysis, being a green technique along with several other detoxification technologies for toxic heavy metals, has been reviewed.

Furthermore, the adverse effects of heavy metals on human health, agricultural lands, environment, and aquatic systems were investigated. Toxic heavy-metals contribute to numerous environmental issues based on their toxicity.

Result: Various types of photocatalysts have been discussed in recent literature for the detoxification of heavy metals. The recycling of photocatalysts may be anticipated as a worthy method for wastewater treatment which is also discussed with recent examples.

Conclusion: Moreover, it concludes with efficiency, challenges and new future perspectives for heavy metal detoxification using photocatalysis.

Keywords: Detoxification, efficient removal, environmental issues, heavy metals, nano-photocatalysis, treatment technologies.

[1]
Hargreaves, A.J. Fate and removal of metals in municipal wastewater treatment: A review. Environ. Technol. Rev., 2018, 7(1), 1-18.
[http://dx.doi.org/10.1080/21622515.2017.1423398]
[2]
Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf., 2018, 148, 702-712.
[http://dx.doi.org/10.1016/j.ecoenv.2017.11.034] [PMID: 29174989]
[3]
Ariffin, N. Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences., 2017,http://dx.doi.org/10.1051/matecconf/20179701023
[4]
Tyagi, I. Nanoparticles as adsorbent; A positive approach for removal of noxious metal ions: A review. Sci. Technol. Develop., 2017, 34(3), 195-214.
[5]
Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin., 2017, 7(4), 387-419.
[http://dx.doi.org/10.2166/wrd.2016.104]
[6]
Ray, P.Z.; Shipley, H.J. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 2015, 5(38), 29885-29907.
[http://dx.doi.org/10.1039/C5RA02714D]
[7]
Inyang, M.I. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol., 2016, 46(4), 406-433.
[http://dx.doi.org/10.1080/10643389.2015.1096880]
[8]
Chen, G. Enhancement of photocatalytic H2 evolution on ZnIn2S4 loaded with in-situ photo-deposited MoS2 under visible light irradiation. Appl. Catal. B, 2014, 160, 614-620.
[http://dx.doi.org/10.1016/j.apcatb.2014.05.028]
[9]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater., 2012, 211-212, 317-331.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.016] [PMID: 22018872]
[10]
Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., 2011, 92(3), 407-418.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011] [PMID: 21138785]
[11]
Ngah, W.W.; Teong, L.; Hanafiah, M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym., 2011, 83(4), 1446-1456.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.004]
[12]
Sud, D.; Mahajan, G.; Kaur, M.P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresour. Technol., 2008, 99(14), 6017-6027.
[http://dx.doi.org/10.1016/j.biortech.2007.11.064] [PMID: 18280151]
[13]
Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol., 2007, 98(12), 2243-2257.
[http://dx.doi.org/10.1016/j.biortech.2005.12.006] [PMID: 16427277]
[14]
Mohan, D.; Pittman, C.U. Jr Arsenic removal from water/wastewater using adsorbents--A critical review. J. Hazard. Mater., 2007, 142(1-2), 1-53.
[http://dx.doi.org/10.1016/j.jhazmat.2007.01.006] [PMID: 17324507]
[15]
Bissen, M.; Frimmel, F.H. Arsenic-a review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol., 2003, 31(1), 9-18.
[http://dx.doi.org/10.1002/aheh.200390025]
[16]
Tharani, A. Comparative study on removal of heavy metals from textile industry wastewater using various adsorbent. Int. J. Adv. Sci. Eng. Res, 2017, 2, 12-22.
[17]
Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull., 2003, 68, 167-182.
[18]
Srivastava, N.K.; Majumder, C.B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater., 2008, 151(1), 1-8.
[http://dx.doi.org/10.1016/j.jhazmat.2007.09.101] [PMID: 17997034]
[19]
Chen, R. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat. Energy, 2018, 3(8), 655.
[http://dx.doi.org/10.1038/s41560-018-0194-0]
[20]
Wang, J.; Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv., 2006, 24(5), 427-451.
[http://dx.doi.org/10.1016/j.biotechadv.2006.03.001 PMID: 16737792]
[21]
Gautam, R.K. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng., 2014, 2(1), 239-259.
[http://dx.doi.org/10.1016/j.jece.2013.12.019]
[22]
Alvarez-Ayuso, E.; García-Sánchez, A.; Querol, X. Purification of metal electroplating waste waters using zeolites. Water Res., 2003, 37(20), 4855-4862.
[http://dx.doi.org/10.1016/j.watres.2003.08.009] [PMID: 14604631]
[23]
Cai, Z. Application of nanotechnologies for removing pharmaceutically active compounds from water: Development and future trends. Environ. Sci. Nano, 2018, 5(1), 27-47.
[http://dx.doi.org/10.1039/C7EN00644F]
[24]
Hayati, B. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. J. Mol. Liq., 2016, 224, 1032-1040.
[http://dx.doi.org/10.1016/j.molliq.2016.10.053]
[25]
Mahdavian, A.R.; Mirrahimi, M.A-S. Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J., 2010, 159(1-3), 264-271.
[http://dx.doi.org/10.1016/j.cej.2010.02.041]
[26]
Madaeni, S.; Mansourpanah, Y. COD removal from concentrated wastewater using membranes. Filtr. Sep., 2003, 40(6), 40-46.
[http://dx.doi.org/10.1016/S0015-1882(03)00635-9]
[27]
Cieśla, P. Homogeneous photocatalysis by transition metal complexes in the environment. J. Mol. Catal. Chem., 2004, 224(1-2), 17-33.
[http://dx.doi.org/10.1016/j.molcata.2004.08.043]
[28]
Chen, D.; Sivakumar, M.; Ray, A.K. Heterogeneous photocatalysis in environmental remediation. Dev. Chem. Eng. Miner. Process., 2000, 8(5‐6), 505-550.
[29]
Mo, M. Self‐assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater., 2005, 17(6), 756-760.
[http://dx.doi.org/10.1002/adma.200401477]
[30]
Thanh, D.N. Perlite incorporating γ-Fe2O3 and α-MnO2 nanomaterials: Preparation and evaluation of a new adsorbent for As (V) removal. Separ. Purif. Tech., 2011, 82, 93-101.
[http://dx.doi.org/10.1016/j.seppur.2011.08.030]
[31]
Abdullah, H.; Kuo, D-H.; Chen, Y-H. High-efficient n-type TiO2/p-type Cu2O nanodiode photocatalyst to detoxify hexavalent chromium under visible light irradiation. J. Mater. Sci., 2016, 51(17), 8209-8223.
[http://dx.doi.org/10.1007/s10853-016-0096-0]
[32]
Li, Q.; Easter, N.J.; Shang, J.K. As(III) removal by palladium-modified nitrogen-doped titanium oxide nanoparticle photocatalyst. Environ. Sci. Technol., 2009, 43(5), 1534-1539.
[http://dx.doi.org/10.1021/es8025837] [PMID: 19350931]
[33]
Li, Y.; Bando, Y.; Sato, T. Preparation of network-like MgO nanobelts on Si substrate. Chem. Phys. Lett., 2002, 359(1-2), 141-145.
[http://dx.doi.org/10.1016/S0009-2614(02)00672-3]
[34]
Tripathy, S.S.; Bersillon, J-L.; Gopal, K. Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 2006, 194(1-3), 11-21.
[http://dx.doi.org/10.1016/j.desal.2005.10.023]
[35]
Hong, H-J. Preparation and evaluation of Fe-Al binary oxide for arsenic removal: Comparative study with single metal oxides. Sep. Sci. Technol., 2010, 45(12-13), 1975-1981.
[http://dx.doi.org/10.1080/01496395.2010.493790]
[36]
Koivula, R. Use of hydrometallurgical wastewater as a precursor for the synthesis of cryptomelane-type manganese dioxide ion exchange material. Separ. Purif. Tech., 2009, 70(1), 53-57.
[http://dx.doi.org/10.1016/j.seppur.2009.08.014]
[37]
Mayo, J. The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater., 2007, 8(1-2), 71.
[http://dx.doi.org/10.1016/j.stam.2006.10.005]
[38]
Yu, L.; Peng, X.; Ni, F.; Li, J.; Wang, D.; Luan, Z. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J. Hazard. Mater., 2013, 246-247, 10-17.
[http://dx.doi.org/10.1016/j.jhazmat.2012.12.007] [PMID: 23276789]
[39]
Wang, Z. Textile dyeing wastewater treatment. Advances in treating textile effluent; InTech, 2011.
[http://dx.doi.org/10.5772/22670]
[40]
Trivedi, P.; Axe, L. A comparison of strontium sorption to hydrous aluminum, iron, and manganese oxides. J. Colloid Interface Sci., 1999, 218(2), 554-563.
[http://dx.doi.org/10.1006/jcis.1999.6465] [PMID: 10502389]
[41]
Mishra, S.P. Removal behavior of hydrous manganese oxide and hydrous stannic oxide for Cs (I) ions from aqueous solutions. Separ. Purif. Tech., 2007, 54(1), 10-17.
[http://dx.doi.org/10.1016/j.seppur.2006.08.018]
[42]
Mishra, S.P.; Dubey, S.S.; Tiwari, D. Inorganic particulates in removal of heavy metal toxic ions IX. Rapid and efficient removal of Hg(II) by hydrous manganese and tin oxides. J. Colloid Interface Sci., 2004, 279(1), 61-67.
[PMID: 15380412]
[43]
Zaman, M.I.; Mustafa, S.; Khan, S.; Xing, B. Effect of phosphate complexation on Cd2+ sorption by manganese dioxide (β-MnO2). J. Colloid Interface Sci., 2009, 330(1), 9-19.
[http://dx.doi.org/10.1016/j.jcis.2008.10.053] [PMID: 18990403]
[44]
Feng, X.H. Synthesis of birnessite from the oxidation of Mn2+ by O2 in alkali medium: Effects of synthesis conditions. Clays Clay Miner., 2004, 52(2), 240-250.
[http://dx.doi.org/10.1346/CCMN.2004.0520210]
[45]
Dyer, A. Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chem. Mater., 2000, 12(12), 3798-3804.
[http://dx.doi.org/10.1021/cm001142v]
[46]
Engates, K.E.; Shipley, H.J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. Int., 2011, 18(3), 386-395.
[http://dx.doi.org/10.1007/s11356-010-0382-3] [PMID: 20694836]
[47]
Liang, P.; Shi, T.; Li, J. Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Int. J. Environ. Anal. Chem., 2004, 84(4), 315-321.
[http://dx.doi.org/10.1080/03067310310001640456]
[48]
Ma, L.; Tu, S. Removal of arsenic from aqueous solution by two types of nano TiO2 crystals. Environ. Chem. Lett., 2011, 9(4), 465-472.
[http://dx.doi.org/10.1007/s10311-010-0303-1]
[49]
Jegadeesan, G.; Al-Abed, S.R.; Sundaram, V.; Choi, H.; Scheckel, K.G.; Dionysiou, D.D. Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects. Water Res., 2010, 44(3), 965-973.
[http://dx.doi.org/10.1016/j.watres.2009.10.047] [PMID: 20022353]
[50]
Pena, M.E.; Korfiatis, G.P.; Patel, M.; Lippincott, L.; Meng, X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res., 2005, 39(11), 2327-2337.
[http://dx.doi.org/10.1016/j.watres.2005.04.006] [PMID: 15896821]
[51]
Jing, C.; Meng, X.; Liu, S.; Baidas, S.; Patraju, R.; Christodoulatos, C.; Korfiatis, G.P. Surface complexation of organic arsenic on nanocrystalline titanium oxide. J. Colloid Interface Sci., 2005, 290(1), 14-21.
[http://dx.doi.org/10.1016/j.jcis.2005.04.019] [PMID: 16122542]
[52]
Xu, Z. As (III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution. Water Res., 2010, 44(19), 5713-5721.
[53]
Gao, Y.; Wahi, R.; Kan, A.T.; Falkner, J.C.; Colvin, V.L.; Tomson, M.B. Adsorption of cadmium on anatase nanoparticles-effect of crystal size and pH. Langmuir, 2004, 20(22), 9585-9593.
[http://dx.doi.org/10.1021/la049334i] [PMID: 15491190]
[54]
Hagarová, I.; Bujdoš, M.; Matúš, P. Platinum removal from aqueous solutions by sorption onto titanium dioxide. Fresenius Environ. Bull., 2012, 21(11c), 3568-3574.
[55]
Önnby, L.; Pakade, V.; Mattiasson, B.; Kirsebom, H. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Res., 2012, 46(13), 4111-4120.
[http://dx.doi.org/10.1016/j.watres.2012.05.028] [PMID: 22687522]
[56]
Pacheco, S. Removal of inorganic mercury from polluted water using structured nanoparticles. J. Environ. Eng., 2006, 132(3), 342-349.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(2006)132:3(342)]
[57]
Zhang, L.; Huang, T.; Zhang, M.; Guo, X.; Yuan, Z. Studies on the capability and behavior of adsorption of thallium on nano-Al(2)O(3). J. Hazard. Mater., 2008, 157(2-3), 352-357.
[http://dx.doi.org/10.1016/j.jhazmat.2008.01.005] [PMID: 18280034]
[58]
Patra, A.K.; Dutta, A.; Bhaumik, A. Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water. J. Hazard. Mater., 2012, 201-202, 170-177.
[http://dx.doi.org/10.1016/j.jhazmat.2011.11.056] [PMID: 22169241]
[59]
Basu, T.; Gupta, K.; Ghosh, U.C. Performances of As (V) adsorption of calcined (250 C) synthetic iron (III)–aluminum (III) mixed oxide in the presence of some groundwater occurring ions. Chem. Eng. J., 2012, 183, 303-314.
[http://dx.doi.org/10.1016/j.cej.2011.12.083]
[60]
Wang, L. Ceria concentration effect on chemical mechanical polishing of optical glass. Appl. Surf. Sci., 2007, 253(11), 4951-4954.
[http://dx.doi.org/10.1016/j.apsusc.2006.10.074]
[61]
Carrettin, S.; Concepción, P.; Corma, A.; López Nieto, J.M.; Puntes, V.F. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. Engl., 2004, 43(19), 2538-2540.
[http://dx.doi.org/10.1002/anie.200353570] [PMID: 15127446]
[62]
Tsunekawa, S.; Fukuda, T.; Kasuya, A. Blue shift in ultraviolet absorption spectra of monodisperse CeO 2−x nanoparticles. J. Appl. Phys., 2000, 87(3), 1318-1321.
[http://dx.doi.org/10.1063/1.372016]
[63]
Tsunekawa, S.; Ishikawa, K.; Li, Z.; Kawazoe, Y.; Kasuya, A. Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett., 2000, 85(16), 3440-3443.
[http://dx.doi.org/10.1103/PhysRevLett.85.3440] [PMID: 11030916]
[64]
Wang, Z. In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys. Rev. B, 2001, 64(1)012102
[http://dx.doi.org/10.1103/PhysRevB.64.012102]]
[65]
Corma, A.; Atienzar, P.; García, H.; Chane-Ching, J.Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater., 2004, 3(6), 394-397.
[http://dx.doi.org/10.1038/nmat1129] [PMID: 15146175]
[66]
Zhang, F.; Jin, Q.; Chan, S-W. Ceria nanoparticles: Size, size distribution, and shape. J. Appl. Phys., 2004, 95(8), 4319-4326.
[http://dx.doi.org/10.1063/1.1667251]
[67]
Yu, T.; Joo, J.; Park, Y.I.; Hyeon, T. Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angew. Chem. Int. Ed. Engl., 2005, 44(45), 7411-7414.
[http://dx.doi.org/10.1002/anie.200500992] [PMID: 16247811]
[68]
Si, R.; Zhang, Y.W.; You, L.P.; Yan, C.H. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angew. Chem. Int. Ed. Engl., 2005, 44(21), 3256-3260.
[http://dx.doi.org/10.1002/anie.200462573] [PMID: 15844106]
[69]
Zhong, L-S. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem. Mater., 2007, 19(7), 1648-1655.
[http://dx.doi.org/10.1021/cm062471b]
[70]
Strandwitz, N.C.; Stucky, G.D. Hollow microporous cerium oxide spheres templated by colloidal silica. Chem. Mater., 2009, 21(19), 4577-4582.
[http://dx.doi.org/10.1021/cm901516b]
[71]
Cao, A.M.; Hu, J.S.; Liang, H.P.; Wan, L.J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed. Engl., 2005, 44(28), 4391-4395.
[http://dx.doi.org/10.1002/anie.200500946] [PMID: 15942965]
[72]
Tang, C.; Bando, Y.; Sato, T. Oxide-assisted catalytic growth of MgO nanowires with uniform diameter distribution. J. Phys. Chem. B, 2002, 106(30), 7449-7452.
[http://dx.doi.org/10.1021/jp0207883]
[73]
Yin, Y.; Zhang, G.; Xia, Y. Synthesis and characterization of MgO nanowires through a vapor‐phase precursor method. Adv. Funct. Mater., 2002, 12(4), 293-298.
[http://dx.doi.org/10.1002/1616-3028(20020418)12:4<293:AID-ADFM293>3.0.CO;2-U]
[74]
Gao, C. Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst. Growth Des., 2008, 8(10), 3785-3790.
[http://dx.doi.org/10.1021/cg8004147]
[75]
Gupta, V.K.; Agarwal, S.; Saleh, T.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res., 2011, 45(6), 2207-2212.
[http://dx.doi.org/10.1016/j.watres.2011.01.012] [PMID: 21303713]
[76]
Shao, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, 2010, 22(10), 1027-1036.
[http://dx.doi.org/10.1002/elan.200900571]
[77]
Dutta, S.; Pati, S.K. Novel properties of graphene nanoribbons: A review. J. Mater. Chem., 2010, 20(38), 8207-8223.
[http://dx.doi.org/10.1039/c0jm00261e]
[78]
Shen, J. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater., 2009, 21(15), 3514-3520.
[http://dx.doi.org/10.1021/cm901247t http://dx.doi.org/10.1016/j.cej.2014.03.094]
[79]
Ihsanullah, Effect of acid modification on adsorption of hexavalent chromium (Cr (VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination Water Treat., 2016, 57(16), 7232-7244.
[http://dx.doi.org/10.1080/19443994.2015.1021847]
[80]
Sankararamakrishnan, N.; Gupta, A.; Vidyarthi, S.R. Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. J. Environ. Chem. Eng., 2014, 2(2), 802-810.
[http://dx.doi.org/10.1016/j.jece.2014.02.010]
[81]
Chen, H. Poly (acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co (II) removal from aqueous solution. Chem. Eng. J., 2012, 210, 475-481.
[http://dx.doi.org/10.1016/j.cej.2012.08.082]
[82]
Tawabini, B.S.; Al-Khaldi, S.F.; Khaled, M.M.; Atieh, M.A. Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J Environ Sci Health A Tox Hazard Subst. Environ. Eng., 2011, 46(3), 215-223.
[http://dx.doi.org/10.1080/10934529.2011.535389] [PMID: 21279891]
[83]
Upadhyayula, V.K.; Deng, S.; Mitchell, M.C.; Smith, G.B. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ., 2009, 408(1), 1-13.
[http://dx.doi.org/10.1016/j.scitotenv.2009.09.027] [PMID: 19819525]
[84]
Tounsadi, H. Highly efficient activated carbon from Glebionis coronaria L. biomass: Optimization of preparation conditions and heavy metals removal using experimental design approach. J. Environ. Chem. Eng., 2016, 4(4), 4549-4564.
[http://dx.doi.org/10.1016/j.jece.2016.10.020]
[85]
Yuan, X. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids Surf. A Physicochem. Eng. Asp., 2008, 317(1-3), 256-261.
[http://dx.doi.org/10.1016/j.colsurfa.2007.10.024]
[86]
Momčilović, M. Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination, 2011, 276(1-3), 53-59.
[http://dx.doi.org/10.1016/j.desal.2011.03.013]
[87]
Moreno-Tovar, R.; Terrés, E.; Rangel-Mendez, J.R. Oxidation and EDX elemental mapping characterization of an ordered mesoporous carbon: Pb (II) and Cd (II) removal. Appl. Surf. Sci., 2014, 303, 373-380.
[http://dx.doi.org/10.1016/j.apsusc.2014.03.008]
[88]
Kang, Y. Enhancement of Ni (II) removal by urea-modified activated carbon derived from Pennisetum alopecuroides with phosphoric acid activation. J. Taiwan Inst. Chem. Eng., 2016, 60, 335-341.
[http://dx.doi.org/10.1016/j.jtice.2015.10.023]
[89]
Ahn, C.K.; Park, D.; Woo, S.H.; Park, J.M. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. J. Hazard. Mater., 2009, 164(2-3), 1130-1136.
[http://dx.doi.org/10.1016/j.jhazmat.2008.09.036] [PMID: 19022570]
[90]
Aguilar, K.M.M.; Amano, Y.; Machida, M. Ammonium persulfate oxidized activated carbon fiber as a high capacity adsorbent for aqueous Pb (II). J. Environ. Chem. Eng., 2016, 4(4), 4644-4652.
[http://dx.doi.org/10.1016/j.jece.2016.10.028]
[91]
Ranabhat, K.; Patrikeev, L.; Antal’evna Revina, A.; Andrianov, K.; Lapshinsky, V.; Sofronova, E. An introduction to solar cell technology. J. Appl. Eng. Sci., 2016, 14, 481-491.
[92]
Acheampong, M.A.; Meulepas, R.J.; Lens, P.N. Removal of heavy metals and cyanide from gold mine wastewater. J. Chem. Technol. Biotechnol., 2010, 85(5), 590-613.
[http://dx.doi.org/10.1002/jctb.2358]
[93]
Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater., 2011, 186(1), 458-465.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.029] [PMID: 21130566]
[94]
Sun, W-L.; Xia, J.; Shan, Y-C. Comparison kinetics studies of Cu (II) adsorption by multi-walled carbon nanotubes in homo and heterogeneous systems: effect of nano-SiO2. Chem. Eng. J., 2014, 250, 119-127.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2021
Published on: 30 December, 2019
Page: [126 - 137]
Pages: 12
DOI: 10.2174/1573411016666191230151455
Price: $65

Article Metrics

PDF: 21
HTML: 1