Yellow Oleander (Thevetia peruviana) Seed as a Potential Bioresource for Industrial Applications

Author(s): Bidangshri Basumatary, Biswajit Nath, Pranjal Kalita, Bipul Das, Sanjay Basumatary*

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Raw materials from renewable natural resources for industrial applications are in high concern in recent industrial research. Researchers invest their time in the management of waste as well as the conversion of waste to wealth. In that line, the production of biofuels including biodiesel, and value-added products from non-edible oil sources as well as from the generated waste biomasses, are in the tilt of research in recent times. Preparation of different oleochemicals such as grease, resins, soap, lubricants, etc. from vegetable oils, and utilization of seed cake as fertilizer, animal feed, medicine, etc. are encouraged as a part of the generation of waste to wealth as per today’s environment is concerned. In recent days, various reports on the production of biodiesel and other oleochemicals from non-edible oil sources are published in various scientific journals. Yellow oleander (Thevetia peruviana) is a tropical shrub which produces a toxic non-edible fruit containing a high percentage of seed oil (up to 67%), protein (30-37%) as well as other medicinally important phytochemicals. It is attracting the researchers worldwide for the production of biodiesel, various oleochemicals, medicine, animal feed, etc. In this study, biodiesel and various value-added products synthesized from Thevetia peruviana oil and cake are reviewed to generate and popularize the potential use of yellow oleander seed for various industrial applications and accordingly, for substantial growth in cultivation for commercial-scale requirements.

Keywords: Biodiesel, bioresource, oleochemicals, Thevetia peruviana, toxicity, yellow oleander.

[1]
Bora, M.M.; Deka, R.; Ahmed, N.; Kakati, D.K. Karanja (Millettia pinnata (L.) Panigrahi) seed oil as a renewable raw material for the synthesis of alkyd resin. Ind. Crops Prod., 2014, 61, 106-114.
[http://dx.doi.org/10.1016/j.indcrop.2014.06.048]
[2]
Basumatary, S.; Nath, B.; Kalita, P. Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis. J. Renew. Sustain. Energy, 2018, 10(4)043105
[http://dx.doi.org/10.1063/1.5043328]
[3]
Cutzu, R.; Bardi, L. Production of bioethanol from agricultural wastes using residual thermal energy of a cogeneration plant in the distillation phase. Fermentation, 2017, 3(2), 24.
[http://dx.doi.org/10.3390/fermentation3020024]
[4]
Braide, W.; Kanu, I.A.; Oranusi, U.S.; Adeleye, S.A. Production of bioethanol from agricultural waste. J. Fund. Appl. Sci, 2016, 8(2), 372-386.
[http://dx.doi.org/10.4314/jfas.v8i2.14]
[5]
Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 2010, 14(1), 217-232.
[http://dx.doi.org/10.1016/j.rser.2009.07.020]
[6]
Nithiyanantham, S.; Siddhuraju, P.; Francis, G. Potential of Jatropha curcas as a biofuel, animal feed and health products. J. Am. Oil Chem. Soc., 2012, 89, 961-972.
[http://dx.doi.org/10.1007/s11746-012-2012-3]
[7]
Kumar, P.; Srivastava, V.C.; Jha, M.K. Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements. Renew. Sustain. Energy Rev., 2016, 59, 818-838.
[http://dx.doi.org/10.1016/j.rser.2015.12.358]
[8]
Becker, K.; Makkar, H.P. Jatropha curcas: A potential source for tomorrow’s oil and biodiesel. Lipid Technol., 2008, 20, 104-107.
[http://dx.doi.org/10.1002/lite.200800023]
[9]
Kumar, A.; Sharma, S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Ind. Crops Prod., 2008, 28, 1-10.
[http://dx.doi.org/10.1016/j.indcrop.2008.01.001]
[10]
Gupta, V.; Gupta, A.K. Biodiesel production from karanja oil. J. Sci. Ind. Res. (India), 2004, 63, 39-47.
[11]
Mamilla, V.R.; Mallikarjun, M.V.; Rao, G.L. Preparation of biodiesel from Karanja oil. Int. J. Energy Eng., 2011, 1, 94-100.
[http://dx.doi.org/10.5963/IJEE0102008]
[12]
Sahoo, P.K.; Das, L.M. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel, 2009, 88, 1588-1594.
[http://dx.doi.org/10.1016/j.fuel.2009.02.016]
[13]
Naik, M.; Meher, L.C.; Naik, S.N.; Das, L.M. Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass Bioenergy, 2008, 32, 354-357.
[http://dx.doi.org/10.1016/j.biombioe.2007.10.006]
[14]
Berman, P.; Nizri, S.; Wiesman, Z. Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenergy, 2011, 35, 2861-2866.
[http://dx.doi.org/10.1016/j.biombioe.2011.03.024]
[15]
Deka, D.C.; Basumatary, S. High quality biodiesel from yellow oleander (Thevetia peruviana) seed oil. Biomass Bioenergy, 2011, 35(5), 1797-1803.
[http://dx.doi.org/10.1016/j.biombioe.2011.01.007]
[16]
Ghadge, S.V.; Raheman, H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy, 2005, 28(6), 601-605.
[http://dx.doi.org/10.1016/j.biombioe.2004.11.009]
[17]
Kadam, A.; Pawar, M.; Yemul, O.; Thamke, V.; Kodam, K. Biodegradable biobased epoxy resin from Karanja oil. Polymer , 2015, 72, 82-92.
[http://dx.doi.org/10.1016/j.polymer.2015.07.002]
[18]
Kumar, M.S.; Yaakob, Z.; Maimunah, S.; Abdullah, S.R. Synthesis of alkyd resin from non-edible Jatropha seed oil. J. Polym. Environ., 2010, 18, 539-544.
[http://dx.doi.org/10.1007/s10924-010-0188-x]
[19]
Patel, V.C.; Varughese, J.; Krishnamoorthy, P.A.; Jain, R.C.; Singh, A.K.; Ramamoorty, M. Synthesis of alkyd resin from Jatropha and rapeseed oils and their applications in electrical insulation. J. Appl. Polym. Sci., 2008, 107, 1724-1729.
[http://dx.doi.org/10.1002/app.27195]
[20]
Tiwari, S.; Saxena, M.; Tiwari, S.K. Mahua-oil-based resins for the high-temperature curing of fly ash coatings. J. Appl. Polym. Sci., 2003, 87, 110-120.
[http://dx.doi.org/10.1002/app.11141]
[21]
Stemmelen, M.; Pessel, F.; Lapinte, V.; Caillol, S.; Habas, J.P.; Robin, J.J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiolene reaction to the study of the final material. J. Polym. Sci. Pol. Chem., 2011, 49, 2434-2444.
[http://dx.doi.org/10.1002/pola.24674]
[22]
Tang, Q.; Chen, Y.; Gao, H.; Li, Q.; Xi, Z.; Zhao, L.; Peng, C.; Li, L. Bio-based epoxy resin from epoxidized soybean oil; IntechOpen: London, 2018, pp. 1-21.
[23]
Gupta, N.K.; Yadav, P.K.; Eadara, R.; Singh, R.P. Synthesis of epoxy resin from waste ricebran oil. Polym. Renew. Resour., 2016, 7, 21-32.
[http://dx.doi.org/10.1177/204124791600700103]
[24]
Olisakwe, H.C.; Tuleum, L.T.; Eloka-Eboka, A.C. Comparative study of Thevetia peruviana and Jatropha curcas seed oils as feedstock for grease production. Int. J. Eng. Res. Appl., 2011, 1(3), 793-806.
[25]
Panadare, D.C.; Rathod, V.K. Applications of waste cooking oil other than biodiesel: A review. Iran. J. Chem. Eng., 2015, 12(3), 55-76.
[26]
Othman, N. Production of Grease from Waste Cooking Oil, PhD Thesis, Faculty of Chemical and Natural Resources Engineering Universiti Malaysia, Pahang, 2009., pp.2-10.
[27]
Santibáñez, C.; Varnero, M.T. Evaluation of chañar seed cake from biodiesel production as a soil amendment. J. Soil Sci. Plant Nutr., 2014, 14, 129-138.
[http://dx.doi.org/10.4067/S0718-95162014005000010]
[28]
Rath, S.C.; Nayak, K.C.; Mohanty, T.K.; Debraj, C.; Chandan, N.K.; Mohanta, K.N. Evaluation of mahua oil cake (Bassia latifolia Roxb.) as a non-conventional feed ingredient for Labeo rohita (Ham.) fingerlings. Indian J. Fish., 2017, 64, 33-39.
[29]
Taiwo, V.O.; Afolabi, O.O.; Adegbuyi, O.A. Effect of Thevetia peruviana seed cake-based meal on the growth, haematology and tissues of rabbits. Trop. Subtrop. Agroecosystems, 2004, 4, 7-14.
[30]
Pomalégni, S.C.; Gbemavo, D.S.; Gnanglè, P.C.; Djossou, S.R.; Kenis, M.; Babatoundé, S. GlèlèKakai, L.R.; Mensah, G.A. Seed cake of Jatropha curcas (L.), potential substrate to produce maggots as feed for reared monogastric animals. J. Anim. Plant Sci., 2018, 28(6), 1591-1596.
[31]
Sánchez-Arreola, E.; Martin-Torres, G.; Lozada-Ramírez, J.D.; Hernández, L.R.; Bandala-González, E.R.; Bach, H. Biodiesel production and de-oiled seed cake nutritional values of a Mexican edible Jatropha curcas. Renew. Energy, 2015, 76, 143-147.
[http://dx.doi.org/10.1016/j.renene.2014.11.017]
[32]
Oluwaniyi, O.O.; Ibiyemi, S.A.; Olatunji, G.A.; Apata, D.F. Amino acid analysis and biological evaluation of detoxified Thevetia seed meal. Afr. J. Food Agric. Nutr. Dev., 2011, 11, 5510-5524.
[33]
Nahar, K.A.; Sunny, S. Biodiesel, glycerin and seed-cake production from roof-top gardening of Jatropha curcas L. Environ. Eng., 2016, 3, 18-31.
[http://dx.doi.org/10.2174/2212717803666160304002248]
[34]
Yadav, A.K.; Khan, M.E.; Pal, A. Biodiesel production from oleander (Thevetia Peruviana) oil and its performance testing on a diesel engine. Korean J. Chem. Eng., 2017, 34, 340-345.
[http://dx.doi.org/10.1007/s11814-016-0270-8]
[35]
Oluwaniyi, O.O.; Ibiyemi, S.A. Extractability of Thevetia peruviana glycosides with alcohol mixture. Afr. J. Biotechnol., 2007, 6, 2166-2170.
[http://dx.doi.org/10.5897/AJB2007.000-2339]
[36]
Odhiambo, P.O.; Makobe, B.M.; Miugai, A.; Schumacher, M.; Kiesecker, H. Phyto-chemical screening of wild types and tissue cultured yellow oleander Thevetia peruviana Pers. K. Schum in Kenya. Adv. Pharmacoepidemiol. Drug Saf., 2012, 1, 1-2.
[37]
Bora, M.M.; Gogoi, P.; Deka, D.C.; Kakati, D.K. Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil-based alkyd resin. Ind. Crops Prod., 2014, 52, 721-728.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.012]
[38]
Usman, L.A.; Oluwaniyi, O.O.; Ibiyemi, S.A.; Muhammad, N.O.; Ameen, O.M. The potential of oleander (Thevetia peruviana) in African agricultural and industrial development: A case study of Nigeria. J. Appl. Biosci., 2009, 24, 1477-1487.
[39]
Owolabi, J.B.; Alabi, K.A.; Lajide, L. Synthesis and characterization of copper metal soaps from Thevetia peruviana and Hura crepitans seed oils. Sci. Res. Essays, 2015, 10, 649-654.
[http://dx.doi.org/10.5897/SRE2015.6216]
[40]
Zibbu, G.; Batra, A. Thevetia peruviana (Pers.) Schum.: A plant with enormous therapeutic potential. J. Pharm. Res., 2011, 4, 4461-4464.
[41]
Ramos-Silva, A.; Tavares-Carreón, F.; Figueroa, M.; De la Torre-Zavala, S.; Gastelum-Arellanez, A.; Rodríguez-García, A.; Galán-Wong, L.J.; Avilés-Arnaut, H. Anticancer potential of Thevetia peruviana fruit methanolic extract. BMC Complement. Altern. Med., 2017, 17(1), 241.
[http://dx.doi.org/10.1186/s12906-017-1727-y] [PMID: 28464893]
[42]
Ighose, B.O.; Adeleke, I.A.; Damos, M.; Junaid, H.A.; Okpalaeke, K.E.; Betiku, E. Optimization of biodiesel production from Thevetia peruviana seed oil by adaptive neuro-fuzzy inference system coupled with genetic algorithm and response surface methodology. Energy Convers. Manage., 2017, 132, 231-240.
[http://dx.doi.org/10.1016/j.enconman.2016.11.030]
[43]
Madhura, J.; Arulnithy, K.; Mathiventhan, U.; Mathiventhan, T. Yellow oleander (Thevetia peruviana) seed poisoning in the Batticaloa District, Sri Lanka: Is related with fruiting season? Int. J. Res. Stud. Biosci., 2016, 4(8), 8-13.
[44]
Ahmad, T.; Hamid, A.T.; Sharma, A.; Bhardwaj, U. Thevetia peruviana: A multipurpose medicinal plant- a review. Int. J. Adv. Res. (Indore), 2017, 5, 486-493.
[45]
Rahman, A.M.; Akter, M. Taxonomy and traditional medicinal uses of Apocynaceae (Dogbane) family of Rajshahi District, Bangladesh. Int. J. Bot. Stud., 2016, 1(2), 5-13.
[46]
Kishan, S.; Kumar, A.K.; Mishra, V.; Uddin, S.M.; Shukla, A. A review on Thevetia peruviana. Int. Res. J. Phar., 2012, 3(4), 74-77.
[47]
Tian, D.M.; Cheng, H.Y.; Jiang, M.M.; Shen, W.Z.; Tang, J.S.; Yao, X.S. Cardiac glycosides from the seeds of Thevetia peruviana. J. Nat. Prod., 2016, 79(1), 38-50.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00611] [PMID: 26714048]
[48]
Sahoo, N.K.; Naik, M.K.; Pradhan, S.; Naik, S.N.; Das, L.M. High quality biodiesel from Thevetia peruviana Juss: Physico-chemical, emission and fuel performance characteristics. J. Biobased Mater. Bioenergy, 2012, 6(3), 269-275.
[http://dx.doi.org/10.1166/jbmb.2012.1220]
[49]
Balusamy, T.; Marappan, R. Performance evaluation of direct injection diesel engine with blends of Thevetia peruviana seed oil and diesel. J. Sci. Ind. Res. (India), 2007, 66, 1035-1040.
[50]
Basumatary, S. Yellow oleander (Thevetia peruviana) seed oil biodiesel as an alternative and renewable fuel for diesel engines: A review. Int. J. Chemtech Res., 2015, 7, 2823-2840.
[51]
Ibiyemi, S.A.; Fadipe, V.O.; Akinremi, O.O.; Bako, S.S. Variation in oil composition of Thevetia peruviana Juss ‘yellow oleander’ fruit seeds. J. Appl. Sci. Environ. Manag., 2002, 6(2), 61-65.
[http://dx.doi.org/10.4314/jasem.v6i2.17178]
[52]
Rupasianghe, C.P.; Gunathilaka, K.S. Disaster risk reduction through biodiesel from yellow oleander (Thevetia peruviana). Procedia Eng., 2018, 212, 591-597.
[http://dx.doi.org/10.1016/j.proeng.2018.01.076]
[53]
Oseni, M.I.; Obetta, S.E.; Orukotan, F.V. Evaluation of fatty acids profile of ethyl esters of yellow oleander and groundnut oils as bio-diesel feedstock. Am. J. Sci. Ind. Res, 2012, 3, 62-68.
[http://dx.doi.org/10.5251/ajsir.2012.3.2.62.68]
[54]
Ajala, S.O.; Betiku, E. Yellow oleander seed oil extraction modeling and process parameters optimization: Performance evaluation of arti-ficial neural network and response surface methodology. J. Food Process. Preserv., 2015, 39, 1466-1474.
[http://dx.doi.org/10.1111/jfpp.12366]
[55]
Oyekunle, D.T.; Oyekunle, D.O. Biodiesel production from yellow oleander seed oil via heterogeneous catalyst: Performance evaluation of Minitab response surface methodology and artificial neural network. J. Mater. Environ. Sci., 2018, 9(8), 2468-2477.
[56]
SuwariKotta. H.Z; Buang, Y Extraction and characterization of crop oil from seed kernels of Feun Kase (Thevetia peruviana). J. Phys. Conf. Ser., 2018, 1093(1)012043
[57]
Eloka-Eboka, A.C.; Inambao, F.L. Production properties studies of tropical Thevetia peruviana and Jatropha curcas biodiesel using bio-metallic-salts as catalysts. Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA2017.
[58]
Jabar, J.M.; Lajide, L.; Bakare, I.O.; Oloye, M.T. Extraction and characterization of vegetable oil from Thevetia peruviana and Jatropha curcas seeds. FUTA J. Res. Sci., 2016, 12(1), 73-80.
[59]
Duraisamy, M.K.; Balusamy, T.; Senthilkumar, T. Effect of compression ratio on CI engine fueled with methyl ester of Thevetia peruviana seed oil. ARPN J. Eng. Appl. Sci., 2012, 7(2), 229-232.
[60]
Yarkasuwa, C.I.; Wilson, D.; Michael, E. Production of biodiesel from yellow oleander (Thevetia peruviana) oil and its biodegradability. J. Korean Chem. Soc., 2013, 57, 377-381.
[http://dx.doi.org/10.5012/jkcs.2013.57.3.377]
[61]
Momin, M.; Deka, D.C. Fuel property of biodiesel and petrodiesel mix: Experiment with biodiesel from yellow oleander seed oil. Biofuels, 2015, 6, 269-272.
[http://dx.doi.org/10.1080/17597269.2015.1092102]
[62]
Osakwe, E.U.; Ani, I.J.; Akpan, U.G.; Olutoye, M.A. Kolanut pod husk as a biobase catalyst for fatty acid methyl ester production using Thevetia peruviana (yellow oleander) seed oil. IOP Conference Series: Earth and Environmental Science. The Role of Science in Novel Research and Advances in Technology"14–16 May 2018, Center for Research, Innovation and Discovery, Covenant University, Nigeria,
[http://dx.doi.org/10.1088/1755-1315/173/1/012008]
[63]
Borah, M.J.; Devi, A.; Das, V.; Deka, D. Catalytic conversion of Thevetia peruviana oil into biodiesel by TiO2-ZnO nanocatalyst. Int. J. Res. Eng. Technol, 2017, 6, 56-60.
[http://dx.doi.org/10.15623/ijret.2017.0613012]
[64]
Temitayo, O.D. Optimization of oil extraction from Thevetia peruviana (yellow oleander) seeds: A case study of two statistical models. Int. J. Eng. Mod. Technol., 2017, 3, 25-42.
[65]
Temitayo, O.D. A solid mineral (limestone) as a potential catalyst for biodiesel production from yellow oleander oil (Thevetia peruviana). Int. J. Eng. Sci. Technol., 2017, 2(3), 113-127.
[66]
Adepoju, T.F.; Olatunbosun, B.E.; Olatunji, O.M.; Ibeh, M.A. Brette Pearl Spar Mable (BPSM): A potential recoverable catalyst as a re-newable source of biodiesel from Thevetia peruviana seed oil for the benefit of sustainable development in West Africa. Energy Sustain. Soc., 2018, 8(1), 23.
[http://dx.doi.org/10.1186/s13705-018-0164-1]
[67]
Kannan, T.K.; Mohan, S.K. Thevetia peruviana-A potential non-edible plant source for biodiesel production. J. Ind. Eng. Int, 2017, 1, 1-4.
[68]
Adebowale, K.O.; Adewuyi, A.; Ajulo, K.D. Examination of fuel properties of the methyl esters of Thevetia peruviana seed oil. Int. J. Green Energy, 2012, 9, 297-307.
[http://dx.doi.org/10.1080/15435075.2011.621480]
[69]
Yadav, A.K.; Khan, M.E.; Pal, A.; Singh, B. Ultrasonic-assisted optimization of biodiesel production from Karabi oil using heterogeneous catalyst. Biofuels, 2018, 9(1), 101-112.
[http://dx.doi.org/10.1080/17597269.2016.1259522]
[70]
Panchal, B.M.; Deshmukh, S.A.; Sharma, M.R. Biodiesel from Thevetia peruviana seed oil with dimethyl carbonate using as an active catalyst potassium-methoxide. Sains Malays., 2016, 45, 1461-1468.
[71]
Subramaniam, D.; Murugesan, A.; Avinash, A. Performance and emission evaluation of biodiesel fueled diesel engine abetted with ex-haust gas recirculation and Ni coated catalytic converter. J. Renew. Sustain. Energy, 2013, 5(2)023138
[http://dx.doi.org/10.1063/1.4802943]
[72]
Adamu, F.A. Physico-chemical properties of yellow oleander (Thevetia peruviana) to ascertain its suitability for alternative biodiesel production in Nigeria. Int. J. Sci. Res. (Ahmedabad), 2015, 6, 73-79.
[73]
Momin, M.; Deka, D.C. Performance of Yellow Oleander Methyl Ester (YOME) as lubricity additive in high speed diesel fuel. EEST Part C: Fut. Energ. Sour., 2015, 7, 221-230.
[74]
Arun, S.B.; Suresh, R.; Yatish, K.V. Study of performance, combustion and emission characteristics of heterogeneous catalyzed yellow oleander biodiesel on Compression Ignition (CI) engine. Biofuels, 2018.
[http://dx.doi.org/10.1080/17597269.2017.1416520]
[75]
Devi, A.; Das, V.K.; Deka, D. Designer biodiesel: Preparation of biodiesel blends by mixing several vegetable oils at different volumetric ratios and their corresponding fuel quality enhancement. Res. J. Chem. Sci, 2015, 5(9), 60-65.
[76]
Manh, D.V.; Chen, Y.H.; Chang, C.C.; Chang, M.C.; Chang, C.Y. Biodiesel production from Tung oil and blended oil via ultrasonic trans-esterification process. J. Taiwan Ins. Chem. Eng., 2011, 42(4), 640-644.
[http://dx.doi.org/10.1016/j.jtice.2010.11.010]
[77]
Rodríguez, D.; Riesco, J.M.; Malagon-Romero, D. Production of biodiesel from waste cooking oil and castor oil blends. Chem. Eng. Trans., 2017, 57, 679-684.
[78]
Meneghetti, S.M.; Meneghetti, M.R.; Serra, T.M.; Barbosa, D.C.; Wolf, C.R. Biodiesel production from vegetable oil mixtures: Cottonseed, soybean, and castor oils. Energy Fuels, 2007, 21(6), 3746-3747.
[http://dx.doi.org/10.1021/ef070039q]
[79]
Khan, H.W.; Athar, M. Production of biodiesel from a blend of Jatropha oil and waste frying soybean oil. J. Biofuels, 2015, 6(2), 57-61.
[http://dx.doi.org/10.5958/0976-4763.2015.00008.2]
[80]
Oluwaniyi, O.O.; Ibiyemi, S.A.; Usman, L.A. Effect of detoxification on the nutrient content of Thevetia peruviana seed cake. Res. J. Appl. Sci, 2007, 2(2), 188-191.
[81]
Zhao, Q.; Guo, Y.; Feng, B.; Li, L.; Huang, C.; Jiao, B. Neriifolin from seeds of Cerbera manghas L. induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Fitoterapia, 2011, 82(5), 735-741.
[http://dx.doi.org/10.1016/j.fitote.2011.03.004] [PMID: 21459134]
[82]
Mondal, K.; Chatterjee, A.; Bhattacharya, S.; Biswas, R.; Auddy, S.; Hoque, I. A review on various biological and pharmacological proper-ties of Thevetia peruviana. Int. J. Adv. Res. Biol. Sci, 2016, 9, 178-182.
[83]
Singh, K.; Agarwal, K.K.; Mishra, V.; Uddin, S.K.; Shukla, A. A review on Thevetia peruviana. Int. Res. J. Pharm, 2012, 3(4), 74-77.
[84]
Chate, A.B.; Tole, S.B.; Patil, S.M. Medicinal plant of Ayurveda and their prospect in modern drug research. J. Pharmacogn. Phytochem., 2016, 5, 38.
[85]
Rajbhar, N.; Kumar, A. Pharmacological importance of Thevetia peruviana. Int. J. Pharm. Chem. Sci, 2014, 3, 260-263.
[86]
Ling, K.H.; Hoon, T.C.; Kian, C.T. Thevetia peruviana (Pers.) K. Schum. (Apocynaceae). In: A Guide to Medicinal Plants: An Illustrated Scientific and Medicinal Approach; World Scientific: London, 2009; pp. 149-150.
[87]
Zamani, J.; Aslani, A. Cardiac findings in acute yellow oleander poisoning. J. Cardiovasc. Dis. Res., 2010, 1(1), 27-28.
[http://dx.doi.org/10.4103/0975-3583.59982] [PMID: 21188087]
[88]
Cheng, H.Y.; Tian, D.M.; Tang, J.S.; Shen, W.Z.; Yao, X.S. Cardiac glycosides from the seeds of Thevetia peruviana and their pro-apoptotic activity toward cancer cells. J. Asian Nat. Prod. Res., 2016, 18(9), 837-847.
[http://dx.doi.org/10.1080/10286020.2016.1170814] [PMID: 27086856]
[89]
Umakanth, M. Prevalence of yellow oleander (Thevetia peruviana) poisoning in Eastern part of the Sri Lanka. Saudi J. Med. Pharm. Sci, 2017, 3, 1097-1100.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 7
Year: 2020
Published on: 09 October, 2020
Page: [855 - 871]
Pages: 17
DOI: 10.2174/1570193X17666191230122142
Price: $65

Article Metrics

PDF: 14
HTML: 1