Pathophysiological Functions of the lncRNA TUG1

Author(s): Chong Guo, Yuying Qi, Jiayuan Qu, Liyue Gai, Yue Shi, Chengfu Yuan*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Long non-coding RNAs (lncRNAs) with little or no coding capacity are associated with a plethora of cellular functions, participating in various biological processes. Cumulative study of lncRNA provides explanations to the physiological and pathological processes and new perspectives to the diagnosis, prevention, and treatment of some clinical diseases. Long non-coding RNA taurine-upregulated gene 1(TUG1) is one of the first identified lncRNAs associated with human disease, which actively involved in various physiological processes, including regulating genes at epigenetics, transcription, post-transcription, translation, and posttranslation. The aim of this review was to explore the molecular mechanism of TUG1 in various types of human diseases.

Methods: In this review, we summarized and analyzed the latest findings related to the physiologic and pathophysiological processes of TUG1 in human diseases. The related studies were retrieved and selected the last six years of research articles in PubMed with lncRNA and TUG1 as keywords.

Results: TUG1 is a valuable lncRNA that its dysregulated expression and regulating the biological processes were found in a variety of human diseases. TUG1 is found to exhibit aberrant expression in a variety of malignancies. Dysregulation of TUG1 has been shown to contribute to proliferation, migration, cell cycle changes, inhibited apoptosis, and drug resistance of cancer cells, which revealed an oncogenic role for this lncRNA, but some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In addition, the molecular and biological functions of TUG1 in physiology and disease (relevant to endocrinology, metabolism, immunology, neurobiology) have also been highlighted. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of TUG1 in cancer and other diseases.

Conclusion: Long non-coding RNA-TUG1 likely served as useful disease biomarkers or therapy targets and effectively applied in different kinds of diseases, such as human cancer and cardiovascular diseases.

Keywords: Long non-coding RNA, lncRNA, Taurine-upregulated gene1, TUG1, pathophysiological functions.

[1]
Cai H, Xue Y, Wang P, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget 2015; 6(23): 19759-79.
[http://dx.doi.org/10.18632/oncotarget.4331] [PMID: 26078353 ]
[2]
Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 2007; 17(5): 556-65.
[http://dx.doi.org/10.1101/gr.6036807] [PMID: 17387145]
[3]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[4]
Maruyama R, Suzuki H. Long noncoding RNA involvement in cancer. BMB Rep 2012; 45(11): 604-11.
[http://dx.doi.org/10.5483/BMBRep.2012.45.11.227] [PMID: 23186998 ]
[5]
Young TL, Matsuda T, Cepko CL. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol 2005; 15(6): 501-12.
[http://dx.doi.org/10.1016/j.cub.2005.02.027] [PMID: 15797018 ]
[6]
Dong R, Liu GB, Liu BH, et al. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma. Cell Death Dis 2016; 7(6) e2278
[http://dx.doi.org/10.1038/cddis.2016.143] [PMID: 27362796 ]
[7]
He Q, Yang S, Gu X, Li M, Wang C, Wei F. Correction to: long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A. Cell Death Dis 2018; 9(7): 710.
[http://dx.doi.org/10.1038/s41419-018-0750-3] [PMID: 29907751]
[8]
Yin DD, Zhang EB, You LH, et al. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic beta cells. Cell Physiol Biochem 2015; 35: 1892-904.
[9]
Zhu Y, Feng Z, Jian Z, Xiao Y. Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR29c in chronic hypoxia. Mol Med Rep 2018; 18(3): 3451-60.
[http://dx.doi.org/10.3892/mmr.2018.9327] [PMID: 30066872 ]
[10]
Tang W, Shen Z, Guo J, Sun S. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β induction in patients with COPD. Int J Chron Obstruct Pulmon Dis 2016; 11: 2951-64.
[http://dx.doi.org/10.2147/COPD.S109570] [PMID: 27932875 ]
[11]
Meng J, Chen Y, Zhang C. Protective impacts of long noncoding RNA taurine-upregulated 1 against lipopolysaccharide-evoked injury in MRC-5 cells through inhibition of microRNA-127. J Cell Biochem 2019; 120(9): 14928-35.
[12]
Xu Y, Deng W, Zhang W. Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed Pharmacother 2018; 104: 509-19.
[http://dx.doi.org/10.1016/j.biopha.2018.05.069]
[13]
Zhao K, Tan JY, Mao QD, et al. Overexpression of long non-coding RNA TUG1 alleviates TNF-α-induced inflammatory injury in interstitial cells of Cajal. Eur Rev Med Pharmacol Sci 2019; 23(1): 312-20.
[PMID: 30657572]
[14]
Li G, Song H, Chen L, Yang W, Nan K, Lu P. TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract. Exp Cell Res 2017; 356(1): 20-7.
[http://dx.doi.org/10.1016/j.yexcr.2017.04.002] [PMID: 28392351 ]
[15]
Gong W, Li J, Zhu G, Wang Y, Zheng G, Kan Q. Chlorogenic acid relieved oxidative stress injury in retinal ganglion cells through IncRNA-TUG1/Nrf2. Cell Cycle •••; 18(14): 1549-59.
[16]
Cao C, Zhang Y, Zhang Z, Chen Q. Small interfering LncRNA-TUG1 (siTUG1) decreases ketamine-induced neurotoxicity in rat hippocampal neurons. Int J Neurosci 2019; 129(10): 937-44.
[http://dx.doi.org/10.1080/00207454.2019.1594805] [PMID: 30995880 ]
[17]
Xu Y, Wang J, Qiu M, et al. Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squamous cell carcinoma. Tumour Biol 2015; 36(3): 1643-51.
[http://dx.doi.org/10.1007/s13277-014-2763-6] [PMID: 25366138 ]
[18]
Lin PC, Huang HD, Chang CC, et al. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer 2016; 16: 583.
[http://dx.doi.org/10.1186/s12885-016-2569-6] [PMID: 27485439]
[19]
Li J, Zhang M, An G, Ma Q. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med (Maywood) 2016; 241(6): 644-9.
[http://dx.doi.org/10.1177/1535370215622708] [PMID: 26748401 ]
[20]
Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 2003; 4(11): 842-54.
[http://dx.doi.org/10.1038/nrm1245] [PMID: 14625535 ]
[21]
Gezer U, Özgür E, Cetinkaya M, Isin M, Dalay N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int 2014; 38(9): 1076-9.
[http://dx.doi.org/10.1002/cbin.10301] [PMID: 24798520 ]
[22]
Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154(1): 26-46.
[http://dx.doi.org/10.1016/j.cell.2013.06.020] [PMID: 23827673 ]
[23]
Xie CH, Cao YM, Huang Y, et al. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumour Biol 2016; 37(11): 15031-41.
[http://dx.doi.org/10.1007/s13277-016-5391-5] [PMID: 27658774 ]
[24]
Zhang E, He X, Yin D, et al. Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing of p57. Cell Death Dis 2016; 7e2109
[http://dx.doi.org/10.1038/cddis.2015.356] [PMID: 26913601 ]
[25]
Yu G, Zhou H, Yao W, Meng L, Lang B. lncRNA TUG1 Promotes cisplatin resistance by regulating CCND2 via epigenetically silencing miR-194-5p in bladder cancer. Mol Ther Nucleic Acids 2019; 16: 257-71.
[http://dx.doi.org/10.1016/j.omtn.2019.02.017] [PMID: 30925453 ]
[26]
Hui B, Xu Y, Zhao B, et al. Overexpressed long noncoding RNA TUG1 affects the cell cycle, proliferation, and apoptosis of pancreatic cancer partly through suppressing RND3 and MT2A. OncoTargets Ther 2019; 12: 1043-57.
[http://dx.doi.org/10.2147/OTT.S188396] [PMID: 30787623]
[27]
Yang XL, Wei C, Zhang YB, Guo HQ. Long noncoding RNA TUG1 promotes progression via upregulating DGCR8 in prostate cancer. Eur Rev Med Pharmacol Sci 2019; 23(6): 2391-8.
[PMID: 30964164]
[28]
Zeng B, Ye H, Chen J, et al. LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis. Oncotarget 2017; 8(69): 113650-61.
[http://dx.doi.org/10.18632/oncotarget.21922] [PMID: 29371936 ]
[29]
Zhao L, Sun H, Kong H, Chen Z, Chen B, Zhou M. The Lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and emt phenotype formation through sponging Mir-382. Cell Physiol Biochem 2017; 42: 2145-58.
[30]
Ma F, Wang SH, Cai Q, et al. Long non-coding RNA TUG1 promotes cell proliferation and metastasis by negatively regulating miR-300 in gallbladder carcinoma. Biomed Pharm 2017; 88: 863-9.
[http://dx.doi.org/10.1016/j.biopha.2017.01.150]
[31]
Li J, An G, Zhang M, Ma Q. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem Biophys Res Commun 2016; 477(4): 743-8.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.129] [PMID: 27363339 ]
[32]
Lv J, Kong Y, Gao Z, Liu Y, Zhu P, Yu Z. LncRNA TUG1 interacting with miR-144 contributes to proliferation, migration and tumorigenesis through activating the JAK2/STAT3 pathway in hepatocellular carcinoma. Int J Biochem Cell Biol 2018; 101: 19-28.
[http://dx.doi.org/10.1016/j.biocel.2018.05.010] [PMID: 29791864 ]
[33]
Xie D, Zhang H, Hu X, Shang C. Knockdown of long non-coding RNA Taurine Up-Regulated 1 inhibited doxorubicin resistance of bladder urothelial carcinoma via Wnt/β-catenin pathway. Oncotarget 2017; 8(51): 88689-96.
[http://dx.doi.org/10.18632/oncotarget.20927] [PMID: 29179467 ]
[34]
Liang S, Zhang S, Wang P, et al. LncRNA, TUG1 regulates the oral squamous cell carcinoma progression possibly via interacting with Wnt/β-catenin signaling. Gene 2017; 608: 49-57.
[http://dx.doi.org/10.1016/j.gene.2017.01.024] [PMID: 28119088]
[35]
Xiao CH, Yu HZ, Guo CY, et al. Long non-coding RNA TUG1 promotes the proliferation of colorectal cancer cells through regulating Wnt/β-catenin pathway. Oncol Lett 2018; 16(4): 5317-24.
[http://dx.doi.org/10.3892/ol.2018.9259] [PMID: 30250601 ]
[36]
Lu Y, Tang L, Zhang Z, et al. Long noncoding RNA TUG1/miR-29c axis affects cell proliferation, invasion, and migration in human pancreatic cancer. Dis Markers 2018; 20186857042
[http://dx.doi.org/10.1155/2018/6857042] [PMID: 30595764 ]
[37]
Qin CF, Zhao FL. Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway. Eur Rev Med Pharmacol Sci 2017; 21(10): 2377-84.
[PMID: 28617552]
[38]
Yang F, Li X, Zhang L, Cheng L, Li X. LncRNA TUG1 promoted viability and associated with gemcitabine resistant in pancreatic ductal adenocarcinoma. J Pharmacol Sci 2018; 137(2): 116-21.
[http://dx.doi.org/10.1016/j.jphs.2018.06.002] [PMID: 29960845 ]
[39]
Zhang L, Yu S, Wang C, Jia C, Lu Z, Chen J. Establishment of a noncoding RNAomics screening platform for the regulation of KRAS in pancreatic cancer by RNA sequencing. Int J Oncol 2018; 53(6): 2659-70.
[http://dx.doi.org/10.3892/ijo.2018.4560] [PMID: 30221677 ]
[40]
Li L, Gan ZH, Qin L, Jiao SH, Shi Y. AIB1 regulates the ovarian cancer cell cycle through TUG1. Eur Rev Med Pharmacol Sci 2017; 21(24): 5610-7.
[PMID: 29271993]
[41]
Fan M, Li C, He P, Fu Y, Li M, Zhao X. Knockdown of long noncoding RNA-taurine-upregulated gene 1 inhibits tumor angiogenesis in ovarian cancer by regulating leucine-rich α-2-glycoprotein-1. Anticancer Drugs 2019; 30(6): 562-70.
[http://dx.doi.org/10.1097/CAD.0000000000000734] [PMID: 30896502]
[42]
Li T, Chen Y, Zhang J, Liu S. LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in epithelial ovarian cancer cells. Medicine (Baltimore) 2018; 97(36)e12131
[http://dx.doi.org/10.1097/MD.0000000000012131] [PMID: 30200102]
[43]
Liu S, Liu Y, Lu Q, Zhou X, Chen L, Liang W. The lncRNA TUG1 promotes epithelial ovarian cancer cell proliferation and invasion via the WNT/β-catenin pathway. OncoTargets Ther 2018; 11: 6845-51.
[http://dx.doi.org/10.2147/OTT.S167900] [PMID: 30349317 ]
[44]
Kuang D, Zhang X, Hua S, Dong W, Li Z. Long non-coding RNA TUG1 regulates ovarian cancer proliferation and metastasis via affecting epithelial-mesenchymal transition. Exp Mol Pathol 2016; 101(2): 267-73.
[http://dx.doi.org/10.1016/j.yexmp.2016.09.008] [PMID: 27693324]
[45]
Shi B, Tu H, Sha L, et al. Upregulation of long noncoding RNA TUG1 by EGR1 promotes adenomyotic epithelial cell migration and invasion through recruiting EZH2 and suppressing TIMP2. Mol Reprod Dev 2019; 86(2): 239-47.
[http://dx.doi.org/10.1002/mrd.23099] [PMID: 30593723 ]
[46]
Liu L, Chen X, Zhang Y, Hu Y, Shen X, Zhu W. Long non-coding RNA TUG1 promotes endometrial cancer development via inhibiting miR-299 and miR-34a-5p. Oncotarget 2017; 8(19): 31386-94.
[http://dx.doi.org/10.18632/oncotarget.15607] [PMID: 28404901]
[47]
Hu T, Fei Z, Su H, Xie R, Chen L. Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling. Toxicol Appl Pharmacol 2019; 371: 55-62.
[http://dx.doi.org/10.1016/j.taap.2019.04.005] [PMID: 30974157]
[48]
Ma B, Li M, Zhang L, et al. Upregulation of long non-coding RNA TUG1 correlates with poor prognosis and disease status in osteosarcoma. Tumour Biol 2016; 37(4): 4445-55.
[http://dx.doi.org/10.1007/s13277-015-4301-6] [PMID: 26499949 ]
[49]
Zhang Q, Geng PL, Yin P, Wang XL, Jia JP, Yao J. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis. Asian Pac J Cancer Prev 2013; 14(4): 2311-5.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2311] [PMID: 23725133 ]
[50]
Xie C, Chen B, Wu B, Guo J, Cao Y. LncRNA TUG1 promotes cell proliferation and suppresses apoptosis in osteosarcoma by regulating miR-212-3p/FOXA1 axis Biomedicine pharmacotherapy Biomedecine pharmacotherapie 97: 1645-53. 2018.
[51]
Li G, Liu K, Du X. Long non-coding RNA TUG1 promotes proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p and upregulating SOX4 expression. Yonsei Med J 2018; 59(2): 226-35.
[http://dx.doi.org/10.3349/ymj.2018.59.2.226] [PMID: 29436190]
[52]
Wang Y, Yang T, Zhang Z, et al. Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci 2017; 108(5): 859-67.
[http://dx.doi.org/10.1111/cas.13201] [PMID: 28205334 ]
[53]
Yun-Bo F, Xiao-Po L, Xiao-Li L, Guo-Long C, Pei Z, Fa-Ming T. LncRNA TUG1 is upregulated and promotes cell proliferation in osteosarcoma. Open Med (Warsaw, Poland) 2016; 11: 163-7.
[http://dx.doi.org/10.1515/med-2016-0031]
[54]
Li Y, Zhang T, Zhang Y, Zhao X, Wang W. Targeting the FOXM1-regulated long noncoding RNA TUG1 in osteosarcoma. Cancer Sci 2018; 109(10): 3093-104.
[http://dx.doi.org/10.1111/cas.13765] [PMID: 30099814 ]
[55]
Yu X, Hu L, Li S, et al. Long non-coding RNA taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis 2019; 10(4): 280.
[http://dx.doi.org/10.1038/s41419-019-1509-1] [PMID: 30911001]
[56]
Cao J, Han X, Qi X, Jin X, Li X. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p. Int J Oncol 2017; 51(4): 1115-23.
[http://dx.doi.org/10.3892/ijo.2017.4110] [PMID: 28902349 ]
[57]
Niu Y, Ma F, Huang W, et al. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2. Mol Cancer 2017; 16(1): 5.
[http://dx.doi.org/10.1186/s12943-016-0575-6] [PMID: 28069000]
[58]
Ou C, Li G. Long non-coding RNA TUG1: a novel therapeutic target in small cell lung cancer. J Thorac Dis 2017; 9(7): E644-5.
[http://dx.doi.org/10.21037/jtd.2017.06.94] [PMID: 28840034]
[59]
Zhang EB, Yin DD, Sun M, et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis 2014; 5 e1243
[http://dx.doi.org/10.1038/cddis.2014.201] [PMID: 24853421 ]
[60]
Liu H, Zhou G, Fu X, et al. Long noncoding RNA TUG1 is a diagnostic factor in lung adenocarcinoma and suppresses apoptosis via epigenetic silencing of BAX. Oncotarget 2017; 8(60): 101899-910.
[http://dx.doi.org/10.18632/oncotarget.22058] [PMID: 29254212 ]
[61]
Fang T, Huang H, Li X, et al. Effects of siRNA Silencing of TUG1 and LCAL6 long non-coding RNAs on patient-derived xenograft of non-small cell lung cancer. Anticancer Res 2018; 38(1): 179-86.
[PMID: 29277771]
[62]
Zhai HY, Sui MH, Yu X, et al. Overexpression of long non-coding RNA TUG1 promotes colon cancer progression. Med Sci Monit 2016; 22: 3281-7.
[http://dx.doi.org/10.12659/MSM.897072] [PMID: 27634385 ]
[63]
Sun J, Ding C, Yang Z, et al. The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition. J Transl Med 2016; 14: 42.
[http://dx.doi.org/10.1186/s12967-016-0786-z] [PMID: 26856330 ]
[64]
Sun J, Hu J, Wang G, et al. LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. J Exp Clin Cancer Res 2018; 37(1): 106.
[http://dx.doi.org/10.1186/s13046-018-0771-x] [PMID: 29776371 ]
[65]
Wang L, Zhao Z, Feng W, et al. Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway. Oncotarget 2016; 7(32): 51713-9.
[http://dx.doi.org/10.18632/oncotarget.10563] [PMID: 27421138]
[66]
Li C, Gao Y, Li Y, Ding D. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis. Biochem Biophys Res Commun 2017; 491(2): 552-7.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.042] [PMID: 28302487]
[67]
Zhang Z, Wang X, Cao S, et al. The long noncoding RNA TUG1 promotes laryngeal cancer proliferation and migration. Cellular physiology and biochemistry. Inter J Exp Cell Physiol, Biochem. Pharmacol 2018; 49: 2511-20.
[http://dx.doi.org/10.1159/000493876]
[68]
Zhuang S, Liu F, Wu P. Upregulation of long noncoding RNA TUG1 contributes to the development of laryngocarcinoma by targeting miR-145-5p/ROCK1 axis. J Cell Biochem 2019; 120(8): 13392-402.
[http://dx.doi.org/10.1002/jcb.28614] [PMID: 30916820 ]
[69]
Guo P, Zhang G, Meng J, He Q, Li Z, Guan Y. Upregulation of long noncoding RNA TUG1 promotes bladder cancer cell proliferation, migration, and invasion by inhibiting miR-29c. Oncol Res 2018; 26(7): 1083-91.
[http://dx.doi.org/10.3727/096504018X15152085755247] [PMID: 29321088 ]
[70]
Iliev R, Kleinova R, Juracek J, et al. Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer. Tumour Biol 2016; 37(10): 13385-90.
[http://dx.doi.org/10.1007/s13277-016-5177-9] [PMID: 27460088 ]
[71]
Jiang H, Hu X, Zhang H, Li W. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat Oncol 2017; 12(1): 65.
[http://dx.doi.org/10.1186/s13014-017-0802-3] [PMID: 28376901 ]
[72]
Tan J, Qiu K, Li M, Liang Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett 2015; 589(20 Pt. B): 3175-81.
[http://dx.doi.org/10.1016/j.febslet.2015.08.020] [PMID: 26318860 ]
[73]
Liu Q, Liu H, Cheng H, Li Y, Li X, Zhu C. Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells. OncoTargets Ther 2017; 10: 2461-71.
[http://dx.doi.org/10.2147/OTT.S124595] [PMID: 28503069 ]
[74]
Han Y, Liu Y, Gui Y, Cai Z. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J Surg Oncol 2013; 107(5): 555-9.
[http://dx.doi.org/10.1002/jso.23264] [PMID: 22961206 ]
[75]
Yang B, Tang X, Wang Z, Sun D, Wei X, Ding Y. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a. Biosci Rep 2018; 38(5): 38.
[http://dx.doi.org/10.1042/BSR20180677] [PMID: 29967294 ]
[76]
Du Z, Sun T, Hacisuleyman E, et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun 2016; 7: 10982.
[http://dx.doi.org/10.1038/ncomms10982] [PMID: 26975529 ]
[77]
Liu D, Wang J, Liu M. Long noncoding RNA TUG1 promotes proliferation and inhibits apoptosis in multiple myeloma by inhibiting miR-29b-3p. Biosci Rep 2019; 39(3): 39.
[http://dx.doi.org/10.1042/BSR20182489] [PMID: 30842339 ]
[78]
Qian W, Ren Z, Lu X. Knockdown of long non-coding RNA TUG1 suppresses nasopharyngeal carcinoma progression by inhibiting epithelial-mesenchymal transition (EMT) via the promotion of miR-384. Biochem Biophys Res Commun 2019; 509(1): 56-63.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.011] [PMID: 30581000]
[79]
Fan S, Yang Z, Ke Z, et al. Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer. Biomed Pharmacother 2017; 95: 1636-43.
[http://dx.doi.org/10.1016/j.biopha.2017.09.076]
[80]
Zhang CG, Yin DD, Sun SY, Han L. The use of lncRNA analysis for stratification management of prognostic risk in patients with NSCLC. Eur Rev Med Pharmacol Sci 2017; 21(1): 115-9.
[PMID: 28121347]
[81]
Zhao Z, Wang B, Hao J, et al. Downregulation of the long non-coding RNA taurine-upregulated gene 1 inhibits glioma cell proliferation and invasion and promotes apoptosis. Oncol Lett 2018; 15(3): 4026-32.
[http://dx.doi.org/10.3892/ol.2018.7784] [PMID: 29467911 ]
[82]
Zhao XB, Ren GS. LncRNA taurine-upregulated gene 1 promotes cell proliferation by inhibiting microRNA-9 in MCF-7 cells. J Breast Cancer 2016; 19(4): 349-57.
[http://dx.doi.org/10.4048/jbc.2016.19.4.349] [PMID: 28053623]
[83]
Liu F, Liu Y, He C, et al. Increased MTHFD2 expression is associated with poor prognosis in breast cancer. Tumour Biol 2014; 35(9): 8685-90.
[http://dx.doi.org/10.1007/s13277-014-2111-x] [PMID: 24870594]
[84]
Ma PJ, Guan QK, Meng L, Qin N, Zhao J, Jin BZ. Long non-coding RNA TUG1 as a potential prognostic biomarker in human cancers: a meta-analysis. Oncotarget 2017; 8(37): 62454-62.
[http://dx.doi.org/10.18632/oncotarget.19099] [PMID: 28977959 ]
[85]
Kastenhuber ER, Lowe SW. Putting p53 in context. Cell 2017; 170(6): 1062-78.
[http://dx.doi.org/10.1016/j.cell.2017.08.028] [PMID: 28886379 ]
[86]
Pappas K, Xu J, Zairis S, et al. p53 maintains baseline expression of multiple tumor suppressor genes. Mol Cancer Res 2017; 15(8): 1051-62.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0089] [PMID: 28483946 ]
[87]
Hu Y, Sun X, Mao C, et al. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med 2017; 6(2): 471-82.
[http://dx.doi.org/10.1002/cam4.994] [PMID: 28088836 ]
[88]
Lowe SW, Jacks T, Housman DE, Ruley HE. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 1994; 91(6): 2026-30.
[http://dx.doi.org/10.1073/pnas.91.6.2026] [PMID: 8134344]
[89]
Liu G, Parant JM, Lang G, et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 2004; 36(1): 63-8.
[http://dx.doi.org/10.1038/ng1282] [PMID: 14702042]
[90]
Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408(6810): 307-10.
[http://dx.doi.org/10.1038/35042675] [PMID: 11099028 ]
[91]
Wen W, Lu L, He Y, et al. LincRNAs and base modifications of p53 induced by arsenic methylation in workers. Chem Biol Interact 2016; 246: 1-10.
[http://dx.doi.org/10.1016/j.cbi.2016.01.003] [PMID: 26772154 ]
[92]
Baratieh Z, Khalaj Z, Honardoost MA, et al. Aberrant expression of PlncRNA-1 and TUG1: potential biomarkers for gastric cancer diagnosis and clinically monitoring cancer progression. Biomarkers Med 2017; 11(12): 1077-90.
[http://dx.doi.org/10.2217/bmm-2017-0090] [PMID: 29182008 ]
[93]
Ji TT, Huang X, Jin J, Pan SH, Zhuge XJ. Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and invasion through regulating and controlling the expression of miR-144/c-Met axis. Asian Pac J Trop Med 2016; 9(5): 508-12.
[http://dx.doi.org/10.1016/j.apjtm.2016.03.026] [PMID: 27261864 ]
[94]
Ren K, Li Z, Li Y, Zhang W, Han X. Long noncoding RNA taurine-upregulated gene 1 promotes cell proliferation and invasion in gastric cancer via negatively modulating miRNA-145-5p. Oncol Res 2017; 25(5): 789-98.
[http://dx.doi.org/10.3727/096504016X14783677992682] [PMID: 27983921]
[95]
Xu C, Guo Y, Liu H, Chen G, Yan Y, Liu T. TUG1 confers cisplatin resistance in esophageal squamous cell carcinoma by epigenetically suppressing PDCD4 expression via EZH2. Cell Biosci 2018; 8: 61.
[http://dx.doi.org/10.1186/s13578-018-0260-0] [PMID: 30519392 ]
[96]
Li TH, Zhang JJ, Liu SX, Chen Y. Long non-coding RNA taurine-upregulated gene 1 predicts unfavorable prognosis, promotes cells proliferation, and inhibits cells apoptosis in epithelial ovarian cancer. Medicine (Baltimore) 2018; 97(19) e0575
[http://dx.doi.org/10.1097/MD.0000000000010575] [PMID: 29742691 ]
[97]
Zhu J, Shi H, Liu H, Wang X, Li F. Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget 2017; 8(39): 65253-64.
[http://dx.doi.org/10.18632/oncotarget.18224] [PMID: 29029428]
[98]
Huang MD, Chen WM, Qi FZ, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer 2015; 14: 165.
[http://dx.doi.org/10.1186/s12943-015-0431-0] [PMID: 26336870 ]
[99]
Lin YH, Wu MH, Huang YH, et al. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology 2018; 67(1): 188-203.
[http://dx.doi.org/10.1002/hep.29462] [PMID: 28802060 ]
[100]
Li J, Zhang Q, Fan X, et al. The long noncoding RNA TUG1 acts as a competing endogenous RNA to regulate the Hedgehog pathway by targeting miR-132 in hepatocellular carcinoma. Oncotarget 2017; 8(39): 65932-45.
[http://dx.doi.org/10.18632/oncotarget.19582] [PMID: 29029483]
[101]
He C, Liu Z, Jin L, et al. lncRNA TUG1-mediated Mir-142-3p downregulation contributes to metastasis and the epithelial-to-mesenchymal transition of hepatocellular carcinoma by targeting ZEB1 cellular physiology and biochemistry. Inter J Exp Cell Physiol Biochem Pharmacol 2018; 48: 1928-41.
[102]
Li Q, Song W, Wang J. TUG1 confers adriamycin resistance in acute myeloid leukemia by epigenetically suppressing miR-34a expression via EZH2. Biomed Pharmacother 2019; 109: 1793-801.
[http://dx.doi.org/10.1016/j.biopha.2018.11.003]
[103]
Wang X, Zhang L, Zhao F, et al. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia. Ann Hematol 2018; 97(8): 1375-89.
[http://dx.doi.org/10.1007/s00277-018-3315-8] [PMID: 29654398]
[104]
Tang T, Cheng Y, She Q, et al. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother 2018; 107: 338-46.
[http://dx.doi.org/10.1016/j.biopha.2018.07.076]
[105]
Li T, Liu Y, Xiao H, Xu G. Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer. Breast Cancer 2017; 24(4): 535-43.
[http://dx.doi.org/10.1007/s12282-016-0736-x] [PMID: 27848085 ]
[106]
Liu S, Yang Y, Wang W, Pan X. Long noncoding RNA TUG1 promotes cell proliferation and migration of renal cell carcinoma via regulation of YAP. J Cell Biochem 2018; 119(12): 9694-706.
[http://dx.doi.org/10.1002/jcb.27284] [PMID: 30132963]
[107]
Zhang M, Lu W, Huang Y, et al. Downregulation of the long noncoding RNA TUG1 inhibits the proliferation, migration, invasion and promotes apoptosis of renal cell carcinoma. J Mol Histol 2016; 47(4): 421-8.
[http://dx.doi.org/10.1007/s10735-016-9683-2] [PMID: 27323757]
[108]
Yang Y, Sun DM, Yu JF, et al. Long noncoding RNA TUG1 promotes renal cell carcinoma cell proliferation, migration and invasion by downregulating microRNA196a. Mol Med Rep 2018; 18(6): 5791-8.
[http://dx.doi.org/10.3892/mmr.2018.9608] [PMID: 30387842 ]
[109]
Wang Y, Liu G, Ren L, Wang K, Liu A. Long non-coding RNA TUG1 recruits miR29c3p from its target gene RGS1 to promote proliferation and metastasis of melanoma cells. Int J Oncol 2019; 54(4): 1317-26.
[http://dx.doi.org/10.3892/ijo.2019.4699] [PMID: 30720136 ]
[110]
Fu C, Chen J, Lu J, et al. Downregulation of TUG1 promotes melanogenesis and UVB-induced melanogenesis. Exp Dermatol 2019; 28(6): 730-3.
[http://dx.doi.org/10.1111/exd.13929] [PMID: 30924963 ]
[111]
Long J, Menggen Q, Wuren Q, Shi Q, Pi X. Long noncoding RNA taurine-upregulated gene1 (TUG1) promotes tumor growth and metastasis through TUG1/Mir-129-5p/astrocyte-elevated gene-1 (AEG-1) axis in malignant melanoma. Med Sci Monit 2018; 24: 1547-59.
[http://dx.doi.org/10.12659/MSM.906616] [PMID: 29543785]
[112]
Liu S, Liu LH, Hu WW, Wang M. Long noncoding RNA TUG1 regulates the development of oral squamous cell carcinoma through sponging miR-524-5p to mediate DLX1 expression as a competitive endogenous RNA. J Cell Physiol 2019; 234(11): 20206-16.
[http://dx.doi.org/10.1002/jcp.28620] [PMID: 30980391 ]
[113]
Yan G, Wang X, Yang M, Lu L, Zhou Q. Long non-coding RNA TUG1 promotes progression of oral squamous cell carcinoma through upregulating FMNL2 by sponging miR-219. Am J Cancer Res 2017; 7(9): 1899-912.
[PMID: 28979812]
[114]
Lei H, Gao Y, Xu X. LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim Biophys Sin (Shanghai) 2017; 49(7): 588-97.
[http://dx.doi.org/10.1093/abbs/gmx047] [PMID: 28645161]
[115]
Katsushima K, Natsume A, Ohka F, et al. Targeting the notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun 2016; 7: 13616.
[http://dx.doi.org/10.1038/ncomms13616] [PMID: 27922002]
[116]
Cai H, Liu X, Zheng J, et al. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma. Oncogene 2017; 36(3): 318-31.
[http://dx.doi.org/10.1038/onc.2016.212] [PMID: 27345398 ]
[117]
Jiang N, Xia J, Jiang B, Xu Y, Li Y. TUG1 alleviates hypoxia injury by targeting miR-124 in H9c2 cells. Biomed Pharmacother 2018; 103: 1669-77.
[http://dx.doi.org/10.1016/j.biopha.2018.04.191]
[118]
Wu Z, Zhao S, Li C, Liu C. LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR1455pBinp3 axis. Mol Med Rep 2018; 17(2): 2422-30.
[PMID: 29207102]
[119]
Zhang H, Li H, Ge A, Guo E, Liu S, Zhang L. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPStreated H9c2 cells by down-regulation of miR-29b. Biomed Pharmacotherapy 2018. 101: 663-669-9.
[120]
Chen C, Cheng G, Yang X, Li C, Shi R, Zhao N. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am J Transl Res 2016; 8(7): 2981-91.
[PMID: 27508018]
[121]
Li FP, Lin DQ, Gao LY. LncRNA TUG1 promotes proliferation of vascular smooth muscle cell and atherosclerosis through regulating miRNA-21/PTEN axis. Eur Rev Med Pharmacol Sci 2018; 22(21): 7439-47.
[PMID: 30468492]
[122]
Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovas Pathol: Official J Soc Cardiovas Pathol 2018; 33: 6-15.
[http://dx.doi.org/10.1016/j.carpath.2017.11.004]
[123]
Yu C, Li L, Xie F, et al. LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res 2018; 114(1): 168-79.
[http://dx.doi.org/10.1093/cvr/cvx180] [PMID: 29016735 ]
[124]
Shi L, Tian C, Sun L, Cao F, Meng Z. The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem Biophys Res Commun 2018; 501(3): 688-95.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.049] [PMID: 29758198 ]
[125]
Yu Y, Wang L, Gao M, Guan H. Long non-coding RNA TUG1 regulates the migration and invasion of trophoblast-like cells through sponging miR-204-5p. Clin Exp Pharmacol Physiol 2018. In Press
[http://dx.doi.org/10.1111/1440-1681.13058]
[126]
Su S, Liu J, He K, et al. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation. FEBS J 2016; 283(7): 1261-74.
[http://dx.doi.org/10.1111/febs.13660] [PMID: 26785829]
[127]
Xiong ZJ, Zhang Q, Wang DX, Hu L. Overexpression of TUG1 promotes neuronal death after cerebral infarction by regulating microRNA-9. Eur Rev Med Pharmacol Sci 2018; 22(21): 7393-400.
[PMID: 30468486]
[128]
Chen S, Wang M, Yang H, et al. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 2017; 485(1): 167-73.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.043] [PMID: 28202414 ]
[129]
Jia H, Ma H, Li Z, et al. Downregulation of LncRNA TUG1 Inhibited TLR4 Signaling Pathway-Mediated Inflammatory Damage After Spinal Cord Ischemia Reperfusion in Rats via Suppressing TRIL Expression. J Neuropathol Exp Neurol 2019; 78(3): 268-82.
[http://dx.doi.org/10.1093/jnen/nly126]
[130]
Liang Z, Ren C. Emodin attenuates apoptosis and inflammation induced by LPS through up-regulating lncRNA TUG1 in murine chondrogenic ATDC5 cells. Biomed Pharmacother 2018; 103: 897-902.
[http://dx.doi.org/10.1016/j.biopha.2018.04.085]
[131]
Tang LP, Ding JB, Liu ZH, Zhou GJ. LncRNA TUG1 promotes osteoarthritis-induced degradation of chondrocyte extracellular matrix via miR-195/MMP-13 axis. Eur Rev Med Pharmacol Sci 2018; 22(24): 8574-81.
[PMID: 30575896]
[132]
Long J, Badal SS, Ye Z, et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J Clin Invest 2016; 126(11): 4205-18.
[http://dx.doi.org/10.1172/JCI87927] [PMID: 27760051 ]
[133]
Shen H, Ming Y, Xu C, Xu Y, Zhao S, Zhang Q. Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy. J Cell Physiol 2019; 234(9): 15123-33.
[http://dx.doi.org/10.1002/jcp.28153] [PMID: 30671964 ]
[134]
Lei X, Zhang L, Li Z, Ren J. Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des Devel Ther 2018; 12: 2785-93.
[http://dx.doi.org/10.2147/DDDT.S166525] [PMID: 30233141]
[135]
Duan LJ, Ding M, Hou LJ, Cui YT, Li CJ, Yu DM. Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microRNA-377 targeting of PPARγ in diabetic nephropathy. Biochem Biophys Res Commun 2017; 484(3): 598-604.
[http://dx.doi.org/10.1016/j.bbrc.2017.01.145] [PMID: 28137588 ]
[136]
Liu X, Hong C, Wu S, et al. Downregulation of lncRNA TUG1 contributes to the development of sepsis-associated acute kidney injury via regulating miR-142-3p/sirtuin 1 axis and modulating NF-κB pathway. J Cell Biochem 2019. In Press.
[http://dx.doi.org/10.1002/jcb.28409] [PMID: 30834562 ]
[137]
Dieker J, Berden JH, Bakker M, et al. Autoantibodies against modified histone peptides in SLE patients are associated with disease activity and lupus nephritis. PLoS One 2016; 11(10) e0165373
[http://dx.doi.org/10.1371/journal.pone.0165373] [PMID: 27780265 ]
[138]
Scallet AC, Schmued LC, Slikker W Jr, et al. Developmental neurotoxicity of ketamine: Morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxicological Sci. An Official J Soc Toxicol 2004; 81: 364-70.
[http://dx.doi.org/10.1093/toxsci/kfh224]
[139]
Walker SM, Westin BD, Deumens R, Grafe M, Yaksh TL. Effects of intrathecal ketamine in the neonatal rat: Evaluation of apoptosis and long-term functional outcome. Anesthesiology 2010; 113(1): 147-59.
[http://dx.doi.org/10.1097/ALN.0b013e3181dcd71c] [PMID: 20526188 ]
[140]
Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 2011; 44(4): 667-78.
[http://dx.doi.org/10.1016/j.molcel.2011.08.027] [PMID: 21963238 ]
[141]
Hudson WH, Ortlund EA. The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 2014; 15(11): 749-60.
[http://dx.doi.org/10.1038/nrm3884] [PMID: 25269475]
[142]
Hertel KJ, Graveley BR. RS domains contact the pre-mRNA throughout spliceosome assembly. Trends Biochem Sci 2005; 30(3): 115-8.
[http://dx.doi.org/10.1016/j.tibs.2005.01.002] [PMID: 15752982 ]
[143]
Liu S, Liu Y, Lu Q, Zhou X, Chen L, Liang W. The lncRNA TUG1 promotes epithelial ovarian cancer cell proliferation and invasion via the WNT/β-catenin pathway. OncoTargets Ther 2019; 12: 1041.
[http://dx.doi.org/10.2147/OTT.S203520] [PMID: 30787622 ]
[144]
Yang G, Zhang C, Wang N, Chen J. miR-425-5p decreases LncRNA MALAT1 and TUG1 expressions and suppresses tumorigenesis in osteosarcoma via Wnt/β-catenin signaling pathway. Int J Biochem Cell Biol 2019; 111: 42-51.
[http://dx.doi.org/10.1016/j.biocel.2019.04.004] [PMID: 30986552 ]
[145]
Yan HY, Bu SZ, Zhou WB, Mai YF. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Eur Rev Med Pharmacol Sci 2018; 22(20): 6922-9.
[PMID: 30402858]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 6
Year: 2020
Page: [688 - 700]
Pages: 13
DOI: 10.2174/1381612826666191227154009
Price: $65

Article Metrics

PDF: 65
HTML: 8