Antimicrobial Activities of Medicinal Plants Containing Phenolic Compounds

Author(s): Tuğçe Dikpınar, Sevda Süzgeç-Selçuk*

Journal Name: The Natural Products Journal

Volume 10 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Medicinal plants have been used to treat diseases for centuries. They are important sources in terms of their pharmacological effects and also have many microbial agents. Recently, the development of drug resistance has begun to spread in human pathogens against used antibiotics and this has led to new research for novel antimicrobial substances from natural products containing plants.

Objective: The purpose of this review is to determine the antimicrobial activity of pure phenolic compounds isolated from medicinal plants, to evaluate how molecular structures of these compounds affect the activity, and to provide to the readers a source for future studies on natural antimicrobial agents.

Methods: Relevant information was gathered from scientific engines and databases (Google Scholar, Web of Science, Scifinder, Science Direct, Scopus, Wiley Online Library, PubMed, Taylor & Francis online) using different keywords. Antimicrobial activity research was selected especially on pure phenolic compounds.

Results: Numerous phenolic compounds were isolated from plants/plant extracts and were shown to prevent the growth of bacteria and fungi and their Minimum Inhibition Concentration (MIC) and inhibition zone values were given in detail.

Conclusion: This review revealed that phenolic compounds found in medicinal plants have different antimicrobial activity according to their changes in the molecular structure.

Keywords: Antibacterial activity, antifungal activity, medicinal plants, microorganisms, phenolic, resistance.

[1]
Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res., 2010, 4(2), 104-111.
[2]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005 ] [PMID: 29403965]
[3]
Selvamohan, T.; Ramadas, V.; Kishore, S.S.S. Antimicrobial activity of selected medicinal plants against some selected human pathogenic bacteria. Adv. Appl. Sci. Res, 2012, 3(5), 3374-3381.
[4]
Lovkova, M.Y.; Buzuk, G.N.; Sokolova, S.M.; Kliment’eva, N.I. Chemical features of medicinal plants. Appl. Biochem. Microbiol., 2001, 37(3), 229-237.
[5]
Nimri, L.F.; Meqdam, M.M.; Alkofahi, A. Antibacterial activity of Jordanian medicinal plants. Pharm. Biol., 1999, 37, 196-201.
[http://dx.doi.org/10.1076/phbi.37.3.196.6308]
[6]
López-Malo, A.; Palou, E.; León-Cruz, R.; Alzamora, S.M. Mixtures of natural and synthetic antifungal agents. Adv. Exp. Med. Biol., 2006, 571, 261-286.
[http://dx.doi.org/10.1007/0-387-28391-9_18 ] [PMID: 16408608]
[7]
Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control, 2014, 46, 412-429.
[http://dx.doi.org/10.1016/j.foodcont.2014.05.047]
[8]
Martins, N.; Barros, L.; Henriques, M.; Silva, S. Activity of phenolic compounds from plant origin against Candida species. Ind. Crops Prod., 2015, 74, 648-670.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.067]
[9]
Silva, N.C.C.; Fernandes, J.A. Biological properties of medicinal plants: A review of their antimicrobial activity. J. Venom. Anim. Toxins Incl. Trop. Dis., 2010, 16(3), 402-413.
[http://dx.doi.org/10.1590/S1678-91992010000300006]
[10]
Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep., 2010, 27(2), 238-254.
[http://dx.doi.org/10.1039/B916096E ] [PMID: 20111803]
[11]
Mundy, L.; Pendry, B.; Rahman, M. Antimicrobial resistance and synergy in herbal medicine. J. Med. Plants Res., 2016, 6, 53-58.
[12]
Ayoub, I.M.; El-Shazly, M.; Lu, M-C.; Singab, A.N.B. Anti-microbial and cytotoxic activities of the crude extracts of Dietes bicolor leaves, flowers and rhizomes. S. Afr. J. Bot., 2014, 95, 97-101.
[http://dx.doi.org/10.1016/j.sajb.2014.08.012]
[13]
Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C-Y.O.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct., 2014, 5(2), 189-197.
[http://dx.doi.org/10.1039/C3FO60361J ] [PMID: 24336740]
[14]
Lattanzio, V. Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Chapter 50: Phenolic Compounds: Introduction Natural Products; Ramavat, K.G.; Merillon, J.M., Eds.; Springer-Verlag Publishing: Berlin, Heidelberg, 2013, pp. 1543- 1579..
[15]
Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits-An overview. Int. J. Food Sci. Technol., 2012, 47, 2023-2044.
[http://dx.doi.org/10.1111/j.1365-2621.2012.03067.x]
[16]
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26(8), 1001-1043.
[http://dx.doi.org/10.1039/b802662a ] [PMID: 19636448]
[17]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231 ] [PMID: 22254006]
[18]
Pereira, D.M.; Valentao, P.; Pereira, J.A.; Andrade, P.B. Phenolic: From chemistry to biology. Molecules, 2009, 4, 2202-2211.
[http://dx.doi.org/10.3390/molecules14062202]
[19]
Giada, M.L.R. Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power Oxidative Stress and Chronic Degenerative Diseases – A Role for Antioxidants; InTech Publishing: London, UK, 2013, pp. 87-112.
[20]
Karakaya, S. Bioavailability of phenolic compounds. Crit. Rev. Food Sci. Nutr., 2004, 44(6), 453-464.
[http://dx.doi.org/10.1080/10408690490886683 ] [PMID: 15615428]
[21]
Kapoor, A.; Kaur, G.; Kaur, R. Antimicrobial activity of different herbal plants extracts: A review. World J. Pharm. Pharm. Sci., 2015, 4(7), 422-459.
[22]
Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.F.R.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol., 2007, 45(11), 2287-2295.
[http://dx.doi.org/10.1016/j.fct.2007.06.004 ] [PMID: 17637491]
[23]
Fernandes, T.S.; Copetti, D.; do Carmo, G.; Neto, A.T.; Pedroso, M.; Silva, U.F.; Mostardeiro, M.A.; Burrow, R.E.; Dalcol, I.I.; Morel, A.F. Phytochemical analysis of bark from Helietta apiculata Benth and antimicrobial activities. Phytochemistry, 2017, 141, 131-139.
[http://dx.doi.org/10.1016/j.phytochem.2017.05.017 ] [PMID: 28614729]
[24]
Mitscher, L.A. Antimicrobial agents from higher plants. Recent advances in phytochemistry; Runeckles, V.C., Ed.; Plenum Press: New York, 1975, pp. 243-282.
[25]
Chen, Y-K.; Li, X-S.; Yang, G-Y.; Chen, Z-Y.; Hu, Q-F.; Miao, M-M. Phenolic compounds from Nicotiana tabacum and their biological activities. J. Asian Nat. Prod. Res., 2012, 14(5), 450-456.
[http://dx.doi.org/10.1080/10286020.2012.669578 ] [PMID: 22428563]
[26]
Paulo, L.; Oleastro, M.; Gallardo, E.; Queiroz, J.A.; Domingues, F. Antimicrobial properties of resveratrol: A Review. Science Against Microbial Pathogenic: Communicating Current Research and Technological Advances; Mendes-Vilas, A., Ed.; Formatex Research Center: Spain, 2011, pp. 1225-1235.
[27]
Sher, A. Antimicrobial activity of natural products from medicinal plants. Gomal J. Med. Sci., 2009, 7(1), 72-78.
[28]
Nie, H.; Guan, X-L.; Li, J.; Zhang, Y-J.; He, R-J.; Huang, Y.; Liu, B-M.; Zhou, D-X.; Deng, S-P.; Chen, H-C.; Yang, R-Y. Antimicrobial lignans derived from the roots of Streblus asper. Phytochem. Lett., 2016, 18, 226-231.
[http://dx.doi.org/10.1016/j.phytol.2016.10.022]
[29]
Lee, J.; Huh, M.S.; Kim, Y.C.; Hattori, M.; Otake, T. Lignan, sesquilignans and dilignans, novel HIV-1 protease and cytopathic effect inhibitors purified from the rhizomes of Saururus chinensis. Antiviral Res., 2010, 85(2), 425-428.
[http://dx.doi.org/10.1016/j.antiviral.2009.11.002 ] [PMID: 19900481]
[30]
Li, K.M.; Dong, X.; Ma, Y.N.; Wu, Z.H.; Yan, Y.M.; Cheng, Y.X. Antifungal coumarins and lignans from Artemisia annua. Fitoterapia, 2019, 134, 323-328.
[http://dx.doi.org/10.1016/j.fitote.2019.02.022 ] [PMID: 30822508]
[31]
Erdemoglu, N.; Sener, B.; Choudhary, M.I. Bioactivity of lignans from Taxus baccata. Z. Natforsch. C J. Biosci., 2004, 59(7-8), 494-498.
[http://dx.doi.org/10.1515/znc-2004-7-807 ] [PMID: 15813367]
[32]
Vargas-Arispuro, I.; Reyes-Báez, R.; Rivera-Castañeda, G.; Martínez-Téllez, M.A.; Rivero-Espejel, I. Antifungal lignans from the creosotebush (Larrea tridentata). Ind. Crops Prod., 2005, 22, 101-107.
[http://dx.doi.org/10.1016/j.indcrop.2004.06.003]
[33]
Yang, C-h.; Ma, L.; Wei, Z-p.; Han, F.; Gao, J. Advances in isolation and synthesis of xanthone derivatives. Chin. Herb. Med., 2012, 4(2), 87-102.
[34]
Fouotsa, H.; Lannang, A.M.; Dzoyem, J.P.; Tatsimo, S.J.N.; Neumann, B.; Mbazoa, C.D.; Razakarivony, A.A.; Nkengfack, A.E.; Eloff, J.N.; Sewald, N. Antibacterial and antioxidant xanthones and benzophenone from Garcinia smeathmannii. Planta Med., 2015, 81(7), 594-599.
[http://dx.doi.org/10.1055/s-0035-1545841 ] [PMID: 25798641]
[35]
Liang, X.X.; Kong, L.X.; Fei, W.B.; He, M. Chemical constituents and antibacterial activities of Aspidistra typica. Chin. J. Nat. Med., 2018, 16(6), 465-470.
[http://dx.doi.org/10.1016/S1875-5364(18)30080-3 ] [PMID: 30047468]
[36]
Ngoupayo, J.; Tabopda, T.K.; Ali, M.S. Antimicrobial and immunomodulatory properties of prenylated xanthones from twigs of Garcinia staudtii. Bioorg. Med. Chem., 2009, 17(15), 5688-5695.
[http://dx.doi.org/10.1016/j.bmc.2009.06.009 ] [PMID: 19604701]
[37]
Fukai, T.; Oku, Y.; Hou, A.J.; Yonekawa, M.; Terada, S. Antimicrobial activity of isoprenoid-substituted xanthones from Cudrania cochinchinensis against vancomycin-resistant enterococci. Phytomedicine, 2005, 12(6-7), 510-513.
[http://dx.doi.org/10.1016/j.phymed.2004.03.010 ] [PMID: 16008130]
[38]
Araújo, M.G.; Hilário, F.; Nogueira, L.G.; Vilegas, W.; Santos, L.C.; Bauab, T.M. Chemical constituents of the methanolic extract of leaves of Leiothrix spiralis Ruhland and their antimicrobial activity. Molecules, 2011, 16(12), 10479-10490.
[http://dx.doi.org/10.3390/molecules161210479 ] [PMID: 22179427]
[39]
Dharmaratne, H.R.W.; Wijesinghe, W.M.N.M.; Thevanasem, V. Antimicrobial activity of xanthones from Calophyllum species, against methicillin-resistant Staphylococcus aureus (MRSA). J. Ethnopharmacol., 1999, 66(3), 339-342.
[http://dx.doi.org/10.1016/S0378-8741(98)00239-6 ] [PMID: 10473182]
[40]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564 ] [PMID: 10515903]
[41]
Patra, A.K. Chapter 1 An Overview of Antimicrobial Properties of Different Classes of Phytochemicals. Diet. Phytochemicals and Microbes; Patra, A.K., Ed.; Springer Science and Business Media: Heidelberg, Berlin, Germany, 2012, pp. 1-32.
[42]
Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009-2016. J. Ethnopharmacol., 2017, 208, 236-252.
[http://dx.doi.org/10.1016/j.jep.2017.07.011 ] [PMID: 28694104]
[43]
Barros Cota, B.; Braga De Oliveira, A.; Guilherme Guimarães, K.; Pimentel Mendonça, M.; Dias De Souza Filho, J.; Castro Braga, F. Chemistry and antifungal activity of Xyris species (Xyridaceae): A new anthraquinone from Xyris pilosa. Biochem. Syst. Ecol., 2004, 32, 391-397.
[http://dx.doi.org/10.1016/j.bse.2003.11.006]
[44]
Jurica, K.; Gobin, I.; Kremer, D.; Čepo, D.V.; Grubešić, R.J.; Karačonji, I.B.; Kosalec, I. Arbutin and its metabolite hydro-quinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J. Herb. Med., 2017, 8, 17-23.
[http://dx.doi.org/10.1016/j.hermed.2017.03.006]
[45]
Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: role and biochemical activity in plants and human. J. Med. Plants Res., 2011, 5(31), 6697-6703.
[http://dx.doi.org/10.5897/JMPR11.1404]
[46]
Singh, M.; Govindarajan, R.; Rawat, A.K.S.; Khare, P.B. Antimicrobial flavonoid rutin from Pteris vittata L. against pathogenic gastrointestinal microflora. Am. Fern J., 2008, 98(2), 98-103.
[http://dx.doi.org/10.1640/0002-8444(2008)98[98:AFRFPV]2.0.CO;2]
[47]
Atta, E.M.; Hashem, A.I. Eman, REl-S. A novel flavonoid compound from Farsetia aegyptia and its antimicrobial activity. Chem. Nat. Compd., 2013, 49(3), 432-436.
[http://dx.doi.org/10.1007/s10600-013-0631-z]
[48]
Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104, 466-479.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.054]
[49]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3 ] [PMID: 24092244]
[50]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x ] [PMID: 25501296]
[51]
Jiang, L.; Numonov, S.; Bobakulov, K.; Qureshi, M.N.; Zhao, H.; Aisa, H.A. Phytochemical profiling and evaluation of pharmacological activities of Hypericum scabrum L. Molecules, 2015, 20(6), 11257-11271.
[http://dx.doi.org/10.3390/molecules200611257 ] [PMID: 26096433]
[52]
Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol., 2001, 90(4), 494-507.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01271.x ] [PMID: 11309059]
[53]
Zhang, Q.; Fan, D.; Xiong, B.; Kong, L.; Zhu, X. Isolation of new flavan-3-ol and lignan glucoside from Loropetalum chinense and their antimicrobial activities. Fitoterapia, 2013, 90, 228-232.
[http://dx.doi.org/10.1016/j.fitote.2013.08.003 ] [PMID: 23954178]
[54]
Mukne, A.P.; Viswanathan, V.; Phadatare, A.G. Structure pre-requisites for isoflavones as effective antibacterial agents. Pharmacogn. Rev., 2011, 5(9), 13-18.
[http://dx.doi.org/10.4103/0973-7847.79095 ] [PMID: 22096314]
[55]
Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res., 2008, 22(6), 709-724.
[http://dx.doi.org/10.1002/ptr.2362 ] [PMID: 18446848]
[56]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002 ] [PMID: 16323269]
[57]
Sassi, A.B.; Harzallah-Skhiri, F.; Bourgougnon, N.; Aouni, M. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1. Nat. Prod. Res., 2008, 22(1), 53-65.
[http://dx.doi.org/10.1080/14786410701589790 ] [PMID: 17999339]
[58]
Süzgeç-Selçuk, S.; Birteksöz, A.S. Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. S. Afr. J. Bot., 2011, 77, 170-174.
[http://dx.doi.org/10.1016/j.sajb.2010.07.017]
[59]
Lourens, A.C.U.; Viljoen, A.M.; van Heerden, F.R. South African Helichrysum species: A Review of the traditional uses, biological activity and phytochemistry. J. Ethnopharmacol., 2008, 119(3), 630-652.
[http://dx.doi.org/10.1016/j.jep.2008.06.011 ] [PMID: 18606217]
[60]
Bonifácio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: A review. Ann. Clin. Microbiol. Antimicrob., 2014, 13, 54.
[PMID: 25406585]
[61]
Avila, H.P. Smânia, Ede.F.; Monache, F.D.; Smânia, A., Jr. Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem., 2008, 16(22), 9790-9794.
[http://dx.doi.org/10.1016/j.bmc.2008.09.064 ] [PMID: 18951808]
[62]
Pistelli, L.; Glorgi, I. Antimicrobial Properties of Flavonoids. Dietary Phytochemicals and Microbes; Patra, A.K., Ed.; Springer Science and Business Media: Heidelberg, Berlin, Germany, 2012, pp. 33-91.
[http://dx.doi.org/10.1007/978-94-007-3926-0_2]
[63]
Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6), 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1 ] [PMID: 11130659]
[64]
Yin, S.; Fan, C-Q.; Wang, Y.; Dong, L.; Yue, J.M. Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure-activity relationship study. Bioorg. Med. Chem., 2004, 12(16), 4387-4392.
[http://dx.doi.org/10.1016/j.bmc.2004.06.014 ] [PMID: 15265490]
[65]
Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol., 2012, 23(2), 174-181.
[http://dx.doi.org/10.1016/j.copbio.2011.08.007 ] [PMID: 21925860]
[66]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Scient. World J., 2013, 2013..
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[67]
Friedman, M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res., 2007, 51(1), 116-134.
[http://dx.doi.org/10.1002/mnfr.200600173 ] [PMID: 17195249]
[68]
Veluri, R.; Weir, T.L.; Bais, H.P.; Stermitz, F.R.; Vivanco, J.M. Phytotoxic and antimicrobial activities of catechin derivatives. J. Agric. Food Chem., 2004, 52(5), 1077-1082.
[http://dx.doi.org/10.1021/jf030653+ ] [PMID: 14995101]
[69]
Carvalho, R.S.; Carollo, C.A.; de Magalhães, J.C.; Palumbo, J.M.C.; Boaretto, A.G.; Nunes e Sá, I.C.; Ferraz, A.C.; Lima, W.G.; de Siqueira, J.M.; Ferreira, J.M.S. Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. S. Afr. J. Bot., 2018, 114, 181-187.
[http://dx.doi.org/10.1016/j.sajb.2017.11.010]
[70]
Abu Zarin, M.; Wan, H.Y.; Isha, A.; Armania, N. Antioxidant, antimicrobial and cytotoxic potential of condensed tannins from Leucaena leucocephala hybrid-Rendang. Food Sci. Hum. Wellness, 2016, 5, 65-75.
[http://dx.doi.org/10.1016/j.fshw.2016.02.001]
[71]
Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem., 2011, 126(4), 1821-1835.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.026 ] [PMID: 25213963]
[72]
Puupponen-Pimiä, R.; Nohynek, L.; Alakomi, H.L.; Oksman-Caldentey, K.M. Bioactive berry compounds-novel tools against human pathogens. Appl. Microbiol. Biotechnol., 2005, 67(1), 8-18.
[http://dx.doi.org/10.1007/s00253-004-1817-x ] [PMID: 15578177]
[73]
Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr., 2008, 63(4), 147-156.
[http://dx.doi.org/10.1007/s11130-008-0097-5 ] [PMID: 18931913]
[74]
Badjakov, I.; Nikolova, M.; Gevrenova, R.; Kondakova, V.; Todorovska, E.; Atanassov, A. Bioactive compounds in small fruits and their influence on human health. Biotechnol. Biotechnol. Equip., 2008, 22(1), 581-587.
[http://dx.doi.org/10.1080/13102818.2008.10817517]
[75]
Junqueira-Gonçalves, M.P.; Yáñez, L.; Morales, C.; Navarro, M.A.; Contreras, R.; Zúñiga, G.E. Isolation and characterization of phenolic compounds and anthocyanins from Murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity. Molecules, 2015, 20(4), 5698-5713.
[http://dx.doi.org/10.3390/molecules20045698 ] [PMID: 25838172]
[76]
Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving human health and healthy aging, and promoting quality life--A review. Plant Foods Hum. Nutr., 2010, 65(3), 299-308.
[http://dx.doi.org/10.1007/s11130-010-0177-1 ] [PMID: 20645129]
[77]
Sun, X.H.; Zhou, T.T.; Wei, C.H.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C.H. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 2018, 94, 155-161.
[http://dx.doi.org/10.1016/j.foodcont.2018.07.012]
[78]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013. 2013963248
[http://dx.doi.org/10.1155/2013/963248 ] [PMID: 23586066]
[79]
Kumar, K.A.; Renuka, N.; Pavithra, G.; Kumar, G.V. Review article comprehensive review on coumarins : Molecules of potential chemical and pharmacological interest. J. Chem. Pharm. Res., 2015, 7, 67-81.
[80]
Asif, M. Pharmacological activities and phytochemistry of various plant containing coumarin derivatives. Curr. Sci. Persp, 2015, 1, 77-90.
[81]
Shukla, Y.N.; Srivastava, A.; Kumar, S.; Kumar, S. Phytotoxic and antimicrobial constituents of Argyreia speciosa and Oenothera biennis. J. Ethnopharmacol., 1999, 67(2), 241-245.
[http://dx.doi.org/10.1016/S0378-8741(99)00017-3 ] [PMID: 10619391]
[82]
Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Zhou, J. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol., 2008, 78(2), 241-247.
[http://dx.doi.org/10.1007/s00253-007-1305-1 ] [PMID: 18092158]
[83]
Widelski, J.; Popova, M.; Graikou, K.; Glowniak, K.; Chinou, I. Coumarins from Angelica lucida L.-Antibacterial activities. Molecules, 2009, 14(8), 2729-2734.
[http://dx.doi.org/10.3390/molecules14082729 ] [PMID: 19701119]
[84]
Ouahouo, B.M.W.; Azebaze, A.G.B.; Meyer, M.; Bodo, B.; Fomum, Z.T.; Nkengfack, A.E. Cytotoxic and antimicrobial coumarins from Mammea africana. Ann. Trop. Med. Parasitol., 2004, 98(7), 733-739.
[http://dx.doi.org/10.1179/000349804X3126 ] [PMID: 15509427]
[85]
Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 2009, 14(3), 939-952.
[http://dx.doi.org/10.3390/molecules14030939 ] [PMID: 19255552]
[86]
Dikpınar, T.; Süzgeç-Selçuk, S.; Çelik, B.Ö.; Uruşak, E.A. Antimicrobial activity of rhizomes of Ferulago trachycarpa Boiss. and bioguided isolation of active coumarin constituents. Ind. Crops Prod., 2018, 123, 762-767.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.072]
[87]
de Souza, S.M.; Delle Monache, F.; Smânia, A., Jr Antibacterial activity of coumarins. Z. Natforsch. C J. Biosci., 2005, 60(9-10), 693-700.
[http://dx.doi.org/10.1515/znc-2005-9-1006 ] [PMID: 16320610]
[88]
Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents, 2009, 33(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.022 ] [PMID: 19155158]
[89]
Ojala, T.; Remes, S.; Haansuu, P.; Vuorela, H.; Hiltunen, R.; Haahtela, K.; Vuorela, P. Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol., 2000, 73(1-2), 299-305.
[http://dx.doi.org/10.1016/S0378-8741(00)00279-8 ] [PMID: 11025169]
[90]
Boghrati, Z.; Iranshahi, M. Ferula species: A rich source of antimicrobial compounds. J. Herb. Med., 2019. 16100244
[http://dx.doi.org/10.1016/j.hermed.2018.10.009]
[91]
do Carmo, G.; Fernandes, T.S.; Pedroso, M.; Ferraz, A.; Neto, A.T.; Silva, U.F.; Mostardeiro, M.A.; Back, D.F.; Dalcol, I.I.; Morel, A.F. Phytochemical and antimicrobial study of Pilocarpus pennatifolius Lemaire. Fitoterapia, 2018, 131, 1-8.
[http://dx.doi.org/10.1016/j.fitote.2018.09.009 ] [PMID: 30240843]
[92]
Xie, Q.; Li, S-X.; Liao, D-F.; Wang, W.; Tekwani, B.; Huang, H-Y.; Ali, A.; Rehman, J.; Schrader, K.K.; Duke, S.O.; Cantrell, C.L.; Wedge, D.E. Bio-pesticidal and antimicrobial coumarins from Angelica dahurica (Fisch. ex hoffm). Rec. Nat. Prod., 2016, 10(3), 294-306.
[93]
Pal, S.; Chatare, V.; Pal, M. Isocomarin and its derivatives: An overview on their synthesis and applications. Curr. Org. Chem., 2011, 15, 782-800.
[http://dx.doi.org/10.2174/138527211794518970]
[94]
Saddiqa, A.; Usman, M.; Çakmak, O. Isocoumarins and 3,4-dihydroisocoumarins, amazing natural products: A review. Turk. J. Chem., 2017, 41, 153-178.
[http://dx.doi.org/10.3906/kim-1604-66]
[95]
Devienne, K.F.; Raddi, G.; Coelho, R.G.; Vilegas, W. Structure--Antimicrobial activity of some natural isocoumarins and their analogues. Phytomedicine, 2005, 12(5), 378-381.
[http://dx.doi.org/10.1016/j.phymed.2003.09.010 ] [PMID: 15957373]
[96]
Damasceno, J.P.L.; Rodrigues, R.P.; Gonçalves, R.C.R.; Kitagawa, R.R. Anti-Helicobacter pylori activity of isocoumarin paepalantine: Morphological and molecular docking analysis. Molecules, 2017, 22(5), 786.
[http://dx.doi.org/10.3390/molecules22050786 ] [PMID: 28498343]
[97]
Miao, F.; Yang, R.; Chen, D.D.; Wang, Y.; Qin, B.F.; Yang, X.J.; Zhou, L. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus. Molecules, 2012, 17(12), 14091-14098.
[http://dx.doi.org/10.3390/molecules171214091 ] [PMID: 23192186]
[98]
Chacon-Morales, P.; Amaro-Luis, J.M.; Bahsas, A. Isolation and characterization of (+)-mellein, the first isocoumarin reported in Stevia genus. Av. en Quimica, 2013, 8(3), 145-151.
[99]
Al-Habib, A.; Al-Saleh, E.; Safer, A-M.; Afzal, M. Bactericidal effect of grape seed extract on methicillin-resistant Staphylococcus aureus (MRSA). J. Toxicol. Sci., 2010, 35(3), 357-364.
[http://dx.doi.org/10.2131/jts.35.357 ] [PMID: 20519844]
[100]
Maguna, F.P.; Okulik, N.B.; Castro, E.A. Quantitative structure-activity relationship of antimicrobial compounds., 2012.
[101]
Bylka, W.; Matlawska, I.; Pilewski, N.A. Natural flavonoids as antimicrobial agents. JANA, 2004, 7(2), 24-31.
[102]
Liu, A.L.; Wang, H-D.; Lee, S.M.Y.; Wang, Y-T.; Du, G-H. Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem., 2008, 16(15), 7141-7147.
[http://dx.doi.org/10.1016/j.bmc.2008.06.049 ] [PMID: 18640042]
[103]
Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents, 2011, 38(2), 99-107.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.02.014 ] [PMID: 21514796]
[104]
Cisowska, A.; Wojnicz, D.; Hendrich, A.B. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun., 2011, 6(1), 149-156.
[http://dx.doi.org/10.1177/1934578X1100600136 ] [PMID: 21366068]
[105]
Kemegne, G.A.; Mkounga, P.; Essia Ngang, J.J.; Sado Kamdem, S.L.; Nkengfack, A.E. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii. BMC Microbiol., 2017, 17(1), 41.
[http://dx.doi.org/10.1186/s12866-017-0954-1 ] [PMID: 28228111]
[106]
Cunha, W.R.; Silva, M.L.A.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K. 10 Lignans: Chemical and biological properties; Phytochemicals-A Global Perspective of Their Role in Nutrition; Healthtech Publishing: Needham, MA, 2012, pp. 213-234.
[107]
Akiyama, K.; Yamauchi, S.; Nakato, T.; Maruyama, M.; Sugahara, T.; Kishida, T. Antifungal activity of tetra-substituted tetrahydrofuran lignan, (-)-virgatusin, and its structure-activity relationship. Biosci. Biotechnol. Biochem., 2007, 71(4), 1028-1035.
[http://dx.doi.org/10.1271/bbb.60696 ] [PMID: 17420596]
[108]
Dharmaratne, H.R.W.; Sakagami, Y.; Piyasena, K.G.N.P.; Thevanesam, V. Antibacterial activity of xanthones from Garcinia mangostana (L.) and their structure-activity relationship studies. Nat. Prod. Res., 2013, 27(10), 938-941.
[http://dx.doi.org/10.1080/14786419.2012.678348 ] [PMID: 22494050]
[109]
Song, P-P.; Zhao, J.; Liu, Z-L.; Duan, Y-B.; Hou, Y-P.; Zhao, C-Q.; Wu, M.; Wei, M.; Wang, N-H.; Lv, Y.; Han, Z-J. Evaluation of antifungal activities and structure-activity relationships of coumarin derivatives. Pest Manag. Sci., 2017, 73(1), 94-101.
[http://dx.doi.org/10.1002/ps.4422 ] [PMID: 27570117]
[110]
Kayser, O.; Kolodziej, H. Antibacterial activity of simple coumarins: structural requirements for biological activity. Z. Natforsch. C J. Biosci., 1999, 54(3-4), 169-174.
[http://dx.doi.org/10.1515/znc-1999-3-405 ] [PMID: 10349736]
[111]
Maruyama, M.; Yamauchi, S.; Akiyama, K.; Sugahara, T.; Kishida, T.; Koba, Y. Antibacterial activity of a virgatusin-related compound. Biosci. Biotechnol. Biochem., 2007, 71(3), 677-680.
[http://dx.doi.org/10.1271/bbb.60429 ] [PMID: 17341839]
[112]
Miladiyah, I.; Rachmawaty, F.J. Potency of xanthone derivatives of antibacterial agent against methicillin-resistant Staphylococcus aureus (MRSA). JKKI, 2017, 8(2), 124-135.
[http://dx.doi.org/10.20885/JKKI.Vol8.Iss2.art8]
[113]
Jia, C.; Zhang, J.; Yu, L.; Wang, C.; Yang, Y.; Rong, X.; Xu, K.; Chu, M. Antifungal activity of coumarin against Candida albicans is related to apoptosis. Front. Cell. Infect. Microbiol., 2019, 8, 445.
[http://dx.doi.org/10.3389/fcimb.2018.00445 ] [PMID: 30662877]
[114]
Yang, L.; Ding, W.; Xu, Y.; Wu, D.; Li, S.; Chen, J.; Guo, B. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules, 2016, 21(4), 468.
[http://dx.doi.org/10.3390/molecules21040468 ] [PMID: 27070570]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 5
Year: 2020
Published on: 27 December, 2019
Page: [514 - 534]
Pages: 21
DOI: 10.2174/2210315510666191227150222
Price: $25

Article Metrics

PDF: 22
HTML: 2
PRC: 1