Computational Models for Self-Interacting Proteins Prediction

Author(s): Jia Qu, Yan Zhao, Li Zhang, Shu-Bin Cai, Zhong Ming, Chun-Chun Wang*.

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Self-Interacting Proteins (SIPs), whose two or more copies can interact with each other, have significant roles in cellular functions and evolution of Protein Interaction Networks (PINs). Knowing whether a protein can act on itself is important to understand its functions. Previous studies on SIPs have focused on their structures and functions, while their whole properties are less emphasized. Not surprisingly, identifying SIPs is one of the most important works in biomedical research, which will help to understanding the function and mechanism of proteins. It is worth noting that high throughput methods can be used for SIPs prediction, but can be costly, time consuming and challenging. Therefore, it is urgent to design computational models for the identification of SIPs. In this review, the concept and function of SIPs were introduced in detail. We further introduced SIPs data and some excellent computational models that have been designed for SIPs prediction. Specially, the most existing approaches were developed based on machine learning through carrying out different extract feature methods. Finally, we discussed several difficult problems in developing computational models for SIPs prediction.

Keywords: Self-interacting proteins, computational models, protein interaction, machine learning, biomedical research, cellular functions.

[1]
Chen, Z.H.; Li, L.P.; He, Z.; Zhou, J.R.; Li, Y.; Wong, L. An improved deep forest model for predicting self-interacting proteins from protein sequence using wavelet transformation. Front. Genet., 2019, 10, 90.
[http://dx.doi.org/10.3389/fgene.2019.00090] [PMID: 30881376]
[2]
Chou, K.C.; Cai, Y.D. Predicting protein-protein interactions from sequences in a hybridization space. J. Proteome Res., 2006, 5(2), 316-322.
[http://dx.doi.org/10.1021/pr050331g] [PMID: 16457597]
[3]
Marianayagam, N.J.; Sunde, M.; Matthews, J.M. The power of two: protein dimerization in biology. Trends Biochem. Sci., 2004, 29(11), 618-625.
[http://dx.doi.org/10.1016/j.tibs.2004.09.006] [PMID: 15501681]
[4]
An, J.Y.; You, Z.H.; Chen, X.; Huang, D.S.; Li, Z.W.; Liu, G.; Wang, Y. Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget, 2016, 7(50), 82440-82449.
[http://dx.doi.org/10.18632/oncotarget.12517] [PMID: 27732957]
[5]
An, J.Y.; Zhang, L.; Zhou, Y.; Zhao, Y.J.; Wang, D.F. Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information. J. Cheminform., 2017, 9(1), 47.
[http://dx.doi.org/10.1186/s13321-017-0233-z] [PMID: 29086182]
[6]
Baisamy, L.; Jurisch, N.; Diviani, D. Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J. Biol. Chem., 2005, 280(15), 15405-15412.
[http://dx.doi.org/10.1074/jbc.M414440200] [PMID: 15691829]
[7]
Hattori, T.; Ohoka, N.; Inoue, Y.; Hayashi, H.; Onozaki, K. C/EBP family transcription factors are degraded by the proteasome but stabilized by forming dimer. Oncogene, 2003, 22(9), 1273-1280.
[http://dx.doi.org/10.1038/sj.onc.1206204] [PMID: 12618752]
[8]
Miller, S.; Lesk, A.M.; Janin, J.; Chothia, C. The accessible surface area and stability of oligomeric proteins. Nature, 1987, 328(6133), 834-836.
[http://dx.doi.org/10.1038/328834a0] [PMID: 3627230]
[9]
Li, L.; Tibiche, C.; Fu, C.; Kaneko, T.; Moran, M.F.; Schiller, M.R.; Li, S.S.; Wang, E. The human phosphotyrosine signaling network: evolution and hotspots of hijacking in cancer. Genome Res., 2012, 22(7), 1222-1230.
[http://dx.doi.org/10.1101/gr.128819.111] [PMID: 22194470]
[10]
Zaman, N.; Li, L.; Jaramillo, M.L.; Sun, Z.; Tibiche, C.; Banville, M.; Collins, C.; Trifiro, M.; Paliouras, M.; Nantel, A.; O’Connor-McCourt, M.; Wang, E. Signaling network assessment of mutations and copy number variations predict breast cancer subtype-specific drug targets. Cell Rep., 2013, 5(1), 216-223.
[http://dx.doi.org/10.1016/j.celrep.2013.08.028] [PMID: 24075989]
[11]
Chen, X.; Sun, Y.Z.; Liu, H.; Zhang, L.; Li, J.Q.; Meng, J. RNA methylation and diseases: experimental results, databases, Web servers and computational models. Brief. Bioinform., 2019, 20(3), 896-917.
[http://dx.doi.org/10.1093/bib/bbx142] [PMID: 29165544]
[12]
Ispolatov, I.; Yuryev, A.; Mazo, I.; Maslov, S. Binding properties and evolution of homodimers in protein-protein interaction networks. Nucleic Acids Res., 2005, 33(11), 3629-3635.
[http://dx.doi.org/10.1093/nar/gki678] [PMID: 15983135]
[13]
You, Z.H.; Lei, Y.K.; Gui, J.; Huang, D.S.; Zhou, X. Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics, 2010, 26(21), 2744-2751.
[http://dx.doi.org/10.1093/bioinformatics/btq510] [PMID: 20817744]
[14]
UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[PMID: 25348405]
[15]
Stark, C.; Breitkreutz, B.J.; Chatr-Aryamontri, A.; Boucher, L.; Oughtred, R.; Livstone, M.S.; Nixon, J.; Van Auken, K.; Wang, X.; Shi, X.; Reguly, T.; Rust, J.M.; Winter, A.; Dolinski, K.; Tyers, M. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res., 2011, 39(Database issue), D698-D704.
[http://dx.doi.org/10.1093/nar/gkq1116]
[16]
Xenarios, I.; Rice, D.W.; Salwinski, L.; Baron, M.K.; Marcotte, E.M.; Eisenberg, D. DIP: The database of interacting proteins. Nucleic Acids Res., 2000, 28(1), 289-291.
[http://dx.doi.org/10.1093/nar/28.1.289] [PMID: 10592249]
[17]
Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.; del-Toro, N.; Duesbury, M.; Dumousseau, M.; Galeota, E.; Hinz, U.; Iannuccelli, M.; Jagannathan, S.; Jimenez, R.; Khadake, J.; Lagreid, A.; Licata, L.; Lovering, R.C.; Meldal, B.; Melidoni, A.N.; Milagros, M.; Peluso, D.; Perfetto, L.; Porras, P.; Raghunath, A.; Ricard-Blum, S.; Roechert, B.; Stutz, A.; Tognolli, M.; van Roey, K.; Cesareni, G.; Hermjakob, H. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res., 2014, 42(Database issue), D358-D363.
[http://dx.doi.org/10.1093/nar/gkt1115] [PMID: 24234451]
[18]
Launay, G.; Salza, R.; Multedo, D.; Thierry-Mieg, N.; Ricard-Blum, S.; Matrix, D.B. MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities. Nucleic Acids Res., 2015, 43(Database issue), D321-D327.
[http://dx.doi.org/10.1093/nar/gku1091] [PMID: 25378329]
[19]
Breuer, K.; Foroushani, A.K.; Laird, M.R.; Chen, C.; Sribnaia, A.; Lo, R.; Winsor, G.L.; Hancock, R.E.W.; Brinkman, F.S.L.; Lynn, D.J.; Innate, D.B. InnateDB: Systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res., 2013, 41(Database issue), D1228-D1233.
[http://dx.doi.org/10.1093/nar/gks1147] [PMID: 23180781]
[20]
Zhai, J.X.; Cao, T.J.; An, J.Y.; Bian, Y.T. Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC. J. Theor. Biol., 2017, 432, 80-86.
[http://dx.doi.org/10.1016/j.jtbi.2017.08.009] [PMID: 28802824]
[21]
Wang, Y.B.; You, Z.H.; Li, L.P.; Huang, D.S.; Zhou, F.F.; Yang, S. Improving prediction of self-interacting proteins using stacked sparse auto-encoder with PSSM profiles. Int. J. Biol. Sci., 2018, 14(8), 983-991.
[http://dx.doi.org/10.7150/ijbs.23817] [PMID: 29989064]
[22]
Wang, Y.B.; You, Z.H.; Li, X.; Jiang, T.H.; Cheng, L.; Chen, Z.H. Prediction of protein self-interactions using stacked long short-term memory from protein sequences information. BMC Syst. Biol., 2018, 12(Suppl. 8), 129.
[http://dx.doi.org/10.1186/s12918-018-0647-x] [PMID: 30577794]
[23]
Chen, Z.H.; You, Z.H.; Li, L.P.; Wang, Y.B.; Wong, L.; Yi, H.C. Prediction of self-interacting proteins from protein sequence information based on random projection model and fast fourier transform. Int. J. Mol. Sci., 2019, 20(4), E930
[http://dx.doi.org/10.3390/ijms20040930] [PMID: 30795499]
[24]
Liu, Z.; Guo, F.; Zhang, J.; Wang, J.; Lu, L.; Li, D.; He, F. Proteome-wide prediction of self-interacting proteins based on multiple properties. Mol. Cell. Proteomics, 2013, 12(6), 1689-1700.
[http://dx.doi.org/10.1074/mcp.M112.021790] [PMID: 23422585]
[25]
Li, J.Q.; You, Z.H.; Li, X.; Ming, Z.; Chen, X. PSPEL: In silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2017, 14(5), 1165-1172.
[http://dx.doi.org/10.1109/TCBB.2017.2649529] [PMID: 28092572]
[26]
An, J.Y.; You, Z.H.; Chen, X.; Huang, D.S.; Yan, G.; Wang, D.F. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. Mol. Biosyst., 2016, 12(12), 3702-3710.
[http://dx.doi.org/10.1039/C6MB00599C] [PMID: 27759121]
[27]
Liu, X.; Yang, S.; Li, C.; Zhang, Z.; Song, J. SPAR: A random forest-based predictor for self-interacting proteins with fine-grained domain information. Amino Acids, 2016, 48(7), 1655-1665.
[http://dx.doi.org/10.1007/s00726-016-2226-z] [PMID: 27074717]
[28]
Hu, L.; Yuan, X.; Hu, P.; Chan, K.C.C. Efficiently predicting large-scale protein-protein interactions using MapReduce. Comput. Biol. Chem., 2017, 69, 202-206.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.009] [PMID: 28396055]
[29]
Lun H., ; Chan, K.C.C. Discovering variable-length patterns in protein sequences for protein-protein interaction prediction. IEEE Trans. Nanobioscience, 2015, 14(4), 409-416.
[http://dx.doi.org/10.1109/TNB.2015.2429672] [PMID: 26011889]
[30]
Chen, X.; Yin, J.; Qu, J.; Huang, L. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction. PLOS Comput. Biol., 2018, 14(8), e1006418
[http://dx.doi.org/10.1371/journal.pcbi.1006418] [PMID: 30142158]
[31]
Chen, X.; Xie, D.; Zhao, Q.; You, Z.H. MicroRNAs and complex diseases: from experimental results to computational models. Brief. Bioinform., 2019, 20(2), 515-539.
[http://dx.doi.org/10.1093/bib/bbx130] [PMID: 29045685]
[32]
Chen, X.; Xie, D.; Wang, L.; Zhao, Q.; You, Z.H.; Liu, H. BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction. Bioinformatics, 2018, 34(18), 3178-3186.
[http://dx.doi.org/10.1093/bioinformatics/bty333] [PMID: 29701758]
[33]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform., 2017, 18(4), 558-576.
[PMID: 27345524]
[34]
Chen, X.; Yan, C.C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug-target interaction prediction: databases, web servers and computational models. Brief. Bioinform., 2016, 17(4), 696-712.
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 5
Year: 2020
Page: [392 - 399]
Pages: 8
DOI: 10.2174/0929866527666191227141713
Price: $65

Article Metrics

PDF: 16