Novel [6]-gingerol Triazole Derivatives and their Antiproliferative Potential against Tumor Cells

Author(s): William Cezar de Lima Silva, Raphael Conti, Larissa Costa de Almeida, Pedro Alves Bezerra Morais, Keyller Bastos Borges, Valdemar Lacerda Júnior, Letícia Veras Costa-Lotufo, Warley de Souza Borges*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Effective cancer treatment is a major public health challenge. The limitations of current therapies and their adverse effects reduce the efficacy of treatment, leading to significant mortality rates worldwide. Moreover, natural product chemistry occupies a prominent role in the search for new treatment alternatives, by contributing a spectrum of chemical structures that may potentially yield new bioactive compounds. The compound [6]-gingerol (1) is the main active substance in ginger (Zingiber officinale) and several studies have shown it to produce beneficial effects, including antitumor activity.

Objective: This work aims to obtain new gingerol derivatives with cytotoxic activity.

Methods: [6]-gingerol was isolated and its derivatives were produced using click chemistry, obtaining eight new compounds. All chemical structures were determined by means of IR, NMR and HRMS data, and cytotoxicity was evaluated in the HCT 116 (colon carcinoma) and MCF-7 (breast carcinoma) cell lines at concentrations of 5 µmol L-1 and 50 µmol L-1.

Results: At 50 µmol L-1, more than 70% inhibition of cell growth was achieved with compounds 2e, 2g against HCT 116, and 2b, 2d, 2e, 2f and 2g against MCF-7.

Conclusion: The obtained compounds showed only moderate cytotoxic activity. However, the products with substituents occupying the meta position in relation to the triazole ring showed increased cytotoxic properties. The brominated compound (2g) showed the strongest activity, inhibiting cell proliferation by 87%.

Keywords: [6]-gingerol, Cytotoxic activity, Zingiber officinale, Semisynthesis, Triazole derivatives, Tumor cells.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, L.R.; Torre, A.L.; Jemal, A. Global cancer statistics 2018: globocan estimates of worldwide incidence and mortality for 36 cancer cases in 185 countries. CA Cancer J. Clin., 2018, 68, 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Cancer: Symptoms, Causes, Types and Treatments http://www.saude.gov.br/saude-de-a-z/cancer2019.
[3]
[4]
Wilson, L.F.; Antonsson, A.; Green, A.C.; Jordan, S.J.; Kendall, B.J.; Nagle, C.M.; Neale, R.E.; Olsen, C.M.; Webb, P.M.; Whiteman, D.C. How many cancer cases and deaths are potentially preventable? Estimates for Australia in 2013. Int. J. Cancer, 2018, 142(4), 691-701.
[http://dx.doi.org/10.1002/ijc.31088] [PMID: 28983918]
[5]
Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; Flanders, W.D.; Brawley, O.W.; Gapstur, S.M.; Jemal, A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin., 2018, 68(1), 31-54.
[http://dx.doi.org/10.3322/caac.21440] [PMID: 29160902]
[6]
Brown, K.F.; Rumgay, H.; Dunlop, C.; Ryan, M.; Quartly, F.; Cox, A.; Deas, A.; Elliss-Brookes, L.; Gavin, A.; Hounsome, L.; Huws, D.; Ormiston-Smith, N.; Shelton, J.; White, C.; Parkin, D.M. The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. Br. J. Cancer, 2018, 118(8), 1130-1141.
[http://dx.doi.org/10.1038/s41416-018-0029-6] [PMID: 29567982]
[7]
Carrassa, L.; Damia, G. Unleashing Chk1 in cancer therapy. Cell Cycle, 2011, 10(13), 2121-2128.
[http://dx.doi.org/10.4161/cc.10.13.16398] [PMID: 21610326]
[8]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[9]
Joseph, B.; Priya, R.M. Bioactive compounds from endophytes and their potential in pharmaceutical effect: a review. Amer. J. Biochem. Mol. Biol., 2011, 1, 291-309.
[http://dx.doi.org/10.3923/ajbmb.2011.291.309]
[10]
Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2011, 28(2), 196-268.
[http://dx.doi.org/10.1039/C005001F] [PMID: 21152619]
[11]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578-1607.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[12]
Grzanna, R.; Lindmark, L.; Frondoza, C.G. Ginger--an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food, 2005, 8(2), 125-132.
[http://dx.doi.org/10.1089/jmf.2005.8.125] [PMID: 16117603]
[13]
Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 2015, 117, 554-568.
[http://dx.doi.org/10.1016/j.phytochem.2015.07.012] [PMID: 26228533]
[14]
Shukla, Y.; Singh, M. Cancer preventive properties of ginger: a brief review. Food Chem. Toxicol., 2007, 45(5), 683-690.
[http://dx.doi.org/10.1016/j.fct.2006.11.002] [PMID: 17175086]
[15]
Langner, E.; Greifenberg, S.; Gruenwald, J. Ginger: history and use. Adv. Ther., 1998, 15(1), 25-44.
[PMID: 10178636]
[16]
Jaapar, S.Z.S.; Morad, N.A.; Iwai, Y. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method. J. Phys.: Conf., 2013, 423 012066
[17]
Murthy, P.S.; Gautam, R.; Naik, J.P. Ginger oleoresin chemical composition, bioactivity and application as bio-preservatives. J. Food Proc. Pres., 2015, 39, 1905-1912.
[http://dx.doi.org/10.1111/jfpp.12428]
[18]
Zhan, K.; Xu, K.; Yin, H. Preparative separation and purification of gingerols from ginger (Zingiber officinale Roscoe) by high-speed counter-current chromatography. Food Chem., 2011, 126(4), 1959-1963.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.052] [PMID: 25213983]
[19]
Surh, Y.J. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol., 2002, 40(8), 1091-1097.
[http://dx.doi.org/10.1016/S0278-6915(02)00037-6] [PMID: 12067569]
[20]
Kim, E.C.; Min, J.K.; Kim, T.Y.; Lee, S.J.; Yang, H.O.; Han, S.; Kim, Y.M.; Kwon, Y.G. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem. Biophys. Res. Commun., 2005, 335(2), 300-308.
[http://dx.doi.org/10.1016/j.bbrc.2005.07.076] [PMID: 16081047]
[21]
Dugasani, S.; Pichika, M.R.; Nadarajah, V.D.; Balijepalli, M.K.; Tandra, S.; Korlakunta, J.N. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J. Ethnopharmacol., 2010, 127(2), 515-520.
[http://dx.doi.org/10.1016/j.jep.2009.10.004] [PMID: 19833188]
[22]
Kaur, I.P.; Deol, P.K.; Kondepudi, K.K.; Bishnoi, M. Anticancer potential of ginger: mechanistic and pharmaceutical aspects. Curr. Pharm. Des., 2016, 22(27), 4160-4172.
[http://dx.doi.org/10.2174/1381612822666160608115350] [PMID: 27290916]
[23]
Poltronieri, J.; Becceneri, A.B.; Fuzer, A.M.; Filho, J.C.; Martin, A.C.B.M.; Vieira, P.C.; Pouliot, N.; Cominetti, M.R. [6]-gingerol as a cancer chemopreventive agent: a review of its activity on different steps of the metastatic process. Mini Rev. Med. Chem., 2014, 14(4), 313-321.
[http://dx.doi.org/10.2174/1389557514666140219095510] [PMID: 24552266]
[24]
El-Naggar, M.H.; Mira, A.; Abdel Bar, F.M.; Shimizu, K.; Amer, M.M.; Badria, F.A. Synthesis, docking, cytotoxicity, and LTA4H inhibitory activity of new gingerol derivatives as potential colorectal cancer therapy. Bioorg. Med. Chem., 2017, 25(3), 1277-1285.
[http://dx.doi.org/10.1016/j.bmc.2016.12.048] [PMID: 28065501]
[25]
Walczak, K.; Marciniak, S.; Rajtar, G. Cancer chemoprevention - selected molecular mechanisms. Postepy Hig. Med. Dosw., 2017, 71(0), 149-161.
[PMID: 28258675]
[26]
Wei, Q.Y.; Ma, J.P.; Cai, Y.J.; Yang, L.; Liu, Z.L. Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J. Ethnopharmacol., 2005, 102(2), 177-184.
[http://dx.doi.org/10.1016/j.jep.2005.05.043] [PMID: 16024193]
[27]
Park, Y.J.; Wen, J.; Bang, S.; Park, S.W.; Song, S.Y. [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med. J., 2006, 47(5), 688-697.
[http://dx.doi.org/10.3349/ymj.2006.47.5.688] [PMID: 17066513]
[28]
Lee, H.S.; Seo, E.Y.; Kang, N.E.; Kim, W.K. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J. Nutr. Biochem., 2008, 19(5), 313-319.
[http://dx.doi.org/10.1016/j.jnutbio.2007.05.008] [PMID: 17683926]
[29]
Lee, S.H.; Cekanova, M.; Baek, S.J. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol. Carcinog., 2008, 47(3), 197-208.
[http://dx.doi.org/10.1002/mc.20374] [PMID: 18058799]
[30]
Yang, G.; Zhong, L.; Jiang, L.; Geng, C.; Cao, J.; Sun, X.; Ma, Y. Genotoxic effect of 6-gingerol on human hepatoma G2 cells. Chem. Biol. Interact., 2010, 185(1), 12-17.
[http://dx.doi.org/10.1016/j.cbi.2010.02.017] [PMID: 20167213]
[31]
Chakraborty, D.; Bishayee, K.; Ghosh, S.; Biswas, R.; Mandal, S.K.; Khuda-Bukhsh, A.R. [6]-Gingerol induces caspase 3 dependent apoptosis and autophagy in cancer cells: drug-DNA interaction and expression of certain signal genes in HeLa cells. Eur. J. Pharmacol., 2012, 694(1-3), 20-29.
[http://dx.doi.org/10.1016/j.ejphar.2012.08.001] [PMID: 22939973]
[32]
Lee, D.H.; Kim, D.W.; Jung, C.H.; Lee, Y.J.; Park, D. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicol. Appl. Pharmacol., 2014, 279(3), 253-265.
[http://dx.doi.org/10.1016/j.taap.2014.06.030] [PMID: 25034532]
[33]
Almada, J. Search for cathepsin K inhibitors in medicinal plants used to treat osteoarticular diseases Doctoral Thesis, Federal University of São Carlos: São Carlos., 2001.
[34]
Jolad, S.D.; Lantz, R.C.; Chen, G.J.; Bates, R.B.; Timmermann, B.N. Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry, 2005, 66(13), 1614-1635.
[http://dx.doi.org/10.1016/j.phytochem.2005.05.007] [PMID: 15996695]
[35]
Indy, T.C.; Dos, S.E.A.; Roque, N.; Costa-Lotufo, L.V.; Pena, F.M.J. Caffeoylquinic acids: separation method, antiradical properties and cytotoxicity. Chem. Biodivers., 2019, 16(7)e1900093
[http://dx.doi.org/10.1002/cbdv.201900093] [PMID: 31095892]
[36]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[37]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[38]
Buckley, B.R.; Dann, S.E.; Harris, D.P.; Heaney, H.; Stubbs, E.C. Alkynylcopper(I) polymers and their use in a mechanistic study of alkyne-azide click reactions. Chem. Commun. (Camb.), 2010, 46(13), 2274-2276.
[http://dx.doi.org/10.1039/b924649e] [PMID: 20234930]
[39]
Punna, S.; Kuzelka, J.; Wang, Q.; Finn, M.G. Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. Angew. Chem. Int. Ed. Engl., 2005, 44(15), 2215-2220.
[http://dx.doi.org/10.1002/anie.200461656] [PMID: 15693048]
[40]
Ahlquist, M.; Fokin, V.V. Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics, 2007, 26, 4389-4391.
[http://dx.doi.org/10.1021/om700669v]
[41]
Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
[42]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487 ]
[43]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[44]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2020
Published on: 19 February, 2020
Page: [161 - 169]
Pages: 9
DOI: 10.2174/1568026620666191227125507
Price: $65

Article Metrics

PDF: 32
HTML: 3