Synthesis of New Piperazine Substituted Chalcone Sulphonamides as Antibacterial Agents

Author(s): Yan-Ling Tang, Yong-Kun Li, Min-Xin Li, Hui Gao*, Xiao-Bi Yang, Ze-Wei Mao*

Journal Name: Current Organic Synthesis

Volume 17 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Infection is a global threat to human health, and there is an urgent need to develop new effective antibacterial drugs to treat bacterial infections.

Objective: To study the antibacterial activity of piperazine substituted chalcone sulphonamides.

Materials and Methods: A series of novel piperazine substituted chalcone sulphonamides have been prepared, and in vitro antibacterial activity against Staphylococcus aureus, Bacillus subtilis and Escherichia coli strains were evaluated.

Results: The results showed that derivatives 6a, 6c and 6h displayed good antibacterial activity against Bacillus subtilis with MIC values of 4.0-8.0 mg/mL.

Conclusion: Piperazine substituted chalcone sulphonamides may be used as potential antibacterial agents.

Keywords: Chalcone, sulphonamide, antibacterial activity, MIC, piperazine, Staphylococcus aureus.

[1]
Blaser, M.J. Antibiotic use and its consequences for the normal microbiome. Science, 2016, 352(6285), 544-545. Available at
[http://dx.doi.org/10.1126/science.aad9358] [PMID: 27126037]
[2]
Das, P.; Horton, R. Antibiotics: Achieving the balance between access and excess. Lancet, 2016, 387(10014), 102-104. Available at
[http://dx.doi.org/10.1016/S0140-6736(15)00729-1] [PMID: 26603923]
[3]
Tahir, S.; Mahmood, T.; Dastgir, F.; Haq, I.U.; Waseem, A.; Rashid, U. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria. Eur. J. Med. Chem., 2019, 166, 224-231. Available at
[http://dx.doi.org/10.1016/j.ejmech.2019.01.062] [PMID: 30711832]
[4]
Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem., 2019, 174, 142-158. Available at
[http://dx.doi.org/10.1016/j.ejmech.2019.04.032] [PMID: 31035237]
[5]
Ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365. Available at
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[6]
Wei, H.; Ruan, J.; Zhang, X. Coumarin-chalcone hybrids: Promising agents with diverse pharmacological properties. RSC Advances, 2016, 6, 10846-10860. Available at
[http://dx.doi.org/10.1039/C5RA26294A]
[7]
Sherikar, A.S.; Dhavale, R.P.; Bhatia, M.S. Synthesis, docking studies and in vitro evaluation of novel chalcones as potent inhibitors of phosphodiesterase 5 from human platelets and 5A from bovine recombinant. New J. Chem., 2018, 42, 14365-14385. Available at
[http://dx.doi.org/10.1039/C8NJ02077A]
[8]
Wani, Z.A.; Luqman, S. Chalcone and their derivatives as anticancer agents. Topics in Anti-Cancer Research, 2017, 6, 93-113. Available at
[http://dx.doi.org/10.2174/9781681084558117060007]
[9]
Gao, D.; Liu, F.; Li, Z.; Guan, Y. Isobavachalcone attenuates Sephadex-induced lung injury via activation of A20 and NRF2/HO-1 in rats. Eur. J. Pharmacol., 2019, 848, 49-54. Available at
[http://dx.doi.org/10.1016/j.ejphar.2019.01.034] [PMID: 30690005]
[10]
Zhang, L.; Chen, W.; Li, X. A novel anticancer effect of butein: inhibition of invasion through the ERK1/2 and NF-κ B signaling pathways in bladder cancer cells. FEBS Lett., 2008, 582(13), 1821-1828. Available at
[http://dx.doi.org/10.1016/j.febslet.2008.04.046] [PMID: 18472007]
[11]
Tajuddeen, N.; Isah, M.B.; Suleiman, M.A.; van Heerden, F.R.; Ibrahim, M.A. The chemotherapeutic potential of chalcones against leishmaniases: a review. Int. J. Antimicrob. Agents, 2018, 51(3), 311-318. Available at
[http://dx.doi.org/10.1016/j.ijantimicag.2017.06.010] [PMID: 28668673]
[12]
Apaydın, S.; Török, M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett., 2019, 29(16), 2042-2050. Available at
[http://dx.doi.org/10.1016/j.bmcl.2019.06.041] [PMID: 31272793]
[13]
Durgapal, S.D.; Soni, R.; Umar, S.; Suresh, B.; Soman, S.S. 3-Aminomethyl pyridine chalcone derivatives: Design, synthesis, DNA binding and cytotoxic studies. Chem. Biol. Drug Des., 2018, 92(1), 1279-1287. Available at
[http://dx.doi.org/10.1111/cbdd.13189] [PMID: 29575807]
[14]
Chu, W.C.; Bai, P.Y.; Yang, Z.Q.; Cui, D.Y.; Hua, Y.G.; Yang, Y.; Yang, Q.Q.; Zhang, E.; Qin, S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem., 2018, 143, 905-921. Available at
[http://dx.doi.org/10.1016/j.ejmech.2017.12.009] [PMID: 29227931]
[15]
Nielsen, S.F.; Larsen, M.; Boesen, T.; Schønning, K.; Kromann, H. Cationic chalcone antibiotics. Design, synthesis, and mechanism of action. J. Med. Chem., 2005, 48(7), 2667-2677. Available at
[http://dx.doi.org/10.1021/jm049424k] [PMID: 15801857]
[16]
Iqbal, H.; Prabhakar, V.; Sangith, A.; Chandrika, B.; Balasubramanian, R. Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med. Chem. Res., 2014, 23, 4383-4394. Available at
[http://dx.doi.org/10.1007/s00044-014-1007-z]
[17]
Ahmed, F.F.; Abd El-Hafeez, A.A.; Abbas, S.H.; Abdelhamid, D.; Abdel-Aziz, M. New 1,2,4-triazole-Chalcone hybrids induce Caspase-3 dependent apoptosis in A549 human lung adenocarcinoma cells. Eur. J. Med. Chem., 2018, 151, 705-722. Available at
[http://dx.doi.org/10.1016/j.ejmech.2018.03.073] [PMID: 29660690]
[18]
Mao, Z.W.; Zheng, X.; Lin, Y.P.; Qi, Y.; Hu, C.Y.; Wan, C.P.; Rao, G.X. Concise synthesis and biological evaluation of chalcone derivatives bearing n-heterocyclic moieties. Heterocycles, 2016, 92, 1102-1110. Available at
[http://dx.doi.org/10.3987/COM-16-13452]
[19]
Ma, Y.; Zheng, X.; Zhu, P.; Liu, B.; Gao, H.; Mao, Z.; Zhang, L.; Wan, C. Novel Resveratrol-chalcone Derivatives: Synthesis and Biological Evaluation. Mini Rev. Med. Chem., 2019, 19(5), 424-436. Available at
[http://dx.doi.org/10.2174/1389557518666180727165358] [PMID: 30058485]
[20]
Mao, Z.W.; Zheng, X.; Qi, Y.; Zhang, M.D.; Huang, Y.; Wan, C.P.; Rao, G.X. Synthesis and biological evaluation of novel hybrid compounds between chalcone and piperazine as potential antitumor agents. RSC Advances, 2016, 6, 7723-7727. Available at
[http://dx.doi.org/10.1039/C5RA20197G]
[21]
Gao, H.; Zheng, X.; Zhu, P.; Wang, S.; Wan, C.; Rao, G.; Mao, Z. Synthesis and biological evaluation of novel substituted chalcone-piperazine derivatives. Youji Huaxue, 2018, 38, 684-691. Available at
[http://dx.doi.org/10.6023/cjoc201707034]
[22]
Wikler, M.A.; Hindler, J.F.; Cookerill, F.R.; Patel, J.B.; Bush, K.; Powell, M. Methods for dilution antimicrobial sucseptibility tests for bacteria that grow aerobically Clinical and Laboratory Standards Institute; Wayne, PA, 2009, pp. M07-A08.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2020
Page: [136 - 143]
Pages: 8
DOI: 10.2174/1570179417666191227115207
Price: $65

Article Metrics

PDF: 40
HTML: 4