Radio-Susceptibility of Nasopharyngeal Carcinoma: Focus on Epstein- Barr Virus, MicroRNAs, Long Non-Coding RNAs and Circular RNAs

Author(s): Fanghong Lei, Tongda Lei, Yun Huang, Mingxiu Yang, Mingchu Liao*, Weiguo Huang*

Journal Name: Current Molecular Pharmacology

Volume 13 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.

Keywords: Nasopharyngeal carcinoma, radio-susceptibility, epstein-barr virus, long no-coding RNA, microRNA, circular RNA, regulation.

[1]
Qi, G.; Chen, J.; Shi, C.; Wang, Y.; Mi, S.; Shao, W.; Yu, X.; Ma, Y.; Ling, J.; Huang, J. Cinnamic Acid (CINN) Induces Apoptosis and Proliferation in Human Nasopharyngeal Carcinoma Cells. Cell. Physiol. Biochem., 2016, 40(3-4), 589-596.
[http://dx.doi.org/10.1159/000452572] [PMID: 27889776]
[2]
Tao, Q.; Chan, A.T. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev. Mol. Med., 2007, 9(12), 1-24.
[http://dx.doi.org/10.1017/S1462399407000312] [PMID: 17477889]
[3]
Lo, K.W.; Chung, G.T.; To, K.F. Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin. Cancer Biol., 2012, 22(2), 79-86.
[http://dx.doi.org/10.1016/j.semcancer.2011.12.011] [PMID: 22245473]
[4]
Barnett, G.C.; West, C.M.; Dunning, A.M.; Elliott, R.M.; Coles, C.E.; Pharoah, P.D.; Burnet, N.G. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer, 2009, 9(2), 134-142.
[http://dx.doi.org/10.1038/nrc2587] [PMID: 19148183]
[5]
Sun, X.; Su, S.; Chen, C.; Han, F.; Zhao, C.; Xiao, W.; Deng, X.; Huang, S.; Lin, C.; Lu, T. Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities. Radiother. Oncol., 2014, 110(3), 398-403.
[http://dx.doi.org/10.1016/j.radonc.2013.10.020] [PMID: 24231245]
[6]
Yang, L.; Hong, S.; Wang, Y.; Chen, H.; Liang, S.; Peng, P.; Chen, Y. Development and external validation of nomograms for predicting survival in nasopharyngeal carcinoma patients after definitive radiotherapy. Sci. Rep., 2015, 5, 15638.
[http://dx.doi.org/10.1038/srep15638] [PMID: 26497224]
[7]
Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual:Continuing to build a bridge from a population-based to a more "personalized"approach to cancer staging. CA Cancer J. Clin., 2017, 67(2), 93-99.
[8]
Zhang, M.X.; Li, J.; Shen, G.P.; Zou, X.; Xu, J.J.; Jiang, R.; You, R.; Hua, Y.J.; Sun, Y.; Ma, J.; Hong, M.H.; Chen, M.Y. Intensity-modulated radiotherapy prolongs the survival of patients with nasopharyngeal carcinoma compared with conventional two-dimensional radiotherapy: A 10-year experience with a large cohort and long follow-up. Eur. J. Cancer, 2015, 51(17), 2587-2595.
[http://dx.doi.org/10.1016/j.ejca.2015.08.006] [PMID: 26318726]
[9]
Wang, C.; Cheng, Y.; Liu, H.; Xu, Y.; Peng, H.; Lang, J.; Liao, J.; Liu, H.; Liu, H.; Fan, J. Pectolinarigenin Suppresses the Tumor Growth in Nasopharyngeal Carcinoma. Cell. Physiol. Biochem., 2016, 39(5), 1795-1803.
[http://dx.doi.org/10.1159/000447879] [PMID: 27744436]
[10]
Zhang, L.; Zhou, H.; Gu, D.; Tian, J.; Zhang, B.; Dong, D.; Mo, X.; Liu, J.; Luo, X.; Pei, S.; Dong, Y.; Huang, W.; Chen, Q.; Liang, C.; Lian, Z.; Zhang, S. Radiomic Nomogram: Pretreatment Evaluation of Local Recurrence in Nasopharyngeal Carcinoma based on MR Imaging. J. Cancer, 2019, 10(18), 4217-4225.
[http://dx.doi.org/10.7150/jca.33345] [PMID: 31413740]
[11]
Rottey, S.; Madani, I.; Deron, P.; Van Belle, S. Modern treatment for nasopharyngeal carcinoma: current status and prospects. Curr. Opin. Oncol., 2011, 23(3), 254-258.
[http://dx.doi.org/10.1097/CCO.0b013e328344f527] [PMID: 21330921]
[12]
Wang, C.; Su, Z.; Hou, H.; Li, D.; Pan, Z.; Tian, W.; Mo, C. Inhibition of Anaphase-Promoting Complex by Silence APC/CCdh1 to Enhance Radiosensitivity of Nasopharyngeal Carcinoma Cells. J. Cell. Biochem., 2017, 118(10), 3150-3157.
[http://dx.doi.org/10.1002/jcb.25854] [PMID: 28004426]
[13]
Huang, C.J.; Huang, M.Y.; Shih, M.P.; Cheng, K.Y.; Lee, K.W.; Lu, T.Y.; Yuan, S.S.; Fang, P.T. Post-radiation sinusitis is associated with recurrence in nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy. Radiat. Oncol., 2019, 14(1), 61.
[http://dx.doi.org/10.1186/s13014-019-1261-9] [PMID: 30971260]
[14]
Kerns, S.L.; Kundu, S.; Oh, J.H.; Singhal, S.K.; Janelsins, M.; Travis, L.B.; Deasy, J.O.; Janssens, A.C.; Ostrer, H.; Parliament, M.; Usmani, N.; Rosenstein, B.S. The prediction of radiotherapy toxicity using single nucleotide polymorphism-based models: A step toward prevention. Semin. Radiat. Oncol., 2015, 25(4), 281-291.
[http://dx.doi.org/10.1016/j.semradonc.2015.05.006] [PMID: 26384276]
[15]
Santivasi, W.L.; Xia, F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid. Redox Signal., 2014, 21(2), 251-259.
[http://dx.doi.org/10.1089/ars.2013.5668] [PMID: 24180216]
[16]
Andreassen, C.N.; Schack, L.M.; Laursen, L.V.; Alsner, J. Radiogenomics - current status, challenges and future directions. Cancer Lett., 2016, 382(1), 127-136.
[http://dx.doi.org/10.1016/j.canlet.2016.01.035] [PMID: 26828014]
[17]
Jain, R.K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell, 2014, 26(5), 605-622.
[http://dx.doi.org/10.1016/j.ccell.2014.10.006] [PMID: 25517747]
[18]
Young, L.S.; Yap, L.F.; Murray, P.G. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer, 2016, 16(12), 789-802.
[http://dx.doi.org/10.1038/nrc.2016.92] [PMID: 27687982]
[19]
Khan, G.; Hashim, M.J. Global burden of deaths from Epstein-Barr virus attributable malignancies 1990-2010. Infect. Agent. Cancer, 2014, 9(1), 38.
[http://dx.doi.org/10.1186/1750-9378-9-38] [PMID: 25473414]
[20]
Tsao, S.W.; Tsang, C.M.; To, K.F.; Lo, K.W. The role of Epstein-Barr virus in epithelial malignancies. J. Pathol., 2015, 235(2), 323-333.
[http://dx.doi.org/10.1002/path.4448] [PMID: 25251730]
[21]
Holmes, D. The cancer-virus cures. Nat. Med., 2014, 20(6), 571-574.
[http://dx.doi.org/10.1038/nm0614-571] [PMID: 24901557]
[22]
Thompson, M.P.; Kurzrock, R. Epstein-Barr virus and cancer. Clin. Cancer Res., 2004, 10(3), 803-821.
[http://dx.doi.org/10.1158/1078-0432.CCR-0670-3] [PMID: 14871955]
[23]
Tsao, S.W.; Tsang, C.M.; Lo, K.W. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1732), 372.
[http://dx.doi.org/10.1098/rstb.2016.0270] [PMID: 28893937]
[24]
Lu, Z.X.; Ma, X.Q.; Yang, L.F.; Wang, Z.L.; Zeng, L.; Li, Z.J.; Li, X.N.; Tang, M.; Yi, W.; Gong, J.P.; Sun, L.Q.; Cao, Y. DNAzymes targeted to EBV-encoded latent membrane protein-1 induce apoptosis and enhance radiosensitivity in nasopharyngeal carcinoma. Cancer Lett., 2008, 265(2), 226-238.
[http://dx.doi.org/10.1016/j.canlet.2008.02.019] [PMID: 18353539]
[25]
Yang, L.; Xu, Z.; Liu, L.; Luo, X.; Lu, J.; Sun, L.; Cao, Y. Targeting EBV-LMP1 DNAzyme enhances radiosensitivity of nasopharyngeal carcinoma cells by inhibiting telomerase activity. Cancer Biol. Ther., 2014, 15(1), 61-68.
[http://dx.doi.org/10.4161/cbt.26606] [PMID: 24145206]
[26]
Yang, L.; Liu, L.; Xu, Z.; Liao, W.; Feng, D.; Dong, X.; Xu, S.; Xiao, L.; Lu, J.; Luo, X.; Tang, M.; Bode, A.M.; Dong, Z.; Sun, L.; Cao, Y. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget, 2015, 6(8), 5804-5817.
[http://dx.doi.org/10.18632/oncotarget.3331] [PMID: 25714020]
[27]
Ma, X.; Yang, L.; Xiao, L.; Tang, M.; Liu, L.; Li, Z.; Deng, M.; Sun, L.; Cao, Y. Down-regulation of EBV-LMP1 radio-sensitizes nasal pharyngeal carcinoma cells via NF-κB regulated ATM expression. PLoS One, 2011, 6(11)e24647
[http://dx.doi.org/10.1371/journal.pone.0024647] [PMID: 22096476]
[28]
Lu, J.; Tang, M.; Li, H.; Xu, Z.; Weng, X.; Li, J.; Yu, X.; Zhao, L.; Liu, H.; Hu, Y.; Tan, Z.; Yang, L.; Zhong, M.; Zhou, J.; Fan, J.; Bode, A.M.; Yi, W.; Gao, J.; Sun, L.; Cao, Y. EBV-LMP1 suppresses the DNA damage response through DNA-PK/AMPK signaling to promote radioresistance in nasopharyngeal carcinoma. Cancer Lett., 2016, 380(1), 191-200.
[http://dx.doi.org/10.1016/j.canlet.2016.05.032] [PMID: 27255972]
[29]
Yang, C.F.; Peng, L.X.; Huang, T.J.; Yang, G.D.; Chu, Q.Q.; Liang, Y.Y.; Cao, X.; Xie, P.; Zheng, L.S.; Huang, H.B.; Cai, M.D.; Huang, J.L.; Liu, R.Y.; Zhu, Z.Y.; Qian, C.N.; Huang, B.J. Cancer stem-like cell characteristics induced by EB virus-encoded LMP1 contribute to radioresistance in nasopharyngeal carcinoma by suppressing the p53-mediated apoptosis pathway. Cancer Lett., 2014, 344(2), 260-271.
[http://dx.doi.org/10.1016/j.canlet.2013.11.006] [PMID: 24262659]
[30]
Yang, F.; Liu, Q.; Hu, C.M. Epstein-Barr virus-encoded LMP1 increases miR-155 expression, which promotes radioresistance of nasopharyngeal carcinoma via suppressing UBQLN1. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(23), 4507-4515.
[PMID: 26698246]
[31]
Zhang, Z.; Yu, X.; Zhou, Z.; Li, B.; Peng, J.; Wu, X.; Luo, X.; Yang, L. LMP1-positive extracellular vesicles promote radioresistance in nasopharyngeal carcinoma cells through P38 MAPK signaling. Cancer Med., 2019, 8(13), 6082-6094.
[http://dx.doi.org/10.1002/cam4.2506] [PMID: 31436393]
[32]
Zhang, G.; Zong, J.; Lin, S.; Verhoeven, R.J.; Tong, S.; Chen, Y.; Ji, M.; Cheng, W.; Tsao, S.W.; Lung, M.; Pan, J.; Chen, H. Circulating Epstein-Barr virus microRNAs miR-BART7 and miR-BART13 as biomarkers for nasopharyngeal carcinoma diagnosis and treatment. Int. J. Cancer, 2015, 136(5), E301-E312.
[http://dx.doi.org/10.1002/ijc.29206] [PMID: 25213622]
[33]
Gao, W.; Li, Z.H.; Chen, S.; Chan, J.Y.; Yin, M.; Zhang, M.J.; Wong, T.S. Epstein-Barr virus encoded microRNA BART7 regulates radiation sensitivity of nasopharyngeal carcinoma. Oncotarget, 2017, 8(12), 20297-20308.
[http://dx.doi.org/10.18632/oncotarget.15526] [PMID: 28423621]
[34]
Wu, Q.; Han, T.; Sheng, X.; Zhang, N.; Wang, P. Downregulation of EB virus miR-BART4 inhibits proliferation and aggressiveness while promoting radiosensitivity of nasopharyngeal carcinoma. Biomed. Pharmacother., 2018, 108, 741-751.
[http://dx.doi.org/10.1016/j.biopha.2018.08.146] [PMID: 30248542]
[35]
Zhou, X.; Zheng, J.; Tang, Y.; Lin, Y.; Wang, L.; Li, Y.; Liu, C.; Wu, D.; Cai, L. EBV encoded miRNA BART8-3p promotes radioresistance in nasopharyngeal carcinoma by regulating ATM/ATR signaling pathway. Biosci. Rep., 2019, 39(9)BSR20190415
[http://dx.doi.org/10.1042/BSR20190415] [PMID: 31471531]
[36]
McManus, M.T. MicroRNAs and cancer. Semin. Cancer Biol., 2003, 13(4), 253-258.
[http://dx.doi.org/10.1016/S1044-579X(03)00038-5] [PMID: 14563119]
[37]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[38]
Wiemer, E.A. The role of microRNAs in cancer: no small matter. Eur. J. Cancer, 2007, 43(10), 1529-1544.
[http://dx.doi.org/10.1016/j.ejca.2007.04.002] [PMID: 17531469]
[39]
Garzon, R.; Calin, G.A.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Med., 2009, 60, 167-179.
[http://dx.doi.org/10.1146/annurev.med.59.053006.104707] [PMID: 19630570]
[40]
Liu, N.; Jiang, N.; Guo, R.; Jiang, W.; He, Q.M.; Xu, Y.F.; Li, Y.Q.; Tang, L.L.; Mao, Y.P.; Sun, Y.; Ma, J. MiR-451 inhibits cell growth and invasion by targeting MIF and is associated with survival in nasopharyngeal carcinoma. Mol. Cancer, 2013, 12(1), 123.
[http://dx.doi.org/10.1186/1476-4598-12-123] [PMID: 24138931]
[41]
Zafar, F.; Seidler, S.B.; Kronenberg, A.; Schild, D.; Wiese, C. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions. Radiat. Res., 2010, 173(1), 27-39.
[http://dx.doi.org/10.1667/RR1910.1] [PMID: 20041757]
[42]
Zhang, T.; Sun, Q.; Liu, T.; Chen, J.; Du, S.; Ren, C.; Liao, G.; Yuan, Y. MiR-451 increases radiosensitivity of nasopharyngeal carcinoma cells by targeting ras-related protein 14 (RAB14). Tumour Biol., 2014, 35(12), 12593-12599.
[http://dx.doi.org/10.1007/s13277-014-2581-x] [PMID: 25201065]
[43]
Chen, W.; Hu, G.H. Biomarkers for enhancing the radiosensitivity of nasopharyngeal carcinoma. Cancer Biol. Med., 2015, 12(1), 23-32.
[PMID: 25859408]
[44]
Tian, L.; Peng, G.; Parant, J.M.; Leventaki, V.; Drakos, E.; Zhang, Q.; Parker-Thornburg, J.; Shackleford, T.J.; Dai, H.; Lin, S.Y.; Lozano, G.; Rassidakis, G.Z.; Claret, F.X. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene, 2010, 29(46), 6125-6137.
[http://dx.doi.org/10.1038/onc.2010.345] [PMID: 20802511]
[45]
Pan, Y.; Yang, H.; Claret, F.X. Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer. Cancer Biol. Ther., 2014, 15(3), 256-262.
[http://dx.doi.org/10.4161/cbt.27823] [PMID: 24495954]
[46]
Wang, S.; Pan, Y.; Zhang, R.; Xu, T.; Wu, W.; Zhang, R.; Wang, C.; Huang, H.; Calin, C.A.; Yang, H.; Claret, F.X. Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3‘UTR and 5’UTR of Jab1/CSN5. Oncogene, 2016, 35(47), 6096-6108.
[http://dx.doi.org/10.1038/onc.2016.147] [PMID: 27157611]
[47]
Wang, S.; Zhang, R.; Claret, F.X.; Yang, H. Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Mol. Cancer Ther., 2014, 13(12), 3163-3174.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0317] [PMID: 25319395]
[48]
Lal, A.; Pan, Y.; Navarro, F.; Dykxhoorn, D.M.; Moreau, L.; Meire, E.; Bentwich, Z.; Lieberman, J.; Chowdhury, D. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol., 2009, 16(5), 492-498.
[http://dx.doi.org/10.1038/nsmb.1589] [PMID: 19377482]
[49]
Guo, Y.; Zhai, J.; Zhang, J.; Ni, C.; Zhou, H. Improved Radiotherapy Sensitivity of Nasopharyngeal Carcinoma Cells by miR-29-3p Targeting COL1A1 3′-UTR. Med. Sci. Monit., 2019, 25, 3161-3169.
[http://dx.doi.org/10.12659/MSM.915624] [PMID: 31034464]
[50]
Zheng, C.P.; Han, L.; Hou, W.J.; Tang, J.; Wen, Y.H.; Fu, R.; Wang, Y.J.; Wen, W.P. MicroRNA-9 suppresses the sensitivity of CNE2 cells to ultraviolet radiation. Mol. Med. Rep., 2015, 12(2), 2367-2373.
[http://dx.doi.org/10.3892/mmr.2015.3622] [PMID: 25891118]
[51]
Monni, O.; Joensuu, H.; Franssila, K.; Klefstrom, J.; Alitalo, K.; Knuutila, S. BCL2 overexpression associated with chromosomal amplification in diffuse large B-cell lymphoma. Blood, 1997, 90(3), 1168-1174.
[http://dx.doi.org/10.1182/blood.V90.3.1168] [PMID: 9242549]
[52]
Rochaix, P.; Krajewski, S.; Reed, J.C.; Bonnet, F.; Voigt, J.J.; Brousset, P. In vivo patterns of Bcl-2 family protein expression in breast carcinomas in relation to apoptosis. J. Pathol., 1999, 187(4), 410-415.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199903)187:4<410:AID-PATH266>3.0.CO;2-F] [PMID: 10398099]
[53]
He, J.H.; Liao, X.L.; Wang, W.; Li, D.D.; Chen, W.D.; Deng, R.; Yang, D.; Han, Z.P.; Jiang, J.W.; Zhu, X.F. Apogossypolone, a small-molecule inhibitor of Bcl-2, induces radiosensitization of nasopharyngeal carcinoma cells by stimulating autophagy. Int. J. Oncol., 2014, 45(3), 1099-1108.
[http://dx.doi.org/10.3892/ijo.2014.2497] [PMID: 24919770]
[54]
Hara, T.; Omura-Minamisawa, M.; Chao, C.; Nakagami, Y.; Ito, M.; Inoue, T. Bcl-2 inhibitors potentiate the cytotoxic effects of radiation in Bcl-2 overexpressing radioresistant tumor cells. Int. J. Radiat. Oncol. Biol. Phys., 2005, 61(2), 517-528.
[http://dx.doi.org/10.1016/j.ijrobp.2004.10.008] [PMID: 15667975]
[55]
Zhang, C.; Fang, X.; Li, W.; Shi, Q.; Wu, L.; Chen, X.; Huang, Z.; Wu, P.; Wang, Z.; Liao, Z. Influence of recombinant lentiviral vector encoding miR-15a/16-1 in biological features of human nasopharyngeal carcinoma CNE-2Z cells. Cancer Biother. Radiopharm., 2014, 29(10), 422-427.
[http://dx.doi.org/10.1089/cbr.2013.1596] [PMID: 25405832]
[56]
Zhang, J.X.; Qian, D.; Wang, F.W.; Liao, D.Z.; Wei, J.H.; Tong, Z.T.; Fu, J.; Huang, X.X.; Liao, Y.J.; Deng, H.X.; Zeng, Y.X.; Xie, D.; Mai, S.J. MicroRNA-29c enhances the sensitivities of human nasopharyngeal carcinoma to cisplatin-based chemotherapy and radiotherapy. Cancer Lett., 2013, 329(1), 91-98.
[http://dx.doi.org/10.1016/j.canlet.2012.10.033] [PMID: 23142283]
[57]
Wang, Z.; Mao, J.W.; Liu, G.Y.; Wang, F.G.; Ju, Z.S.; Zhou, D.; Wang, R.Y. MicroRNA-372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK-dependent p53 signaling pathway. Cancer Med., 2019, 8(2), 712-728.
[http://dx.doi.org/10.1002/cam4.1924] [PMID: 30656832]
[58]
Lin, T.; Zhou, F.; Zhou, H.; Pan, X.; Sun, Z.; Peng, G. MicroRNA-378g enhanced radiosensitivity of NPC cells partially by targeting protein tyrosine phosphatase SHP-1. Int. J. Radiat. Biol., 2015, 91(11), 859-866.
[http://dx.doi.org/10.3109/09553002.2015.1096028] [PMID: 26473472]
[59]
Kang, M.; Xiao, J.; Wang, J.; Zhou, P.; Wei, T.; Zhao, T.; Wang, R. MiR-24 enhances radiosensitivity in nasopharyngeal carcinoma by targeting SP1. Cancer Med., 2016, 5(6), 1163-1173.
[http://dx.doi.org/10.1002/cam4.660] [PMID: 26922862]
[60]
Sun, Q.; Liu, T.; Zhang, T.; Du, S.; Xie, G.X.; Lin, X.; Chen, L.; Yuan, Y. MiR-101 sensitizes human nasopharyngeal carcinoma cells to radiation by targeting stathmin 1. Mol. Med. Rep., 2015, 11(5), 3330-3336.
[http://dx.doi.org/10.3892/mmr.2015.3221] [PMID: 25607713]
[61]
Tian, Y.; Yan, M.; Zheng, J.; Li, R.; Lin, J.; Xu, A.; Liang, Y.; Zheng, R.; Yuan, Y. miR-483-5p decreases the radiosensitivity of nasopharyngeal carcinoma cells by targeting DAPK1. Lab. Invest., 2019, 99(5), 602-611.
[http://dx.doi.org/10.1038/s41374-018-0169-6] [PMID: 30664712]
[62]
Albert, J.M.; Kim, K.W.; Cao, C.; Lu, B. Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol. Cancer Ther., 2006, 5(5), 1183-1189.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0400] [PMID: 16731750]
[63]
Gao, W.; Lam, J.W.; Li, J.Z.; Chen, S.Q.; Tsang, R.K.; Chan, J.Y.; Wong, T.S. MicroRNA-138-5p controls sensitivity of nasopharyngeal carcinoma to radiation by targeting EIF4EBP1. Oncol. Rep., 2017, 37(2), 913-920.
[http://dx.doi.org/10.3892/or.2017.5354] [PMID: 28075468]
[64]
Heidegger, I.; Pircher, A.; Klocker, H.; Massoner, P. Targeting the insulin-like growth factor network in cancer therapy. Cancer Biol. Ther., 2011, 11(8), 701-707.
[http://dx.doi.org/10.4161/cbt.11.8.14689] [PMID: 21311212]
[65]
Wang, T.; Dong, X.M.; Zhang, F.L.; Zhang, J.R. miR-206 enhances nasopharyngeal carcinoma radiosensitivity by targeting IGF1. Kaohsiung J. Med. Sci., 2017, 33(9), 427-432.
[http://dx.doi.org/10.1016/j.kjms.2017.05.015] [PMID: 28865599]
[66]
Feng, X.; Lv, W.; Wang, S.; He, Q. miR‑495 enhances the efficacy of radiotherapy by targeting GRP78 to regulate EMT in nasopharyngeal carcinoma cells. Oncol. Rep., 2018, 40(3), 1223-1232.
[http://dx.doi.org/10.3892/or.2018.6538] [PMID: 30015969]
[67]
Yamada, K.M.; Araki, M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J. Cell Sci., 2001, 114(Pt 13), 2375-2382.
[PMID: 11559746]
[68]
Li, W.; Guo, F.; Wang, P.; Hong, S.; Zhang, C. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr. Mol. Med., 2014, 14(1), 185-195.
[http://dx.doi.org/10.2174/1566524013666131203103147] [PMID: 24295494]
[69]
Chun-Zhi, Z.; Lei, H.; An-Ling, Z.; Yan-Chao, F.; Xiao, Y.; Guang-Xiu, W.; Zhi-Fan, J.; Pei-Yu, P.; Qing-Yu, Z.; Chun-Sheng, K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer, 2010, 10, 367.
[http://dx.doi.org/10.1186/1471-2407-10-367] [PMID: 20618998]
[70]
Qu, C.; Liang, Z.; Huang, J.; Zhao, R.; Su, C.; Wang, S.; Wang, X.; Zhang, R.; Lee, M.H.; Yang, H. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle, 2012, 11(4), 785-796.
[http://dx.doi.org/10.4161/cc.11.4.19228] [PMID: 22374676]
[71]
Wu, W.; Chen, X.; Yu, S.; Wang, R.; Zhao, R.; Du, C. microRNA-222 promotes tumor growth and confers radioresistance in nasopharyngeal carcinoma by targeting PTEN. Mol. Med. Rep., 2018, 17(1), 1305-1310.
[PMID: 29115464]
[72]
Qu, J.Q.; Yi, H.M.; Ye, X.; Zhu, J.F.; Yi, H.; Li, L.N.; Xiao, T.; Yuan, L.; Li, J.Y.; Wang, Y.Y.; Feng, J.; He, Q.Y.; Lu, S.S.; Xiao, Z.Q. MiRNA-203 Reduces Nasopharyngeal Carcinoma Radioresistance by Targeting IL8/AKT Signaling. Mol. Cancer Ther., 2015, 14(11), 2653-2664.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0461] [PMID: 26304234]
[73]
Qu, J.Q.; Yi, H.M.; Ye, X.; Li, L.N.; Zhu, J.F.; Xiao, T.; Yuan, L.; Li, J.Y.; Wang, Y.Y.; Feng, J.; He, Q.Y.; Lu, S.S.; Yi, H.; Xiao, Z.Q. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget, 2015, 6(29), 28341--28356..
[http://dx.doi.org/10.18632/oncotarget.5117 PMID: 26314966] [PMID: 26314966]
[74]
Li, G.; Wang, Y.; Liu, Y.; Su, Z.; Liu, C.; Ren, S.; Deng, T.; Huang, D.; Tian, Y.; Qiu, Y. miR-185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT2B in vitro. Cancer Sci., 2014, 105(12), 1560-1568.
[http://dx.doi.org/10.1111/cas.12555] [PMID: 25297925]
[75]
Li, G.; Liu, Y.; Su, Z.; Ren, S.; Zhu, G.; Tian, Y.; Qiu, Y. MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. Eur. J. Cancer, 2013, 49(11), 2596-2607.
[http://dx.doi.org/10.1016/j.ejca.2013.03.001] [PMID: 23583221]
[76]
Xu, J.; Ai, Q.; Cao, H.; Liu, Q. MiR-185-3p and miR-324-3p predict radiosensitivity of nasopharyngeal carcinoma and modulate cancer cell growth and apoptosis by targeting SMAD7. Med. Sci. Monit., 2015, 21, 2828-2836.
[http://dx.doi.org/10.12659/MSM.895660] [PMID: 26390174]
[77]
Habraken, Y.; Piette, J. NF-kappaB activation by double-strand breaks. Biochem. Pharmacol., 2006, 72(9), 1132-1141.
[http://dx.doi.org/10.1016/j.bcp.2006.07.015] [PMID: 16965765]
[78]
Huang, T.; Yin, L.; Wu, J.; Gu, J.J.; Wu, J.Z.; Chen, D.; Yu, H.L.; Ding, K.; Zhang, N.; Du, M.Y.; Qian, L.X.; Lu, Z.W.; He, X. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-κB axis. J. Exp. Clin. Cancer Res., 2016, 35(1), 188.
[http://dx.doi.org/10.1186/s13046-016-0465-1] [PMID: 27919278]
[79]
Li, L.N.; Xiao, T.; Yi, H.M.; Zheng, Z.; Qu, J.Q.; Huang, W.; Ye, X.; Yi, H.; Lu, S.S.; Li, X.H.; Xiao, Z.Q. MiR-125b Increases Nasopharyngeal Carcinoma Radioresistance by Targeting A20/NF-κB Signaling Pathway. Mol. Cancer Ther., 2017, 16(10), 2094-2106.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0385] [PMID: 28698199]
[80]
Ma, R.; Wei, Y.; Huang, X.; Fu, R.; Luo, X.; Zhu, X.; Lei, W.; Fang, J.; Li, H.; Wen, W. Inhibition of GSK 3β activity is associated with excessive EZH2 expression and enhanced tumour invasion in nasopharyngeal carcinoma. PLoS One, 2013, 8(7)e68614
[http://dx.doi.org/10.1371/journal.pone.0068614] [PMID: 23874688]
[81]
Huang, Y.; Tan, D.; Xiao, J.; Li, Q.; Zhang, X.; Luo, Z. miR-150 contributes to the radioresistance in nasopharyngeal carcinoma cells by targeting glycogen synthase kinase-3β. J. Cancer Res. Ther., 2018, 14(1), 111-118.
[http://dx.doi.org/10.4103/jcrt.JCRT_682_17] [PMID: 29516971]
[82]
Biswas, M.; Chan, J.Y. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharmacol., 2010, 244(1), 16-20.
[http://dx.doi.org/10.1016/j.taap.2009.07.034] [PMID: 19665035]
[83]
Zhao, L.; Tang, M.; Hu, Z.; Yan, B.; Pi, W.; Li, Z.; Zhang, J.; Zhang, L.; Jiang, W.; Li, G.; Qiu, Y.; Hu, F.; Liu, F.; Lu, J.; Chen, X.; Xiao, L.; Xu, Z.; Tao, Y.; Yang, L.; Bode, A.M.; Dong, Z.; Zhou, J.; Fan, J.; Sun, L.; Cao, Y. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget, 2015, 6(18), 15995-16018.
[http://dx.doi.org/10.18632/oncotarget.4138] [PMID: 26201446]
[84]
Kong, L.; Wei, Q.; Hu, X.; Chen, L.; Li, J. miR-193a-3p Promotes Radio-Resistance of Nasopharyngeal Cancer Cells by Targeting SRSF2 Gene and Hypoxia Signaling Pathway. Med. Sci. Monit. Basic Res., 2019, 25, 53-62.
[http://dx.doi.org/10.12659/MSMBR.914572] [PMID: 30773530]
[85]
Xu, T.; Xiao, D. Oleuropein enhances radiation sensitivity of nasopharyngeal carcinoma by downregulating PDRG1 through HIF1α-repressed microRNA-519d. J. Exp. Clin. Cancer Res., 2017, 36(1), 3.
[http://dx.doi.org/10.1186/s13046-016-0480-2] [PMID: 28057028]
[86]
Fan, H.; Shao, M.; Huang, S.; Liu, Y.; Liu, J.; Wang, Z.; Diao, J.; Liu, Y.; Tong, L.I.; Fan, Q. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1. Oncol. Lett., 2016, 11(6), 3729-3734.
[http://dx.doi.org/10.3892/ol.2016.4438] [PMID: 27313684]
[87]
Liu, Y.; Li, Z.; Wu, L.; Wang, Z.; Wang, X.; Yu, Y.; Zhao, Q.; Luo, F. MiRNA-125a-5p: a regulator and predictor of gefitinib’s effect on nasopharyngeal carcinoma. Cancer Cell Int., 2014, 14(1), 24.
[http://dx.doi.org/10.1186/1475-2867-14-24] [PMID: 24602316]
[88]
Wang, D.; Wang, S.; Liu, Q.; Wang, M.; Wang, C.; Yang, H. SZ-685C exhibits potent anticancer activity in both radiosensitive and radioresistant NPC cells through the miR-205-PTEN-Akt pathway. Oncol. Rep., 2013, 29(6), 2341-2347.
[http://dx.doi.org/10.3892/or.2013.2376] [PMID: 23564023]
[89]
Lin, C.; Yang, L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol., 2018, 28(4), 287-301.
[http://dx.doi.org/10.1016/j.tcb.2017.11.008] [PMID: 29274663]
[90]
Sun, Q.; Hao, Q.; Prasanth, K.V. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends Genet., 2018, 34(2), 142-157.
[http://dx.doi.org/10.1016/j.tig.2017.11.005] [PMID: 29249332]
[91]
Zhang, H.; Zhu, J.K. Emerging roles of RNA processing factors in regulating long non-coding RNAs. RNA Biol., 2014, 11(7), 793-797.
[http://dx.doi.org/10.4161/rna.29731] [PMID: 25144332]
[92]
Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17(1), 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[93]
Wu, R.; Su, Y.; Wu, H.; Dai, Y.; Zhao, M.; Lu, Q. Characters, functions and clinical perspectives of long non-coding RNAs. Mol. Genet. Genomics, 2016, 291(3), 1013-1033.
[http://dx.doi.org/10.1007/s00438-016-1179-y] [PMID: 26885843]
[94]
Xiao, G.; Yao, J.; Kong, D.; Ye, C.; Chen, R.; Li, L.; Zeng, T.; Wang, L.; Zhang, W.; Shi, X.; Zhou, T.; Li, J.; Wang, Y.; Xu, C.L.; Jiang, J.; Sun, Y. The Long Noncoding RNA TTTY15, Which Is Located on the Y Chromosome, Promotes Prostate Cancer Progression by Sponging let-7. Eur. Urol., 2018, 76(3), 315-326.
[PMID: 30527798]
[95]
Zhuo, W.; Liu, Y.; Li, S.; Guo, D.; Sun, Q.; Jin, J.; Rao, X.; Li, M.; Sun, M.; Jiang, M.; Xu, Y.; Teng, L.; Jin, Y.; Si, J.; Liu, W.; Kang, Y.; Zhou, T. Long Noncoding RNA GMAN, Up-regulated in Gastric Cancer Tissues, Is Associated With Metastasis in Patients and Promotes Translation of Ephrin A1 by Competitively Binding GMAN-AS. Gastroenterology, 2019, 156(3), 676-691.e11.
[http://dx.doi.org/10.1053/j.gastro.2018.10.054] [PMID: 30445010]
[96]
Hinger, S.A.; Cha, D.J.; Franklin, J.L.; Higginbotham, J.N.; Dou, Y.; Ping, J.; Shu, L.; Prasad, N.; Levy, S.; Zhang, B.; Liu, Q.; Weaver, A.M.; Coffey, R.J.; Patton, J.G. Diverse Long RNAs Are Differentially Sorted into Extracellular Vesicles Secreted by Colorectal Cancer Cells. Cell Rep., 2018, 25(3), 715-725.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.09.054] [PMID: 30332650]
[97]
Chen, F.; Chen, J.; Yang, L.; Liu, J.; Zhang, X.; Zhang, Y.; Tu, Q.; Yin, D.; Lin, D.; Wong, P.P.; Huang, D.; Xing, Y.; Zhao, J.; Li, M.; Liu, Q.; Su, F.; Su, S.; Song, E. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat. Cell Biol., 2019, 21(4), 498-510.
[http://dx.doi.org/10.1038/s41556-019-0299-0] [PMID: 30936474]
[98]
Fatima, R.; Akhade, V.S.; Pal, D.; Rao, S.M. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol. Cell. Ther., 2015, 3, 5.
[http://dx.doi.org/10.1186/s40591-015-0042-6] [PMID: 26082843]
[99]
Wu, J.; Hann, S.S. Functions and roles of long-non-coding rnas in human nasopharyngeal carcinoma. Cell. Physiol. Biochem., 2018, 45(3), 1191-1204.
[http://dx.doi.org/10.1159/000487451] [PMID: 29448252]
[100]
He, Y.; Jing, Y.; Wei, F.; Tang, Y.; Yang, L.; Luo, J.; Yang, P.; Ni, Q.; Pang, J.; Liao, Q.; Xiong, F.; Guo, C.; Xiang, B.; Li, X.; Zhou, M.; Li, Y.; Xiong, W.; Zeng, Z.; Li, G. Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis., 2018, 9(2), 235.
[http://dx.doi.org/10.1038/s41419-018-0265-y] [PMID: 29445147]
[101]
Wang, Y.; Chen, W.; Lian, J.; Zhang, H.; Yu, B.; Zhang, M.; Wei, F.; Wu, J.; Jiang, J.; Jia, Y.; Mo, F.; Zhang, S.; Liang, X.; Mou, X.; Tang, J. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death Differ., 2019.
[http://dx.doi.org/10.1038/s41418-019-0381-y] [PMID: 31320749]
[102]
Chakravarty, D.; Sboner, A.; Nair, S.S.; Giannopoulou, E.; Li, R.; Hennig, S.; Mosquera, J.M.; Pauwels, J.; Park, K.; Kossai, M.; MacDonald, T.Y.; Fontugne, J.; Erho, N.; Vergara, I.A.; Ghadessi, M.; Davicioni, E.; Jenkins, R.B.; Palanisamy, N.; Chen, Z.; Nakagawa, S.; Hirose, T.; Bander, N.H.; Beltran, H.; Fox, A.H.; Elemento, O.; Rubin, M.A. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat. Commun., 2014, 5, 5383.
[http://dx.doi.org/10.1038/ncomms6383] [PMID: 25415230]
[103]
Su, H.; Jin, X.; Zhang, X.; Zhao, L.; Lin, B.; Li, L.; Fei, Z.; Shen, L.; Fang, Y.; Pan, H.; Xie, C. FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R. J. Transl. Med., 2015, 13, 104.
[http://dx.doi.org/10.1186/s12967-015-0464-6] [PMID: 25888911]
[104]
Lu, Y.; Li, T.; Wei, G.; Liu, L.; Chen, Q.; Xu, L.; Zhang, K.; Zeng, D.; Liao, R. The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol., 2016, 37(9), 11733-11741.
[http://dx.doi.org/10.1007/s13277-015-4773-4] [PMID: 27020592]
[105]
Kurrey, N.K.; Jalgaonkar, S.P.; Joglekar, A.V.; Ghanate, A.D.; Chaskar, P.D.; Doiphode, R.Y.; Bapat, S.A. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells, 2009, 27(9), 2059-2068.
[http://dx.doi.org/10.1002/stem.154] [PMID: 19544473]
[106]
Jin, C.; Yan, B.; Lu, Q.; Lin, Y.; Ma, L. The role of MALAT1/miR-1/slug axis on radioresistance in nasopharyngeal carcinoma. Tumour Biol., 2016, 37(3), 4025-4033.
[http://dx.doi.org/10.1007/s13277-015-4227-z] [PMID: 26482776]
[107]
Li, Z.; Yu, X.; Shen, J. ANRIL: a pivotal tumor suppressor long non-coding RNA in human cancers. Tumour Biol., 2016, 37(5), 5657-5661.
[http://dx.doi.org/10.1007/s13277-016-4808-5] [PMID: 26753962]
[108]
Nie, F.Q.; Sun, M.; Yang, J.S.; Xie, M.; Xu, T.P.; Xia, R.; Liu, Y.W.; Liu, X.H.; Zhang, E.B.; Lu, K.H.; Shu, Y.Q. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol. Cancer Ther., 2015, 14(1), 268-277.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0492] [PMID: 25504755]
[109]
Zhu, H.; Li, X.; Song, Y.; Zhang, P.; Xiao, Y.; Xing, Y. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway. Biochem. Biophys. Res. Commun., 2015, 467(2), 223-228.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.002] [PMID: 26449463]
[110]
Zou, Z.W.; Ma, C.; Medoro, L.; Chen, L.; Wang, B.; Gupta, R.; Liu, T.; Yang, X.Z.; Chen, T.T.; Wang, R.Z.; Zhang, W.J.; Li, P.D. LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells. Oncotarget, 2016, 7(38), 61741-61754.
[http://dx.doi.org/10.18632/oncotarget.11437] [PMID: 27557514]
[111]
Hu, X.; Jiang, H.; Jiang, X. Downregulation of lncRNA ANRIL inhibits proliferation, induces apoptosis, and enhances radiosensitivity in nasopharyngeal carcinoma cells through regulating miR-125a. Cancer Biol. Ther., 2017, 18(5), 331-338.
[http://dx.doi.org/10.1080/15384047.2017.1310348] [PMID: 28402230]
[112]
Song, P.; Ye, L.F.; Zhang, C.; Peng, T.; Zhou, X.H. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p. Gene, 2016, 592(1), 8-14.
[http://dx.doi.org/10.1016/j.gene.2016.07.055] [PMID: 27461945]
[113]
Han, Q.; Li, L.; Liang, H.; Li, Y.; Xie, J.; Wang, Z. Downregulation of lncRNA X Inactive Specific Transcript (XIST) Suppresses Cell Proliferation and Enhances Radiosensitivity by Upregulating mir-29c in Nasopharyngeal Carcinoma Cells. Med. Sci. Monit., 2017, 23, 4798-4807.
[http://dx.doi.org/10.12659/MSM.905370] [PMID: 28985197]
[114]
Yi, L.; Ouyang, L.; Wang, S.; Li, S.S.; Yang, X.M. Long noncoding RNA PTPRG-AS1 acts as a microRNA-194-3p sponge to regulate radiosensitivity and metastasis of nasopharyngeal carcinoma cells via PRC1. J. Cell. Physiol., 2019, 234(10), 19088-19102.
[http://dx.doi.org/10.1002/jcp.28547] [PMID: 30993702]
[115]
Li, Z.; Dong, M.; Fan, D.; Hou, P.; Li, H.; Liu, L.; Lin, C.; Liu, J.; Su, L.; Wu, L.; Li, X.; Huang, B.; Lu, J.; Zhang, Y. LncRNA ANCR down-regulation promotes TGF-β-induced EMT and metastasis in breast cancer. Oncotarget, 2017, 8(40), 67329-67343.
[http://dx.doi.org/10.18632/oncotarget.18622] [PMID: 28978036]
[116]
Yang, Z.Y.; Yang, F.; Zhang, Y.L.; Liu, B.; Wang, M.; Hong, X.; Yu, Y.; Zhou, Y.H.; Zeng, H. LncRNA-ANCR down-regulation suppresses invasion and migration of colorectal cancer cells by regulating EZH2 expression. Cancer Biomark., 2017, 18(1), 95-104.
[http://dx.doi.org/10.3233/CBM-161715] [PMID: 27983539]
[117]
Li, Z.; Hou, P.; Fan, D.; Dong, M.; Ma, M.; Li, H.; Yao, R.; Li, Y.; Wang, G.; Geng, P.; Mihretab, A.; Liu, D.; Zhang, Y.; Huang, B.; Lu, J. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ., 2017, 24(1), 59-71.
[http://dx.doi.org/10.1038/cdd.2016.95] [PMID: 27716745]
[118]
Georgescu, M.M. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes Cancer, 2010, 1(12), 1170-1177.
[http://dx.doi.org/10.1177/1947601911407325] [PMID: 21779440]
[119]
Varambally, S.; Dhanasekaran, S.M.; Zhou, M.; Barrette, T.R.; Kumar-Sinha, C.; Sanda, M.G.; Ghosh, D.; Pienta, K.J.; Sewalt, R.G.; Otte, A.P.; Rubin, M.A.; Chinnaiyan, A.M. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 2002, 419(6907), 624-629.
[http://dx.doi.org/10.1038/nature01075] [PMID: 12374981]
[120]
Ma, X.; Zhou, J.; Liu, J.; Wu, G.; Yu, Y.; Zhu, H.; Liu, J. LncRNA ANCR promotes proliferation and radiation resistance of nasopharyngeal carcinoma by inhibiting PTEN expression. OncoTargets Ther., 2018, 11, 8399-8408.
[http://dx.doi.org/10.2147/OTT.S182573] [PMID: 30568463]
[121]
Wang, Q.; Fan, H.; Liu, Y.; Yin, Z.; Cai, H.; Liu, J.; Wang, Z.; Shao, M.; Sun, X.; Diao, J.; Liu, Y.; Tong, L.; Fan, Q. Curcumin enhances the radiosensitivity in nasopharyngeal carcinoma cells involving the reversal of differentially expressed long non-coding RNAs. Int. J. Oncol., 2014, 44(3), 858-864.
[http://dx.doi.org/10.3892/ijo.2013.2237] [PMID: 24379026]
[122]
Li, G.; Liu, Y.; Liu, C.; Su, Z.; Ren, S.; Wang, Y.; Deng, T.; Huang, D.; Tian, Y.; Qiu, Y. Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing. BMC Cancer, 2016, 16, 719.
[http://dx.doi.org/10.1186/s12885-016-2755-6] [PMID: 27599611]
[123]
Maiese, K. Disease onset and aging in the world of circular RNAs. J. Transl. Sci., 2016, 2(6), 327-329.
[http://dx.doi.org/10.15761/JTS.1000158] [PMID: 27642518]
[124]
Zhao, Z.; Li, X.; Jian, D.; Hao, P.; Rao, L.; Li, M. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol., 2017, 54(3), 237-245.
[http://dx.doi.org/10.1007/s00592-016-0943-0] [PMID: 27878383]
[125]
Su, M.; Xiao, Y.; Ma, J.; Tang, Y.; Tian, B.; Zhang, Y.; Li, X.; Wu, Z.; Yang, D.; Zhou, Y.; Wang, H.; Liao, Q.; Wang, W. Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol. Cancer, 2019, 18(1), 90.
[http://dx.doi.org/10.1186/s12943-019-1002-6] [PMID: 30999909]
[126]
Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA, 1976, 73(11), 3852-3856.
[http://dx.doi.org/10.1073/pnas.73.11.3852] [PMID: 1069269]
[127]
Chen, L.L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol., 2015, 12(4), 381-388.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[128]
Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; Liang, L.; Gu, J.; He, X.; Huang, S. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun., 2016, 7, 11215.
[http://dx.doi.org/10.1038/ncomms11215] [PMID: 27050392]
[129]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[130]
Yin, Y.; Long, J.; He, Q.; Li, Y.; Liao, Y.; He, P.; Zhu, W. Emerging roles of circRNA in formation and progression of cancer. J. Cancer, 2019, 10(21), 5015-5021.
[http://dx.doi.org/10.7150/jca.30828] [PMID: 31602252]
[131]
Su, H.; Lin, F.; Deng, X.; Shen, L.; Fang, Y.; Fei, Z.; Zhao, L.; Zhang, X.; Pan, H.; Xie, D.; Jin, X.; Xie, C. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J. Transl. Med., 2016, 14(1), 225.
[http://dx.doi.org/10.1186/s12967-016-0977-7] [PMID: 27465405]
[132]
Yu, D.; Li, Y.; Ming, Z.; Wang, H.; Dong, Z.; Qiu, L.; Wang, T. Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs. PeerJ, 2018, 6e5011
[http://dx.doi.org/10.7717/peerj.5011] [PMID: 29922514]
[133]
Chen, T.; Luo, J.; Gu, Y.; Huang, J.; Luo, Q.; Yang, Y. Comprehensive analysis of circular RNA profiling in AZD9291-resistant non-small cell lung cancer cell lines. Thorac. Cancer, 2019, 10(4), 930-941.
[http://dx.doi.org/10.1111/1759-7714.13032] [PMID: 30883029]
[134]
Ke, Z.; Xie, F.; Zheng, C.; Chen, D. CircHIPK3 promotes proliferation and invasion in nasopharyngeal carcinoma by abrogating miR-4288-induced ELF3 inhibition. J. Cell. Physiol., 2019, 234(2), 1699-1706.
[http://dx.doi.org/10.1002/jcp.27041] [PMID: 30070690]
[135]
Liu, Q.; Shuai, M.; Xia, Y. Knockdown of EBV-encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma cell proliferation and metastasis through sponging multiple miRNAs. Cancer Manag. Res., 2019, 11, 8023-8031.
[http://dx.doi.org/10.2147/CMAR.S218967] [PMID: 31695488]
[136]
Zhong, Q.; Huang, J.; Wei, J.; Wu, R. Circular RNA CDR1as sponges miR-7-5p to enhance E2F3 stability and promote the growth of nasopharyngeal carcinoma. Cancer Cell Int., 2019, 19, 252.
[http://dx.doi.org/10.1186/s12935-019-0959-y] [PMID: 31582908]
[137]
Wei, H.; Liu, D.; Sun, J.; Mao, Y.; Zhao, L.; Zhu, W.; Xu, G.; Gao, Z. Circular RNA circ_0008450 upregulates CXCL9 expression by targeting miR-577 to regulate cell proliferation and invasion in nasopharyngeal carcinoma. Exp. Mol. Pathol., 2019, 110104288
[http://dx.doi.org/10.1016/j.yexmp.2019.104288] [PMID: 31344361]
[138]
Shuai, M.; Hong, J.; Huang, D.; Zhang, X.; Tian, Y. Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity. Oncol. Lett., 2018, 16(5), 6495-6501.
[http://dx.doi.org/10.3892/ol.2018.9471] [PMID: 30405788]
[139]
Chen, L.; Zhou, H.; Guan, Z. CircRNA_000543 knockdown sensitizes nasopharyngeal carcinoma to irradiation by targeting miR-9/platelet-derived growth factor receptor B axis. Biochem. Biophys. Res. Commun., 2019, 512(4), 786-792.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.126] [PMID: 30928094]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 3
Year: 2020
Page: [192 - 205]
Pages: 14
DOI: 10.2174/1874467213666191227104646
Price: $65

Article Metrics

PDF: 35
HTML: 2