Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status

Author(s): Sundos Suleman Ismail Abdalla, Haliza Katas*, Fazren Azmi, Mohd Fauzi Mh Busra

Journal Name: Current Drug Delivery

Volume 17 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Fast progress in nanoscience and nanotechnology has contributed to the way in which people diagnose, combat, and overcome various diseases differently from the conventional methods. Metal nanoparticles, mainly silver and gold nanoparticles (AgNPs and AuNPs, respectively), are currently developed for many applications in the medical and pharmaceutical area including as antibacterial, antibiofilm as well as anti-leshmanial agents, drug delivery systems, diagnostics tools, as well as being included in personal care products and cosmetics. In this review, the preparation of AgNPs and AuNPs using different methods is discussed, particularly the green or bio- synthesis method as well as common methods used for their physical and chemical characterization. In addition, the mechanisms of the antimicrobial and anti-biofilm activity of AgNPs and AuNPs are discussed, along with the toxicity of both nanoparticles. The review will provide insight into the potential of biosynthesized AgNPs and AuNPs as antimicrobial nanomaterial agents for future use.

Keywords: Nanocomposites, antimicrobial agent, metal nanoparticles, green synthesis, anti-biofilm, biosynthesised.

[1]
Gurunathan, S.; Jeong, J-K.; Han, J.W.; Zhang, X-F.; Park, J.H.; Kim, J-H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett., 2015, 10, 35.
[http://dx.doi.org/10.1186/s11671-015-0747-0] [PMID: 25852332]
[2]
Li, W-R.; Xie, X-B.; Shi, Q-S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[3]
Sen, I.K.; Maity, K.; Islam, S.S. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr. Polym., 2013, 91(2), 518-528.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.058] [PMID: 23121940]
[4]
Fikri, A.S.I.; Rahman, I.R.; Hamzah, A.; Adnan, S.N.A.; Nor, N.S.M. Incorporation of silver nanoparticles (AgNPs) with endophytes cell-free secondary metabolites enhances antimicrobial activity. Malays. Appl. Biol., 2018, 47, 283-288.
[5]
Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. Bacteria as workers in the living factory: Metal-accumulating bacteria and their potential for materials science. Trends Biotechnol., 2001, 19(1), 15-20.
[http://dx.doi.org/10.1016/S0167-7799(00)01514-6] [PMID: 11146098]
[6]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; Sastry, M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1(10), 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[7]
Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain Mky3. Nanotechnology, 2002, 14, 95.
[http://dx.doi.org/10.1088/0957-4484/14/1/321]
[8]
Armendariz, V.; Herrera, I.; Jose-Yacaman, M.; Jose-yacaman, M.; Troiani, H.; Santiago, P.; Gardea-Torresdey, J.L. Size controlled gold nanoparticle formation by avena sativa biomass: Use of plants in nanobiotechnology. J. Nanopart. Res., 2004, 6, 377-382.
[http://dx.doi.org/10.1007/s11051-004-0741-4]
[9]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[10]
Raghunandan, D.; Mahesh, B.D.; Basavaraja, S.; Balaji, S.D.; Manjunath, S.Y.; Venkataramanet, A. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium Guajava) leaf extract. J. Nanopart. Res., 2011, 13, 2021-2028.
[http://dx.doi.org/10.1007/s11051-010-9956-8]
[11]
Din, L.B.; Mie, R.; Samsudin, M.W.; Ahmad, A.; Ibrahim, N. Biomimetic synthesis of silver nanoparticles using the lichen ramalina dumeticola and the antibacterial activity. Malays. J. Anal. Sci., 2015, 19, 369-376.
[12]
Philip, D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 73(2), 374-381.
[http://dx.doi.org/10.1016/j.saa.2009.02.037] [PMID: 19324587]
[13]
Nithya, R.; Ragunathan, R. Synthesis of silver nanoparticle using pleurotus sajor caju and its antimicrobial study. Dig. J. Nanomater. Biostruct., 2009, 4, 623-629.
[14]
Katas, H.; Lim, C.S.; Nor Azlan, A.Y.H.; Buang, F.; Mh Busra, M.F. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J., 2019, 27(2), 283-292.
[http://dx.doi.org/10.1016/j.jsps.2018.11.010] [PMID: 30766441]
[15]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[16]
Kruis, F.E.; Fissan, H.; Rellinghaus, B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected Pbs nanoparticles. Mater. Sci. Eng. B, 2000, 69, 329-334.
[http://dx.doi.org/10.1016/S0921-5107(99)00298-6]
[17]
Magnusson, M.H.; Deppert, K.; Malm, J-O.; Bovin, J-O.; Samuelson, L. Size-selected gold nanoparticles by aerosol technology. J. Nanostruct., 1999, 12, 45-48.
[http://dx.doi.org/10.1016/S0965-9773(99)00063-X]
[18]
Tien, D.; Liao, C.; Huang, J.K-H. Tseng2, Lung, J.-K.; Tsung, T.-T.; Kao, W.-S.; Tsai, T.-H.; Cheng, T.-W.; Yu, B.-S.; Lin, H.-M.; Stobinski, L. Novel technique for preparing a nano-silver water suspension by the Arc-discharge method. Rev. Adv. Mater. Sci., 2008, 18, 750-756.
[19]
Pluym, T.; Powell, Q.; Gurav, A.; Ward, T.L.; Kodas, T.T.; Wang, L.M.; Glicksman, H.D. Solid silver particle production by spray pyrolysis. J. Aerosol Sci., 1993, 24, 383-392.
[http://dx.doi.org/10.1016/0021-8502(93)90010-7]
[20]
Elsupikhe, R.F.; Shameli, K.; Ahmad, M.B. Sonochemical method for the synthesis of silver nanoparticles in K-Carrageenan from silver salt at different concentrations. Res. Chem. Intermed., 2015, 41, 8515-8525.
[http://dx.doi.org/10.1007/s11164-014-1907-z]
[21]
Shameli, K.; Ahmad, M.B.; Yunus, W.M.Z.W.; Ibrahim, N.A.; Gharayebi, Y.; Sedaghat, S. Synthesis of silver/montmorillonite nanocomposites using γ-irradiation. Int. J. Nanomedicine, 2010, 5, 1067-1077.
[http://dx.doi.org/10.2147/IJN.S15033] [PMID: 21170354]
[22]
Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry, 2005, 11(2), 440-452.
[http://dx.doi.org/10.1002/chem.200400417] [PMID: 15515072]
[23]
Eftaiha, A.; Al-Warthan, A.; Ammar, R. Synthesis and applications of silver nanoparticles. Arab. J. Chem., 2010, 3, 135-140.
[http://dx.doi.org/10.1016/j.arabjc.2010.04.008]
[24]
Arasu, T.V.; Prabhu, D.; Soniya, M. Stable silver nanoparticle synthesizing methods and its applications. J. Bio. Sci. Res., 2010, 1, 259-270.
[25]
Zhu, J.; Liao, X.; Chen, H-Y. Electrochemical preparation of silver dendrites in the presence of DNA. Mater. Res. Bull., 2001, 36, 1687-1692.
[http://dx.doi.org/10.1016/S0025-5408(01)00600-6]
[26]
Jingyue, Z.; Bernd, F. Synthesis of Gold Nanoparticles Via Chemical Reduction Methods. Proceedings of The Nanocon, Brno, Czech Republic 2015, pp. 14-16.
[27]
Garg, N.; Mohanty, A.; Lazarus, N.; Schultz, L.; Rozzi, T.R.; Santhanam, S.; Weiss, L.; Snyder, J.L.; Fedder, G.K.; Jin, R. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors. Nanotechnology, 2010, 21(40) 405501
[http://dx.doi.org/10.1088/0957-4484/21/40/405501] [PMID: 20823495]
[28]
Guo, W.; Pi, Y.; Song, H.; Tang, W.; Sun, J. Layer-by-layer assembled gold nanoparticles modified anode and its application in microbial fuel cells. Colloids Surf. A Physicochem. Eng. Asp., 2012, 415, 105-111.
[http://dx.doi.org/10.1016/j.colsurfa.2012.09.032]
[29]
Ngo, V.K.T.; Nguyen, D.G.; Huynh, T.P.; Lam, Q.V. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157: H7 bacteria. Adv. Nat. Sci-Nanosci., 2016, 7, 1-9.
[30]
Mallick, K.; Witcomb, M.; Scurrell, M. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci., 2004, 39, 4459-4463.
[http://dx.doi.org/10.1023/B:JMSC.0000034138.80116.50]
[31]
Nasrollahzadeh, M.; Sajadi, S.M.; Rostami-Vartooni, A.; Alizadeh, M.; Bagherzadeh, M. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. J. Colloid Interface Sci., 2016, 466, 360-368.
[http://dx.doi.org/10.1016/j.jcis.2015.12.036] [PMID: 26752431]
[32]
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine (Lond.), 2007, 3(2), 168-171.
[http://dx.doi.org/10.1016/j.nano.2007.02.001] [PMID: 17468052]
[33]
El-Batal, A.I.; ElKenawy, N.M.; Yassin, A.S.; Amin, M.A. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Rep. (Amst.), 2014, 5, 31-39.
[http://dx.doi.org/10.1016/j.btre.2014.11.001] [PMID: 28626680]
[34]
Katas, H.; Moden, N.Z.; Sin, L.V.; Celesistinus, T.; Chan, J.Y.; Ganasan, P.; Abdalla, S.S.I. Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J. Nanotechnol, 2018, 1-13.Article ID 4290705..
[http://dx.doi.org/10.1155/2018/4290705]
[35]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[36]
Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica Dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci., 2016, 9, 217-227.
[http://dx.doi.org/10.1016/j.jrras.2015.10.002]
[37]
Sastry, M.; Patil, V.; Sainkar, S. Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J. Phys. Chem. B, 1998, 102(8), 1404-1410.
[http://dx.doi.org/10.1021/jp9719873]
[38]
Balaji, D.S.; Basavaraja, S.; Deshpande, R.; Mahesh, D.B.; Prabhakar, B.K.; Venkataraman, A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces, 2009, 68(1), 88-92.
[http://dx.doi.org/10.1016/j.colsurfb.2008.09.022] [PMID: 18995994]
[39]
Khanna, P.; Kulkarni, D.; Beri, R.K. Synthesis and characterization of myristic acid capped silver nanoparticles. J. Nanopart. Res., 2008, 10, 1059-1062.
[http://dx.doi.org/10.1007/s11051-008-9366-3]
[40]
Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in: Gold and silver nanodots and nanorods. J. Phys. Chem. B, 1999, 103, 8410-8426.
[http://dx.doi.org/10.1021/jp9917648]
[41]
Waseda, Y.; Matsubara, E.; Shinoda, K. X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems. Springer: Verlag Berlin Heidelberg2011.
[42]
Das, R.; Nath, S.S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Synthesis of silver nanoparticles and their optical properties. J. Exp. Nanosci., 2010, 5, 357-362.
[http://dx.doi.org/10.1080/17458080903583915]
[43]
Zaki, H.; Husain, Z. Enhanced antibacterial and anti-biofilm activities of biosynthesized silver nanoparticles against pathogenic bacteria. J. Genet. Environ. Resour. Conserv., 2016, 4, 197-203.
[44]
Halawani, E.M. Rapid biosynthesis method and characterization of silver nanoparticles using Zizyphus Spina Christi leaf extract and their antibacterial efficacy in therapeutic application. J. Biomater. Nanobiotechnol., 2017, 8, 22-35.
[http://dx.doi.org/10.4236/jbnb.2017.81002]
[45]
Lin, P-C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 2014, 32(4), 711-726.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[46]
Clauss, A.; Bischoff, E.; Hosmani, S.; Schacher, R.E.; Mittemeijer, E.J. Crystal structure and morphology of mixed Cr 1–X Al X N Nitride Precipitates: Gaseous Nitriding of a Fe-1.5 Wt Pct Cr-1.5 Wt Pct Al Alloy. Metall. Mater. Trans., 2009, 40, 1923-1934.
[http://dx.doi.org/10.1007/s11661-009-9865-6]
[47]
Joshi, M.; Bhattacharyya, A.; Ali, S.W. Characterization techniques for nanotechnology applications in textile. Indian J. Fibre Text., 2008, 33, 304-311.
[48]
Dobrovolskaia, M.A.; Aggarwal, P.; Hall, J.B.; McNeil, S.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm., 2008, 5(4), 487-495.
[http://dx.doi.org/10.1021/mp800032f] [PMID: 18510338]
[49]
Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem., 2019, 12(8), 1823-1838.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[50]
Fissan, H.; Ristig, S.; Kaminski, H.; Asbach, C.; Epple, M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods, 2014, 6, 7324-7334.
[http://dx.doi.org/10.1039/C4AY01203H]
[51]
Johal, M.S. Understanding Nanomaterials, 1st ed; CRC Press: Florida, 2012.
[52]
Ratner, B.D.; Hoffman, A.S.; Schoen, F.J. Lemons, J. Biomaterials Science: An Introduction to Materials in Medicine, 3rd ed; Elsevier, 2004.
[53]
Lok, C-N.; Ho, C-M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Che, C.M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem., 2007, 12(4), 527-534.
[http://dx.doi.org/10.1007/s00775-007-0208-z] [PMID: 17353996]
[54]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[55]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond.), 2007, 3(1), 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[56]
Nanda, A.; Saravanan, M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine (Lond.), 2009, 5(4), 452-456.
[http://dx.doi.org/10.1016/j.nano.2009.01.012] [PMID: 19523420]
[57]
Sanpui, P.; Murugadoss, A.; Prasad, P.V.; Ghosh, S.S.; Chattopadhyay, A. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int. J. Food Microbiol., 2008, 124(2), 142-146.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.004] [PMID: 18433906]
[58]
Chook, S.W.; Chia, C.H.; Zakaria, S.; Neoh, H.M.; Jamal, A.R.A. Effective immobilization of silver nanoparticles on a regenerated cellulose-chitosan composite membrane and its antibacterial activity. New J. Chem., 2017, 41, 5061.
[http://dx.doi.org/10.1039/C7NJ00319F]
[59]
Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnology, 2012, 10, 19.
[http://dx.doi.org/10.1186/1477-3155-10-19] [PMID: 22559747]
[60]
Sawant, S.N.; Selvaraj, V.; Prabhawathi, V.; Doble, M. Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS One, 2013, 8(5) e63311
[http://dx.doi.org/10.1371/journal.pone.0063311] [PMID: 23675476]
[61]
Ahmed, D.; Anwar, A.; Khan, A.K.; Ahmed, A.; Shah, M.R.; Khan, N.A. Size selectivity in antibiofilm activity of 3-(diphenylphosphino)propanoic acid coated gold nanomaterials against Gram-positive Staphylococcus aureus and Streptococcus mutans. AMB Express, 2017, 7(1), 210.
[http://dx.doi.org/10.1186/s13568-017-0515-x] [PMID: 29164404]
[62]
Mu, H.; Tang, J.; Liu, Q.; Sun, C.; Wang, T.; Duan, J. Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci. Rep., 2016, 6, 18877.
[http://dx.doi.org/10.1038/srep18877] [PMID: 26728712]
[63]
Khan, A.U.; Yuan, Q.; Wei, Y.; Khan, G.M.; Khan, Z.U.H.; Khan, S.; Ali, F.; Tahir, K.; Ahmad, A.; Khan, F.U. Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. J. Photochem. Photobiol. B, 2016, 162, 273-277.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.055] [PMID: 27394010]
[64]
Patra, J.K.; Baek, K.H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front. Microbiol., 2017, 8, 167.
[http://dx.doi.org/10.3389/fmicb.2017.00167] [PMID: 28261161]
[65]
Barapatre, A.; Aadil, K.R.; Jha, H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour. Bioprocess., 2016, 3, 8.
[http://dx.doi.org/10.1186/s40643-016-0083-y]
[66]
Morales-Avila, E.; Ferro-Flores, G.; Ocampo-García, B.E.; López-Téllez, G.; López-Ortega, J.; Rogel-Ayala, D.G.; Sánchez-Padilla, D. Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin (29-41) antimicrobial peptide. J. Nanomater., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/5831959]
[67]
Demurtas, M.; Perry, C.C. Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity. Gold Bull., 2014, 47, 103-107.
[http://dx.doi.org/10.1007/s13404-013-0129-2]
[68]
Wang, L.; He, H.; Yu, Y.; Sun, L.; Liu, S.; Zhang, C.; He, L. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J. Inorg. Biochem., 2014, 135, 45-53.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.02.016] [PMID: 24662462]
[69]
Danilczuk, M.; Lund, A.; Sadlo, J.; Yamada, H.; Michalik, J. Conduction electron spin resonance of small silver particles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 63(1), 189-191.
[http://dx.doi.org/10.1016/j.saa.2005.05.002] [PMID: 15978868]
[70]
Penders, J.; Stolzoff, M.; Hickey, D.J.; Andersson, M.; Webster, T.J. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int. J. Nanomedicine, 2017, 12, 2457-2468.
[http://dx.doi.org/10.2147/IJN.S124442] [PMID: 28408817]
[71]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[72]
Umamaheswari, K.; Baskar, R.; Chandru, K.; Rajendiran, N.; Chandirasekar, S. Antibacterial activity of gold nanoparticles and their toxicity assessment. BMC Infect. Dis., 2014, 14(S3), 64.
[http://dx.doi.org/10.1186/1471-2334-14-S3-P64]
[73]
Schmidtchen, A.; Malmste, M. Peptide interactions with bacterial lipopolysaccharides. Curr. Opin. Colloid Interface Sci., 2013, 18, 381-392.
[http://dx.doi.org/10.1016/j.cocis.2013.06.003]
[74]
Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol., 2004, 2(2), 95-108.
[http://dx.doi.org/10.1038/nrmicro821] [PMID: 15040259]
[75]
Ammons, M.C.; Copié, V. Mini-review: Lactoferrin: A bioinspired, anti-biofilm therapeutic. Biofouling, 2013, 29(4), 443-455.
[http://dx.doi.org/10.1080/08927014.2013.773317] [PMID: 23574002]
[76]
Neihaya, H.Z.; Zaman, H.H. Investigating the effect of biosynthesized silver nanoparticles as antibiofilm on bacterial clinical isolates. Microb. Pathog., 2018, 116, 200-208.
[http://dx.doi.org/10.1016/j.micpath.2018.01.024] [PMID: 29414608]
[77]
Martinez-Gutierrez, F.; Boegli, L.; Agostinho, A.; Sánchez, E.M.; Bach, H.; Ruiz, F.; James, G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 2013, 29(6), 651-660.
[http://dx.doi.org/10.1080/08927014.2013.794225] [PMID: 23731460]
[78]
Parashar, U.K.; Kumar, V.; Bera, T.; Saxena, P.S.; Nath, G.; Srivastava, S.K.; Giri, R.; Srivastava, A. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology, 2011, 22(41) 415104
[http://dx.doi.org/10.1088/0957-4484/22/41/415104] [PMID: 21918296]
[79]
Ramachandran, R.; Sangeetha, D. Antibiofilm efficacy of silver nanoparticles against biofilm forming multidrug resistant clinical isolates. The Pharma Innovation. Int. J., 2017, 6, 36-43.
[80]
Taglietti, A.; Arciola, C.R.; D’Agostino, A.; Dacarro, G.; Montanaro, L.; Campoccia, D.; Cucca, L.; Vercellino, M.; Poggi, A.; Pallavicini, P.; Visai, L. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials, 2014, 35(6), 1779-1788.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.047] [PMID: 24315574]
[81]
Ahmed, A.; Khan, A.K.; Anwar, A.; Ali, S.A.; Shah, M.R. Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microb. Pathog., 2016, 98, 50-56.
[http://dx.doi.org/10.1016/j.micpath.2016.06.016] [PMID: 27321770]
[82]
Castillo-Martínez, J.C.; Martínez-Castañón, G.A.; Martínez-Gutierrez, F.; Zavala-Alonso, N.V.; Patiño-Marín, N.; Niño-Martinez, N.; Zaragoza-Magaña, V.; Cabral-Romero, C. Antibacterial and antibiofilm activities of the photothermal therapy using gold nanorods against seven different bacterial strains. J. Nanomater., 2015, 16, 177.
[http://dx.doi.org/10.1155/2015/783671]
[83]
Mohamed, M.M.; Fouad, S.A.; Elshoky, H.A.; Mohammed, G.M.; Salaheldin, T.A. Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int. J. Vet. Sci. Med., 2017, 5(1), 23-29.
[http://dx.doi.org/10.1016/j.ijvsm.2017.02.003] [PMID: 30255044]
[84]
Markowska, K.; Grudniak, A.M.; Wolska, K.I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim. Pol., 2013, 60(4), 523-530.
[PMID: 24432308]
[85]
Ramasamy, M.; Lee, J-H.; Lee, J. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. Int. J. Nanomedicine, 2017, 12, 2813-2828.
[http://dx.doi.org/10.2147/IJN.S132784] [PMID: 28435260]
[86]
Ramalingam, V.; Rajaram, R. PremKumar, C.; Santhanam, P.; Dhinesh, P.; Vinothkumar, S.; Kaleshkumar, K. Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. J. Basic Microbiol., 2014, 54(9), 928-936.
[http://dx.doi.org/10.1002/jobm.201300514] [PMID: 24136453]
[87]
Kushwaha, A.; Singh, V.K.; Bhartariya, J.; Singh, P.; Yasmeen, K. Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: Characterization of the particles and study of antibacterial activity. Eur. J. Exp. Biol., 2015, 5, 65-70.
[88]
Khan, F.; Manivasagan, P.; Lee, J-W.; Pham, D.T.N.; Oh, J.; Kim, Y.M. Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Mar. Drugs, 2019, 17(4), 208.
[http://dx.doi.org/10.3390/md17040208] [PMID: 30987163]
[89]
University of the Basque Country. Silver nanoparticles are toxic for aquatic organisms, 2018.www.sciencedaily.com/releases/2018/09/180918110905.html
[90]
Dobrucka, R.; Szymanski, M.; Przekop, R. The study of toxicity effects of biosynthesized silver nanoparticles using Veronica officinalis extract. Int. J. Environ. Sci. Technol., 2019, 16(12), 8517-8526.
[http://dx.doi.org/10.1007/s13762-019-02441-0]
[91]
Vazquez-Muñoz, R.; Borrego, B.; Juárez-Moreno, K.; García-García, M.; Mota Morales, J.D.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of Silver Nanoparticles in Biological Systems: Does the Complexity of Biological Systems Matter? Toxicol. Lett., 2017, 276, 11-20.
[http://dx.doi.org/10.1016/j.toxlet.2017.05.007] [PMID: 28483428]
[92]
Panyala, N.R.; Peña-Méndez, E.M.; Havel, J. Silver or Silver Nanoparticles: A Hazardous Threat to the Environment and Human Health? J. Appl. Biomed., 2008, 6, 117-129.
[http://dx.doi.org/10.32725/jab.2008.015]
[93]
Hussain, S.M.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.; Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro, 2005, 19(7), 975-983.
[http://dx.doi.org/10.1016/j.tiv.2005.06.034] [PMID: 16125895]
[94]
Shin, S.H.; Ye, M.K.; Kim, H.S.; Kang, H.S. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int. Immunopharmacol., 2007, 7(13), 1813-1818.
[http://dx.doi.org/10.1016/j.intimp.2007.08.025] [PMID: 17996693]
[95]
Mcauliffe, M.E.; Perry, M.J. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicol., 2007, 1, 204-210.
[http://dx.doi.org/10.1080/17435390701675914]
[96]
Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3), 325-327.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
[97]
Nghiem, T.H.L.; Nguyen, T.T.; Fort, E.; Nguyen, T.P.; Hoang, T.M.N.; Nguyen, T.Q.; Tran, H.N. Capping and in vivo toxicity studies of gold nanoparticles. Adv. Nat. Sci.-. Nanosci., 2012, 3, 1-5.
[98]
Taylor, U.; Barchanski, A.; Petersen, S.; Kues, W.A.; Baulain, U.; Gamrad, L.; Sajti, L.; Barcikowski, S.; Rath, D. Gold nanoparticles interfere with sperm functionality by membrane adsorption without penetration. Nanotoxicology, 2014, 8(Suppl. 1), 118-127.
[99]
Hillyer, J.F.; Albrecht, R.M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci., 2001, 90(12), 1927-1936.
[http://dx.doi.org/10.1002/jps.1143] [PMID: 11745751]
[100]
Pernodet, N.; Fang, X.; Sun, Y.; Bakhtina, A.; Ramakrishnan, A.; Sokolov, J.; Ulman, A.; Rafailovich, M. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small, 2006, 2(6), 766-773.
[http://dx.doi.org/10.1002/smll.200500492] [PMID: 17193121]
[101]
Ramachandran, R.; Krishnaraj, C.; Kumar, V.K.A.; Harper, S.L.; Kalaichelvan, T.P.; Yun, S.I. In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: A comparative study. 3 Biotech., 2018, 8, 441.
[http://dx.doi.org/10.1007/s13205-018-1457-y] [PMID: 30306010]
[102]
Ramachandran, R.; Krishnaraj, C.; Sivakumar, A.S.; Prasannakumar, P.; Abhay Kumar, V.K.; Shim, K.S.; Song, C.G.; Yun, S.I. Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater. Sci. Eng. C, 2017, 73, 674-683.
[http://dx.doi.org/10.1016/j.msec.2016.12.110] [PMID: 28183660]
[103]
Wang, Y-J.; Lee, Y-H. The applicability of zebra fish animal models for acute toxicity testing of silver nanoparticle. Toxicol. Lett., 2018, 295, S204.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.898]
[104]
Boldeiu, A.; Simion, M.; Mihalache, I.; Radoi, A.; Banu, M.; Varasteanu, P. Comparative analysis of honey and citrate stabilized gold nanoparticles: In vitro interaction with proteins and toxicity studies. J. Photochem. Photobiol. B Biol., 2019, 197111519
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111519] [PMID: 31228688]
[105]
Roy, S.; Sadhukhan, R.; Ghosh, U.; Das, T.K. Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 176-184.
[http://dx.doi.org/10.1016/j.saa.2015.01.041] [PMID: 25668698]
[106]
Haq, I. Thermodynamics of drug-DNA interactions. Arch. Biochem. Biophys., 2002, 403(1), 1-15.
[http://dx.doi.org/10.1016/S0003-9861(02)00202-3] [PMID: 12061796]
[107]
Valsalam, S.; Agastian, P. Esmail, Ghilan, A.-K.M.; Al-Dhabi, N.A.; Arasu, M.V. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J. Photochem. Photobiol. B, 2019, 201, 11670.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111670]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2020
Page: [88 - 100]
Pages: 13
DOI: 10.2174/1567201817666191227094334
Price: $65

Article Metrics

PDF: 22
HTML: 4
PRC: 1