Live Impedance Measurements and Time-lapse Microscopy Observations of Cellular Adhesion, Proliferation and Migration after Ionizing Radiation

Author(s): Magdalena Skonieczna*, Malgorzata Adamiec, Dorota Hudy, Patrycja Nieslon, Daniel Fochtman, Patryk Bil

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Changes in the cellular behavior depend on environmental and intracellular interactions. Cancer treatments force the changes, first on the molecular level, but the main visible changes are macroscopic. During radiotherapy, cancer cell’s adhesion, proliferation and migration should be well monitored. In over 60% of diagnosed cancers cases, patients are given treatments with different protocols of radiotherapy, which result in possible metastasis and acute whole body response to toxic radiation.

Objective: Effectiveness of the therapy used depends on the sensitivity/resistance of irradiated cancer cells. Cellular mechanisms of cancer protection, such as the activation of DNA damage and repair pathways, antioxidants production and oxidative stress suppression during treatments are not desirable. Cancer cells monitoring require the development of novel techniques, and the best techniques are non-invasive and long-term live observation methods, which are shown in this study.

Methods: In cancers, invasive and metastatic phenotypes could be enhanced by stimulation of proliferation rate, decreased adhesion with simultaneous increase of motility and migration potential. For such reasons, the Ionizing Radiation (IR) stimulated proliferation; migration with lowered adhesiveness of cancer Me45 and normal fibroblasts NHDF were studied. Using impedance measurements technique for live cells, the adhesion of cells after IR exposition was assessed. Additionally proliferation and migration potential, based on standard Wound Healing assay were evaluated by timelapse microscopic observations.

Results: We found simulative IR dose-ranges (0.2-2 Gy) for Me45 and NHDF cells, with higher proliferation and adhesion rates. On the other hand, lethal impact of IR (10-12 Gy) on both the cell lines was indicated.

Conclusion: Over-confluence cell populations, characterized with high crowd and contact inhibition could modulate invasiveness of individual cells, convert them to display migration phenotype and advance motility, especially after radiotherapy treatments.

Keywords: Cell migration, ionizing radiation, time-lapse microscopy, wound healing assay, cell adhesion, invasive phenotype, Me45 melanoma cancer cells.

[1]
Heylmann, D.; Rödel, F.; Kindler, T.; Kaina, B. Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim. Biophys. Acta, 2014, 1846(1), 121-129.
[PMID: 24797212]
[2]
Borràs-Fresneda, M.; Barquinero, J.F.; Gomolka, M.; Hornhardt, S.; Rössler, U.; Armengol, G.; Barrios, L. Differences in DNA repair capacity, cell death and transcriptional response after irradiation between a radiosensitive and a radioresistant cell line. Sci. Rep., 2016, 6(June), 27043.
[http://dx.doi.org/10.1038/srep27043] [PMID: 27245205]
[3]
Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 2011, 3(12) a005058
[http://dx.doi.org/10.1101/cshperspect.a005058]
[4]
Filipe, E.C.; Chitty, J.L.; Cox, T.R. Charting the unexplored extracellular matrix in cancer. Int. J. Exp. Pathol., 2018, 99(2), 58-76.
[http://dx.doi.org/10.1111/iep.12269] [PMID: 29671911]
[5]
Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol., 2012, 196(4), 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[6]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[7]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[8]
Trout, A.T.; Rabinowitz, R.S.; Platt, J.F.; Elsayes, K.M. Melanoma metastases in the abdomen and pelvis: Frequency and patterns of spread. World J. Radiol., 2013, 5(2), 25-32.
[http://dx.doi.org/10.4329/wjr.v5.i2.25] [PMID: 23494131]
[9]
Zbytek, B.; Carlson, J.A.; Granese, J.; Ross, J.; Mihm, M.C., Jr; Slominski, A. Current concepts of metastasis in melanoma. Expert. Rev. Dermatol., 2008, 3(5), 569-585.
[http://dx.doi.org/10.1586/17469872.3.5.569] [PMID: 19649148]
[10]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[11]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[12]
Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep., 2014, 15(12), 1243-LP- 1253.,
[http://dx.doi.org/10.15252/embr.201439246]
[13]
Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res., 2017, 7(5), 1016-1036.
[PMID: 28560055]
[14]
Hoek, K.S.; Eichhoff, O.M.; Schlegel, N.C.; Döbbeling, U.; Kobert, N.; Schaerer, L.; Hemmi, S.; Dummer, R. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008, 2008, 68(3), 650-656.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2491]
[15]
Tse, J.M.; Cheng, G.; Tyrrell, J.A.; Wilcox-Adelman, S.A.; Boucher, Y.; Jain, R.K.; Munn, L.L. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl. Acad. Sci. USA, 2012, 109(3), 911-916.
[http://dx.doi.org/10.1073/pnas.1118910109] [PMID: 22203958]
[16]
Fujita, M.; Somasundaram, V.; Basudhar, D.; Cheng, R.Y.S.; Ridnour, L.A.; Higuchi, H.; Imadome, K.; No, J.H.; Bharadwaj, G.; Wink, D.A. Role of nitric oxide in pancreatic cancer cells exhibiting the invasive phenotype. Redox Biol., 2019, 22 101158
[http://dx.doi.org/10.1016/j.redox.2019.101158] [PMID: 30852389]
[17]
Luanpitpong, S.; Chanvorachote, P. Nitric oxide and aggressive behavior of lung cancer cells. Anticancer Res., 2015, 35(9), 4585-4592.
[PMID: 26254346]
[18]
Tolde, O.; Gandalovičová, A.; Křížová, A.; Veselý, P.; Chmelík, R.; Rosel, D.; Brábek, J. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep., 2018, 8(1), 12020.
[http://dx.doi.org/10.1038/s41598-018-30408-7] [PMID: 30104699]
[19]
Jonak, K.; Skonieczna, M. Badaniawpywu promieniowania UV na komorki ssaczew warunkach in vitro. Podstawy biotechnologii srodowiskowej - trendy, badania, implementacje. Praca zbiorowa. T. 3. Pod red; S. Zabczynskiego. Gliwice: Katedra Biotechnologii Srodowiskowej. Politechnika Slaska, 2010, 271-280, bibliogr. 9 poz.
[20]
Rzeszowska-Wolny, J.; Herok, R.; Widel, M.; Hancock, R. X-irradiation and bystander effects induce similar changes of transcript profiles in most functional pathways in human melanoma cells. DNA Repair (Amst.), 2009, 8(6), 732-738.
[http://dx.doi.org/10.1016/j.dnarep.2009.02.001] [PMID: 19272842]
[21]
Cha, J-J.; Park, Y.; Yun, J.; Kim, H.W.; Park, C.J.; Kang, G.; Jung, M.; Pak, B.; Jin, S.W.; Lee, J.H. Cell electrical impedance as a novel approach for studies on senescence not based on biomarkers. BioMed Res. Int., 2016, 2016 8484217
[http://dx.doi.org/10.1155/2016/8484217] [PMID: 27812531]
[22]
Qiu, Y.; Liao, R.; Zhang, X. Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing. Anal. Chem., 2008, 80(4), 990-996.
[http://dx.doi.org/10.1021/ac701745c] [PMID: 18215019]
[23]
Kramer-Marek, G.; Serpa, C.; Szurko, A.; Widel, M.; Sochanik, A.; Snietura, M.; Kus, P.; Nunes, R.M.; Arnaut, L.G.; Ratuszna, A. Spectroscopic properties and photodynamic effects of new lipophilic porphyrin derivatives: Efficacy, localisation and cell death pathways. J. Photochem. Photobiol. B, 2006, 84(1), 1-14.
[http://dx.doi.org/10.1016/j.jphotobiol.2005.12.011] [PMID: 16495073]
[24]
ACEA Biosciences Inc. Focus Application - Neurotoxicity. Cell Prolif., 2004, 1-6.
[25]
Skonieczna, M.; Bensz, W.; Student, S.; Biernacki, K.; Wideł, M. Activation and inactivation of DNA repair genes after irradiation. Automatyzacja procesow dyskretnych. Teoria i zastosowania. T. 2. Pod red. Andrzeja Swierniaka i Jolanty Krystek. Gliwice: Wydaw. Pracowni Komputerowej Jacka Skalmierskiego, 2014. s. 207-215, bibliogr. 11 poz.
[26]
Nickoloff, J.A.; Boss, M.K.; Allen, C.P.; LaRue, S.M. Translational research in radiation-induced DNA damage signaling and repair. Transl. Cancer Res., 2017, 6(Suppl. 5), S875-S891.
[http://dx.doi.org/10.21037/tcr.2017.06.02] [PMID: 30574452]
[27]
Willers, H.; Dahm-Daphi, J.; Powell, S.N. Repair of radiation damage to DNA. Br. J. Cancer, 2004, 90(7), 1297-1301.
[http://dx.doi.org/10.1038/sj.bjc.6601729] [PMID: 15054444]
[28]
Landriscina, M.; Maddalena, F.; Laudiero, G.; Esposito, F. Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid. Redox Signal., 2009, 11(11), 2701-2716.
[http://dx.doi.org/10.1089/ars.2009.2692] [PMID: 19778285]
[29]
Rzeszowska-Wolny, J.; Widel, M.; Cieslar-Pobuda, A.; Lalik, A.; Skonieczna, M.; Jaksik, R. Reactive oxygen species may play a role in ionizing radiation-induced bystander effects and regulation of mRNA levels by microRNAs. Eur. J. Cancer, 2012, 48, S271-S272.
[http://dx.doi.org/10.1016/S0959-8049(12)71729-X]
[30]
Chaudhry, M.A.; Omaruddin, R.A. Differential regulation of microRNA expression in irradiated and bystander cells. Mol. Biol. (Mosk.), 2012, 46(4), 634-643.
[PMID: 23113353]
[31]
Assanga, I. Cell growth curves for different cell lines and their relationship with biological activities. Int. J. Biotechnol. Mol. Biol. Res., 2014, 4(4), 60-70.
[http://dx.doi.org/10.5897/IJBMBR2013.0154]
[32]
Fernández Núñez, E.G.; Leme, J.; de Almeida Parizotto, L.; de Rezende, A.G.; da Costa, B.L.V.; Boldorini, V.L.L.; Jorge, S.A.C.; Astray, R.M.; Pereira, C.A.; Caricati, C.P.; Tonso, A. Approach toward an efficient inoculum preparation stage for suspension BHK-21 cell culture. Cytotechnology, 2016, 68(1), 95-104.
[http://dx.doi.org/10.1007/s10616-014-9756-6] [PMID: 24942228]
[33]
Koblinski, J.E.; Wu, M.; Demeler, B.; Jacob, K.; Kleinman, H.K. Matrix cell adhesion activation by non-adhesion proteins. J. Cell Sci., 2005, 118(Pt 13), 2965-2974.
[http://dx.doi.org/10.1242/jcs.02411] [PMID: 15976454]
[34]
Widel, M.; Krzywon, A.; Gajda, K.; Skonieczna, M. Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. Free Radic. Biol. Med., 2014, 68, 278-287.
[35]
Saenko, Y.; Cieslar-Pobuda, A.; Skonieczna, M.; Rzeszowska-Wolny, J. Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation. Radiat. Res., 2013, 180(4), 360-366.
[http://dx.doi.org/10.1667/RR3247.1] [PMID: 24033192]
[36]
Ciesielska, S.; Bil, P.; Gajda, K.; Poterala-Hejmo, A.; Hudy, D.; Rzeszowska-Wolny, J. Cell type-specific differences in redox regulation and proliferation after low UVA doses. PLoS One, 2019, 14(1)e0205215


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 7
Year: 2020
Page: [642 - 652]
Pages: 11
DOI: 10.2174/1389201021666191224121206
Price: $65

Article Metrics

PDF: 32
HTML: 1