Nano-Based Drug Delivery System: Recent Strategies for the Treatment of Ocular Disease and Future Perspective

Author(s): Zufika Qamar, Farheen Fatima Qizilbash, Mohammad Kashif Iqubal, Asgar Ali, Jasjeet Kaur Narang, Javed Ali, Sanjula Baboota*

Journal Name: Recent Patents on Drug Delivery & Formulation

Volume 13 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The structure of the eye is very complex in nature which makes it a challenging task for pharmaceutical researchers to deliver the drug at the desired sites via different routes of administration. The development of the nano-based system helped in delivering the drug in the desired concentration. Improvement in penetration property, bioavailability, and residence time has all been achieved by encapsulating drugs into liposomes, dendrimers, solid lipid nanoparticle, nanostructured lipid carrier, nanoemulsion, and nanosuspension. This review puts emphasis on the need for nanomedicine for ocular drug delivery and recent developments in the field of nanomedicine along with recent patents published in the past few years.

Keywords: Ocular drug delivery system, nanomedicine, hydrogels, solid lipid nanocarriers, nanostructured lipid carriers, nanoemulsion, inorganic nanoparticles, patents.

[1]
Wadhwa, S.; Paliwal, R.; Paliwal, S.R.; Vyas, S.P. Nanocarriers in ocular drug delivery: an update review. Curr. Pharm. Des., 2009, 15(23), 2724-2750.
[http://dx.doi.org/10.2174/138161209788923886] [PMID: 19689343]
[2]
Urquhart, A.J.; Eriksen, A.Z. Recent developments in liposomal drug delivery systems for the treatment of retinal diseases. Drug Discov. Today, 2019, 24(8), 1660-1668.
[http://dx.doi.org/10.1016/j.drudis.2019.04.004] [PMID: 30958994]
[3]
Patil, P.; Harak, K.; Saudagar, R. The solid lipid nanoparticles A review. J. Drug Deliv. Ther., 2019, 9(3), 525-530.
[4]
Özdemir, S.; Çelik, B.; Üner, M. In: Properties and therapeutic potential of solid lipid nanoparticles and nanostructured lipid carriers as promising colloidal drug delivery systems. Holban AM, and Grumezescu AM (Eds). Materials for Biomedical Engineering. Elsevier 2019: 457-505.
[http://dx.doi.org/10.1016/B978-0-12-816913-1.00015-5]
[5]
Rodríguez Villanueva, J.; Navarro, M.G.; Rodríguez Villanueva, L. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. Int. J. Pharm., 2016, 511(1), 359-366.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.031] [PMID: 27436708]
[6]
Mandal, A.; Bisht, R.; Rupenthal, I.D.; Mitra, A.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J. Control. Release, 2017, 248(248), 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[7]
Meng, T.; Kulkarni, V.; Simmers, R.; Brar, V.; Xu, Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov. Today, 2019, 24(8), 1524-1538.
[http://dx.doi.org/10.1016/j.drudis.2019.05.006] [PMID: 31102733]
[8]
Venkatraman, S; Natarajan, JV; Howden, T; Boey, F Stable liposomal formulations for ocular drug delivery. US9/956,195 (2018).
[9]
Venkatraman, S; Natarajan, JV; Wong, T; Boey, YC Liposomal formulation for ocular drug delivery. US10/272,040 (2019).
[10]
Venkatraman, S; Joseph, RR; Boey, YC Subconjunctival depot forming formulations for ocular drug delivery. US16/095,269 (2019).
[11]
Fullwood, NJ Glycosaminoglycan-coated metallic nanoparticles and uses thereof. US15/560,972 (2018).
[12]
Joseph, R.R.; Venkatraman, S.S. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine (Lond.), 2017, 12(6), 683-702.
[http://dx.doi.org/10.2217/nnm-2016-0379] [PMID: 28186436]
[13]
Bhattacharjee, A.; Das, P.J.; Adhikari, P.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur. J. Ophthalmol., 2019, 29(1), 113-126.
[http://dx.doi.org/10.1177/1120672118769776] [PMID: 29756507]
[14]
Yadav, K.S.; Rajpurohit, R.; Sharma, S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci., 2019, 221, 362-376.
[http://dx.doi.org/10.1016/j.lfs.2019.02.029] [PMID: 30797820]
[15]
Mishra, G.P.; Bagui, M.; Tamboli, V.; Mitra, A.K. Recent applications of liposomes in ophthalmic drug delivery. J. Drug Deliv., 2011, 2011863734
[http://dx.doi.org/10.1155/2011/863734] [PMID: 21490757]
[16]
Geroski, D.H.; Edelhauser, H.F. Drug delivery for posterior segment eye disease. Invest. Ophthalmol. Vis. Sci., 2000, 41(5), 961-964.
[PMID: 10752928]
[17]
Huang, Y.; Tao, Q.; Hou, D.; Hu, S.; Tian, S.; Chen, Y.; Gui, R.; Yang, L.; Wang, Y. A novel ion-exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride. Int. J. Nanomedicine, 2017, 12, 1731-1745.
[http://dx.doi.org/10.2147/IJN.S122747] [PMID: 28280338]
[18]
Altamirano-Vallejo, J.C.; Navarro-Partida, J.; Gonzalez-De la Rosa, A.; Hsiao, J.H.; Olguín-Gutierrez, J.S.; Gonzalez-Villegas, A.C.; Keller, B.C.; Bouzo-Lopez, L.; Santos, A. Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations for vitreoretinal drug delivery. J. Ocul. Pharmacol. Ther., 2018, 34(5), 416-425.
[http://dx.doi.org/10.1089/jop.2017.0099] [PMID: 29584529]
[19]
Li, J.; Cheng, T.; Tian, Q.; Cheng, Y.; Zhao, L.; Zhang, X.; Qu, Y. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Deliv., 2019, 26(1), 188-198.
[http://dx.doi.org/10.1080/10717544.2019.1571122] [PMID: 30835587]
[20]
Sahoo, S.K.; Dilnawaz, F.; Krishnakumar, S. Nanotechnology in ocular drug delivery. Drug Discov. Today, 2008, 13(3-4), 144-151.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[21]
Dong, Y.; Dong, P.; Huang, D.; Mei, L.; Xia, Y.; Wang, Z.; Pan, X.; Li, G.; Wu, C. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur. J. Pharm. Biopharm., 2015, 91, 82-90.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.018] [PMID: 25643990]
[22]
de Sá, F.A.P.; Taveira, S.F.; Gelfuso, G.M.; Lima, E.M.; Gratieri, T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf. B Biointerfaces, 2015, 133, 331-338.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.036] [PMID: 26123854]
[23]
Sharma, R.; Dua, J.S.; Prasad, D.N.; Hira, S. Advancement in novel drug delivery system: Niosomes. J. Drug Deliv. Ther., 2019, 9(3-s), 995-1001.
[24]
Biswas, G.R.; Majee, S.B. Niosomes in ocular drug delivery. Eur. J. Pharm. Med. Res., 2017, 4(7), 813-819.
[25]
Allam, A.; El-Mokhtar, M.A.; Elsabahy, M. Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. J. Pharm. Pharmacol., 2019, 71(8), 1209-1221.
[http://dx.doi.org/10.1111/jphp.13106] [PMID: 31124593]
[26]
El-Nabarawi, M.A.; Abd El Rehem, R.T.; Teaima, M.; Abary, M.; El-Mofty, H.M.; Khafagy, M.M.; Lotfy, N.M.; Salah, M. Natamycin niosomes as a promising ocular nanosized delivery system with ketorolac tromethamine for dual effects for treatment of candida rabbit keratitis; in vitro/in vivo and histopathological studies. Drug Dev. Ind. Pharm., 2019, 45(6), 922-936.
[http://dx.doi.org/10.1080/03639045.2019.1579827] [PMID: 30744431]
[27]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[28]
Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[29]
zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[http://dx.doi.org/10.1016/S0939-6411(97)00150-1] [PMID: 9704911]
[30]
Rostami, E.; Kashanian, S.; Azandaryani, A.H.; Faramarzi, H.; Dolatabadi, J.E.; Omidfar, K. Drug targeting using solid lipid nanoparticles. Chem. Phys. Lipids, 2014, 181, 56-61.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.03.006] [PMID: 24717692]
[31]
Seyfoddin, A.; Al-Kassas, R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev. Ind. Pharm., 2013, 39(4), 508-519.
[http://dx.doi.org/10.3109/03639045.2012.665460] [PMID: 22424312]
[32]
Kaur, I.P.; Kanwar, M. Ocular preparations: the formulation approach. Drug Dev. Ind. Pharm., 2002, 28(5), 473-493.
[http://dx.doi.org/10.1081/DDC-120003445] [PMID: 12098838]
[33]
Kaur, I.P.; Rana, C.; Singh, H. Development of effective ocular preparations of antifungal agents. J. Ocul. Pharmacol. Ther., 2008, 24(5), 481-493.
[http://dx.doi.org/10.1089/jop.2008.0031] [PMID: 18788998]
[34]
Cavalli, R.; Gasco, M.R.; Chetoni, P.; Burgalassi, S.; Saettone, M.F. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm., 2002, 238(1-2), 241-245.
[http://dx.doi.org/10.1016/S0378-5173(02)00080-7] [PMID: 11996827]
[35]
Eid, H.M.; Elkomy, M.H.; El Menshawe, S.F.; Salem, H.F. Development, Optimization, and In vitro/In vivo characterization of enhanced lipid nanoparticles for ocular delivery of ofloxacin: The influence of pegylation and chitosan coating. AAPS PharmSciTech, 2019, 20(5), 183.
[http://dx.doi.org/10.1208/s12249-019-1371-6] [PMID: 31054011]
[36]
Singh, M.; Guzman-Aranguez, A.; Hussain, A.; Srinivas, C.S.; Kaur, I.P. Solid lipid nanoparticles for ocular delivery of isoniazid: evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine (Lond.), 2019, 14(4), 465-491.
[http://dx.doi.org/10.2217/nnm-2018-0278] [PMID: 30694726]
[37]
Khames, A.; Khaleel, M.A.; El-Badawy, M.F.; El-Nezhawy, A.O.H. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int. J. Nanomedicine, 2019, 14, 2515-2531.
[http://dx.doi.org/10.2147/IJN.S190502] [PMID: 31040672]
[38]
Tatke, A.; Dudhipala, N.; Janga, K.Y.; Balguri, S.P.; Avula, B.; Jablonski, M.M.; Majumdar, S. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies. Nanomaterials (Basel), 2018, 9(1), 33.
[http://dx.doi.org/10.3390/nano9010033] [PMID: 30591688]
[39]
Ahmad, I.; Pandit, J.; Sultana, Y.; Mishra, A.K.; Hazari, P.P.; Aqil, M. Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: Characterization, pharmacokinetic and deposition study. Mater. Sci. Eng. C, 2019, 100, 959-970.
[http://dx.doi.org/10.1016/j.msec.2019.03.060] [PMID: 30948132]
[40]
Salvi, V.R.; Pawar, P. Nanostructured Lipid Carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[41]
Almeida, H.; Lobão, P.; Frigerio, C.; Fonseca, J.; Silva, R.; Sousa Lobo, J.M.; Amaral, M.H. Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen. Pharm. Dev. Technol., 2017, 22(3), 336-349.
[http://dx.doi.org/10.3109/10837450.2015.1125922] [PMID: 28240141]
[42]
Pandey, P.; Dahiya, M. A brief review on inorganic nanoparticles. J Crit Rev, 2016, 3(3), 18-26.
[43]
Mohammadpour, R.; Dobrovolskaia, M.A.; Cheney, D.L.; Greish, K.F.; Ghandehari, H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv. Drug Deliv. Rev., 2019, 144, 112-132.
[http://dx.doi.org/10.1016/j.addr.2019.07.006] [PMID: 31295521]
[44]
Masse, F.; Ouellette, M.; Lamoureux, G.; Boisselier, E. Gold nanoparticles in ophthalmology. Med. Res. Rev., 2019, 39(1), 302-327.
[http://dx.doi.org/10.1002/med.21509] [PMID: 29766541]
[45]
Li, Y.J.; Luo, L.J.; Harroun, S.G.; Wei, S.C.; Unnikrishnan, B.; Chang, H.T.; Huang, Y.F.; Lai, J.Y.; Huang, C.C. Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale, 2019, 11(12), 5580-5594.
[http://dx.doi.org/10.1039/C9NR00376B] [PMID: 30860532]
[47]
Wang, Y.; Xia, R.; Hu, H.; Peng, T. Biosynthesis, characterization and cytotoxicity of gold nanoparticles and their loading with N-acetylcarnosine for cataract treatment. J. Photochem. Photobiol. B, 2018, 187, 180-183.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.08.014] [PMID: 30172104]
[48]
Maulvi, F.A.; Patil, R.J.; Desai, A.R.; Shukla, M.R.; Vaidya, R.J.; Ranch, K.M.; Vyas, B.A.; Shah, S.A.; Shah, D.O. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation. Acta Biomater., 2019, 86, 350-362.
[http://dx.doi.org/10.1016/j.actbio.2019.01.004] [PMID: 30625414]
[49]
Kim, S.N.; Ko, S.A.; Park, C.G.; Lee, S.H.; Huh, B.K.; Park, Y.H.; Kim, Y.K.; Ha, A.; Park, K.H.; Choy, Y.B. Amino-functionalized mesoporous silica particles for ocular delivery of brimonidine. Mol. Pharm., 2018, 15(8), 3143-3152.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00215] [PMID: 30020792]
[50]
Özsoy, Y.; Güngör, S.; Kahraman, E.; Durgun, M.E. Polymeric micelles as a novel carrier for ocular drug delivery. . In: Mihai A, (editor). Nanoarchitectonics in biomedicine. Oxford: William Andrew Publishing. 2019; 1: pp. 85-117.
[51]
Li, M.; Lan, J.; Li, X.; Xin, M.; Wang, H.; Zhang, F.; Lu, X.; Zhuang, Z.; Wu, X. Novel ultra-small micelles based on ginsenoside Rb1: a potential nanoplatform for ocular drug delivery. Drug Deliv., 2019, 26(1), 481-489.
[http://dx.doi.org/10.1080/10717544.2019.1600077] [PMID: 30957571]
[52]
Xu, L.; Qiu, W.X.; Liu, W.L. PLA–PEG micelles loaded with a classic vasodilator for oxidative cataract prevention. ACS Biomater. Sci. Eng., 2019, 5(2), 407-412.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01089]
[53]
Mandal, A.; Patel, P.; Pal, D.; Mitra, A.K. Multi-layered nanomicelles as self-assembled nanocarrier systems for ocular peptide delivery. AAPS PharmSciTech, 2019, 20(2), 66.
[http://dx.doi.org/10.1208/s12249-018-1267-x] [PMID: 30627825]
[54]
Wang, X.; Wang, S.; Zhang, Y. Advance of the application of nano-controlled release system in ophthalmic drug delivery. Drug Deliv., 2016, 23(8), 2897-2901.
[http://dx.doi.org/10.3109/10717544.2015.1116025] [PMID: 26635087]
[55]
Attar, M.; Shen, J.; Ling, K.H.; Tang-Liu, D. Ophthalmic drug delivery considerations at the cellular level: drug-metabolising enzymes and transporters. Expert Opin. Drug Deliv., 2005, 2(5), 891-908.
[http://dx.doi.org/10.1517/17425247.2.5.891] [PMID: 16296785]
[56]
Patel, M.H.; Patel, B.U.; Shah, C.; Akbari, B. Formulation and development of nanosuspension as an alternative approach for solubility and dissolution enhancement of aceclofenac. IJAP, 2018, 7(5), 33-47.
[57]
Güven, U.M.; Yenilmez, E. Olopatadine hydrochloride loaded Kollidon® SR nanoparticles for ocular delivery: Nanosuspension formulation and in vitro-in vivo evaluation. J. Drug Deliv. Sci. Technol., 2019, 51, 506-512.
[http://dx.doi.org/10.1016/j.jddst.2019.03.016]
[58]
Ahuja, M.; Dhake, A.S.; Sharma, S.K.; Majumdar, D.K. Diclofenac-loaded Eudragit S100 nanosuspension for ophthalmic delivery. J. Microencapsul., 2011, 28(1), 37-45.
[http://dx.doi.org/10.3109/02652048.2010.523794] [PMID: 21171815]
[59]
Ahuja, M.; Verma, P.; Bhatia, M. Preparation and evaluation of chitosan–itraconazole co-precipitated nanosuspension for ocular delivery. J. Exp. Nanosci., 2015, 10(3), 209-221.
[http://dx.doi.org/10.1080/17458080.2013.822108]
[60]
Barar, J.; Aghanejad, A.; Fathi, M.; Omidi, Y. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts, 2016, 6(1), 49-67.
[http://dx.doi.org/10.15171/bi.2016.07] [PMID: 27340624]
[61]
Liu, W.; Lee, B.S.; Mieler, W.F.; Kang-Mieler, J.J. Biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of bioactive aflibercept in vitro. Curr. Eye Res., 2019, 44(3), 264-274.
[http://dx.doi.org/10.1080/02713683.2018.1533983] [PMID: 30295090]
[62]
Silva, D.; de Sousa, H.C.; Helena Gil, M. Moxifloxacin imprinted silicon based hydrogels for sustained ocular release. Ann. Med., 2019, 51, 103-104.
[http://dx.doi.org/10.1080/07853890.2018.1562708]
[63]
Anton, N.; Benoit, J.P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates-a review. J. Control. Release, 2008, 128(3), 185-199.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.007] [PMID: 18374443]
[64]
Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev. Ind. Pharm., 2010, 36(11), 1330-1339.
[http://dx.doi.org/10.3109/03639041003801885] [PMID: 20545523]
[65]
Alany, R.G.; Rades, T.; Nicoll, J.; Tucker, I.G.; Davies, N.M. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J. Control. Release, 2006, 111(1-2), 145-152.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.020] [PMID: 16426694]
[66]
Mahboobian, M.M.; Seyfoddin, A.; Aboofazeli, R.; Foroutan, S.M.; Rupenthal, I.D. Brinzolamide-loaded nanoemulsions: ex vivo transcorneal permeation, cell viability and ocular irritation tests. Pharm. Dev. Technol., 2019, 24(5), 600-606.
[http://dx.doi.org/10.1080/10837450.2018.1547748] [PMID: 30472913]
[67]
Shah, J.; Nair, A.B.; Jacob, S.; Patel, R.K.; Shah, H.; Shehata, T.M.; Morsy, M.A. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics, 2019, 11(5), 230.
[http://dx.doi.org/10.3390/pharmaceutics11050230] [PMID: 31083593]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 4
Year: 2019
Page: [246 - 254]
Pages: 9
DOI: 10.2174/1872211314666191224115211

Article Metrics

PDF: 19
HTML: 3
EPUB: 1
PRC: 2