Tetraamminecopper(II) Sulfate Monohydrate in Oxidative Azide-olefin Cyclo-addition and Three-component Click Reaction

Author(s): Jasmin Sultana, Diganta Sarma*

Journal Name: Current Organic Synthesis

Volume 17 , Issue 1 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Introduction: An effective Cu-complex, [Cu(NH3)4SO4 • H2O] was prepared conveniently from the inexpensive and easily available starting reagents in a simple route.

Materials and Methods: Excellent reactivity of the catalyst was observed towards two competent clickcycloadditions: (a) oxidative cycloaddition of azides with electron-poor olefins and (b) one-pot cycloaddition of alkynes with boronic acid and sodium azide under “click-appropriate” conditions.

Results: No external oxidant, short reaction time, high product yield, wide substrate scope, and aqueous solvent media make the azide-olefin cycloaddition approach a greener route in contrast to the reported methods.

Conclusion: The newly developed mild, green, and rapid three-component strategy shows product diversity with superb yields at room temperature by reducing the synthetic process time and using only 1 mol % of the synthesized copper complex.

Keywords: Ammoniated Cu-complex, OAOC, boronic acid, aqueous media, regioselective, 1, 2, 3-triazole.

(a)Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.Available at.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
(b)Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res.Rev.,, 1996, 16(1), 3-50.Available at.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1 ‹3::AID-MED1› 3.0.CO;2-6.] [PMID: 8788213]
(c)Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.Available at.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
(d)Angell, Y.L; Burgess, K. Peptidomimetics via copper-catalyzed azidealkyne cycloadditions. Chem. Soc. Rev.,, 2007, 36(10), 1674-1689.Available at.
[http://dx.doi.org/10.1039/b701444a.] [PMID: 17721589]
Kolb, H.C.; Finnand, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed.,, 2001, 40, 2004-2021.Available at.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11‹2004::AID-ANIE2004 ›3.0.CO;2-5]
(a)Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.Available at.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
(b)Whiting, M.; Tripp, J.C.; Lin, Y-C.; Lindstrom, W.; Olson, A.J.; Elder, J.H.; Sharpless, K.B.; Fokin, V.V. Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J. Med. Chem., 2006, 49(26), 7697-7710.Available at.
[http://dx.doi.org/10.1021/jm060754] [PMID: 17181152]
Hawker, C.J.; Fokin, V.V.; Finn, M.G.; Sharpless, K.B. Bringing efficiency to materials synthesis: The philosophy of click chemistry. Aust. J. Chem., 2007, 60, 381.Available at.
(a)Link, A.J.; Tirrell, D.A. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J. Am. Chem. Soc., 2003, 125(37), 11164-11165.Available at.
[http://dx.doi.org/10.1021/ja036765z] [PMID: 16220915]
(b)Wang, Q.; Chan, T.R.; Hilgraf, R.; Fokin, V.V.; Sharpless, K.B.; Finn, M.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192. c) Lutz, J.-F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv. Drug Deliv. Rev., 2008, 60, 958.
(a)Evans, R.A. The rise of azide–alkyne 1,3-dipolar ‘click’ cycloaddition and its application to polymer science and surface modification. Aust. J. Chem., 2007, 60, 384.Available at.
(b)Johnson, J.A.; Koberstein, J.T.; Finn, M.G.; Turro, N.J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper‐catalyzed azide‐alkyne cycloaddition “click” chemistry. Macromol. Rapid Commun., 2008, 29, 1052.Available at.
(a)Huisgen, R. Angew. 1,3‐dipolar cycloadditions. past and future. Chem. Int. Ed. Engl., 1963, 2, 565-598.Available at.
(b)Huisgen, R. Kinetics and mechanism of 1,3‐dipolar cycloadditions. Angew. Chem. Int. Ed. Engl., 1963, 2, 633-645.Available at.
(c)Huisgen, R. 1.3‐ dipolar cycloadditions review and outlook. Angew. Chem., 1963, 75, 604-637.Available at.
(d)Huisgen, R. Kinetics and mechanism of 1.3 ‐ dipolar cycloadditions. Angew. Chem., 1963, 75, 742-754.Available at.
(a)Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.Available at.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
(b)Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed.,, 2002, 41, 2596-2599.Available at.
(a)Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.Available at.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
(b)Rasmussen, L.K.; Boren, B.C.; Fokin, V.V. Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org. Lett., 2007, 9(26), 5337-5339.Available at.
[http://dx.doi.org/10.1021/ol701912s] [PMID: 18052070]
(c)Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. J. Am. Chem. Soc., 2008, 130(28), 8923-8930.Available at.
[http://dx.doi.org/10.1021/ja0749993] [PMID: 18570425]
(a)Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. Org. Lett., 2004, 6(8), 1237-1240.Available at.
[http://dx.doi.org/10.1021/ol0499203] [PMID: 15070306]
(b)Wu, W-M.; Deng, J.; Li, Y.; Chen, Q-Y. Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazole via one-pot reaction promoted by copper(i) salt. Synthesis, 2005, 8, 1314.Available at.
(c)Majireck, M.M.; Weinreb, S.M.J. A study of the scope and regioselectivity of the ruthenium-catalyzed [3 + 2]-cycloaddition of azides with internal alkynes. J. Org. Chem., 2006, 71(22), 8680-8683.Available at.
[http://dx.doi.org/10.1021/jo061688m] [PMID: 17064059]
(d)Drez-Gonzalez, S.; Stevens, D.D.; Nolan, S.P. Chem. Commun. (Camb.), 2008, 4747Available at.
(e)Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Regioselective rapid synthesis of fully substituted 1,2,3-triazoles mediated by propargyl cations. Org. Lett., 2013, 15(20), 5222-5225.Available at.
[http://dx.doi.org/10.1021/ol402387w] [PMID: 24087927]
(a)Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry, 2008, 14(30), 9143-9147.Available at.
[http://dx.doi.org/10.1002/chem.200801325.] [PMID: 18767077]
(b)Danence, L.J.T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Organocatalytic enamide-azide cycloaddition reactions: Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles. Chemistry, 2011, 17(13), 3584-3587.Available at.
[http://dx.doi.org/10.1002/chem.201002775.] [PMID: 21341323]
(c)Wang, L.; Peng, S.; Danence, L.J.T.; Gao, Y.; Wang, J. Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles. Chemistry, 2012, 18(19), 6088-6093.Available at.
[http://dx.doi.org/10.1002/chem.201103393.] [PMID: 22461307]
(d)Seus, N.; Goncalves, L.C.; Deobald, A.M.; Savegnago, L.; Alves, D.; Paixao, M.W. Synthesis of arylselanyl-1H-1,2,3-triazole-4-carboxylates by organocatalytic cycloaddition of azidophenyl arylselenides with β-keto-esters. Tetrahedron, 2012, 68, 10456.Available at.
(e)Li, Z.L.; Xie, Y.; Zhou, W. Professor Wang Ju-yi’s experience on clinical application of Siguan points. Zhongguo Zhenjiu, 2013, 33(3), 255-257.
[PMID: 23713316]
(f)Ramachary, D.B.; Shashank, A.B. Organocatalytic triazole formation, followed by oxidative aromatization: Regioselective metal-free synthesis of benzotriazoles. Chemistry, 2013, 19(39), 13175-13181.Available at.
[http://dx.doi.org/10.1002/chem.201301412.] [PMID: 24038664]
(g)Ramachary, D.B.; Shashank, A.B.; Karthik, S. An organocatalytic azide–aldehyde [3+2] cycloaddition: High‐yielding regioselective synthesis of 1,4‐disubstituted 1,2,3‐triazoles. Angew. Chem. Int. Ed., 2014, 53, 10420.Available at.
(h)Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A metal‐free multicomponent cascade reaction for the regiospecific synthesis of 1,5‐disubstituted 1,2,3‐triazoles. Angew. Chem. Int. Ed., 2013, 52, 13265.Available at.
(i)Tian, L.; Hu, X-Q.; Li, Y.H.; Xu, P-F. Organocatalytic asymmetric multicomponent cascade reaction via 1,3-proton shift and [3+2] cycloaddition: an efficient strategy for the synthesis of oxindole derivatives. Chem. Commun. (Camb.), 2013, 49(65), 7213-7215.Available at.
[http://dx.doi.org/10.1039/c3cc43755h.] [PMID: 23838686]
Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. Synthesis of 4-aryl-1H-1,2,3-triazoles through TBAF-catalyzed [3 + 2] cycloaddition of 2-aryl-1-nitroethenes with TMSN3 under solvent-free conditions. J. Org. Chem., 2005, 70(16), 6526-6529.Available at.
[http://dx.doi.org/10.1021/jo0507845] [PMID: 16050724]
(a)Li, W.; Wang, J. Lewis base catalyzed aerobic oxidative intermolecular azide–zwitterion cycloaddition. Angew. Chem. Int. Ed., 2014, 53, 14186-14190.Available at.
(b)Li, W.; Du, Z.; Zhang, K.; Wang, J. Green Chem., 2015, 17, 781-784.Available at.
Janreddy, D.; Kavala, V.; Kuo, C.W.; Chen, W.C.; Ramesh, C.; Kotipalli, T.; Kuo, T.S.; Chen, M.L.; He, C.H.; Yao, C.F. Organocatalytic 1,3-dipolar cycloaddition reaction of α,β-unsaturated ketones with azides through iminium catalysis. Adv. Synth. Catal., 2013, 355, 2918-2927.Available at.
(a)Huisgen, R.; Szeimies, G.; Mobius, L. 1.3‐Dipolare Cycloadditionen, XXIV. Triazoline aus organischen Aziden und α.β‐ungesättigten Carbonylverbindungen oder Nitrilen. Chem. Ber., 1966, 99, 475-490.Available at.
(b)Broeckx, W.; Overbergh, N.; Samyn, C.; Smets, G.; L’abbe, G. Cycloaddition reactions of azides with electron-poor olefins: Isomerization and thermolysis of the resulting Δ2-triazolines. Tetrahedron, 1971, 27, 3527-3534.Available at.
(a)Husinec, S.; Porter, A.E.A.; Roberts, J.S.; Strachan, C.H. Some approaches to the synthesis of kainic acid. J. Chem. Soc., Perkin Trans., 1984, 1, 2517-2522.Available at.
(b)Anderson, G.T.; Henry, J.R.; Weinreb, S.M. High-pressure induced 1,3-dipolar cycloadditions of azides with electron-deficient olefins. J. Org. Chem., 1991, 56, 6946-6948.Available at.
(c)Prager, R.H.; Razzino, P. Heterocyclic synthesis with azides. iii. reactions of triazolines made from arylmethylidenemalonates. Aust. J. Chem., 1994, 47, 1375-1385.Available at.
(d)Yang, C-H.; Lee, L-T. ang, J.-H. Spiropyrazolines from tandem reaction of azides and alkyl vinyl ketones. Tetrahedron, 1994, 50, 12133-12142.Available at.
Janreddy, D.; Kavala, V.; Kuo, C-W.; Chen, W-C.; Ramesh, C.; Kotipalli, T.; Kuo, T-S.; Chen, M-L.; He, C-H.; Yao, C-F. Copper(i)‐catalyzed aerobic oxidative azide–alkene cyclo‐ addition: An efficient synthesis of substituted 1,2,3‐triazoles. Adv. Synth. Catal., 2013, 355, 2918-2927.Available at.
Zhang, Y.; Li, X.; Li, J.; Chen, J.; Meng, X.; Zhao, M.; Chen, B. CuO-promoted construction of N-2-aryl-substituted-1,2,3-triazoles via azide-chalcone oxidative cycloaddition and post-triazole arylation. Org. Lett., 2012, 14(1), 26-29.Available at.
[http://dx.doi.org/10.1021/ol202718d] [PMID: 22133007]
Chen, Y.; Nie, G.; Zhang, Q.; Ma, S.; Li, H.; Hu, Q. Copper-catalyzed [3 + 2] cycloaddition/oxidation reactions between nitro-olefins and organic azides: highly regioselective synthesis of NO2-substituted 1,2,3-triazoles. Org. Lett., 2015, 17(5), 1118-1121.Available at.
[http://dx.doi.org/10.1021/ol503687w] [PMID: 25695309]
Rohilla, S.; Patel, S.S.; Jain, N. Eur. J. Org. Chem., 2016, 847-854.Available at.
(a)Barral, K.; Moorhouse, A.D.; Moses, J.E. Efficient conversion of aromatic amines into azides: A one-pot synthesis of triazole linkages. Org. Lett., 2007, 9(9), 1809-1811.Available at.
[http://dx.doi.org/10.1021/ol070527h] [PMID: 17391043]
(b)Guo, S.; Lim, M.H.; Huynh, H.V. Copper(i) heteroleptic bis(nhc) and mixed nhc/phosphine complexes: Syntheses and catalytic activities in the one-pot sequential cuaac reaction of aromatic amines. Organometallics, 2013, 32, 7225-7233.Available at.
(a)Zhu, W.; Ma, D. Synthesis of aryl azides and vinyl azides via proline-promoted CuI-catalyzed coupling reactions. Chem. Commun. (Camb.), 2004, (7), 888-889.Available at.
[http://dx.doi.org/10.1039/b400878b] [PMID: 15045114]
(b)Feldman, A.K.; Colasson, B.; Fokin, V.V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org. Lett., 2004, 6(22), 3897-3899.Available at.
[http://dx.doi.org/10.1021/ol048859z] [PMID: 15496058]
(c)Andersen, J.; Bolving, S.; Liang, X. Synlett, 2005, 2941-2947.
Mukherjee, N.; Ahammed, S.; Bhadra, S.; Ranu, B.C. Solvent-free one-pot synthesis of 1,2,3-triazole derivatives by the ‘Click’ reaction of alkyl halides or aryl boronic acids, sodium azide and terminal alkynes over a Cu/Al2O3 surface under ball-milling. Green Chem., 2013, 15, 389.Available at.
Anil Kumar, B.S.P.; Reddy, K.H.V.; Karnakar, K.; Satish, G.; Nageswar, Y.V.D. Copper on chitosan: An efficient and easily recoverable heterogeneous catalyst for one pot synthesis of 1,2,3-triazoles from aryl boronic acids in water at room temperature. Tetrahedron Lett., 2015, 56, 1968.Available at.
Prez, J.M.; Crosbie, P.; Lal, S.; Gonzalez, S.D. Low‐temperature preferential oxidation of carbon monoxide on pt3ni alloy nanoparticle catalyst with engineered surface (chemcatchem 1/2016). ChemCatChem, 2016, 8, 1-6.Available at.
Zhang, J.; Jin, G.; Xiao, S.; Wu, J.; Cao, S. Novel synthesis of 1,4,5-trisubstituted 1,2,3-triazoles via a one-pot three-component reaction of boronic acids, azide, and active methylene ketones. Tetrahedron, 2013, 69, 2352-2356.Available at.
Kaboudin, B.; Abedi, Y.; Yokomatsu, T. One-pot synthesis of 1,2,3-triazoles from boronic acids in water using Cu(II)-β-cyclodextrin complex as a nanocatalyst. Org. Biomol. Chem., 2012, 10(23), 4543-4548.
[http://dx.doi.org/10.1039/c2ob25061f] [PMID: 22576790]
Lua, J.; Maa, E.; Liub, Y.; Lia, Y.; Moa, L.; Zhang, Z. Cobalt(ii)-catalyzed remote C5-selective C–H sulfonylation of quinolines via insertion of sulfur dioxide. RSC Advances, 2017, 7, 51313-51317.
Kaboudin, B.; Mostafalua, R.; Yokomatsu, T. Fe3O4nanoparticle-supported Cu(ii)-β-cyclodextrin complex as a magnetically recoverable and reusable catalyst for the synthesis of symmetrical biaryls and 1,2,3-triazoles from aryl boronic acids. Green Chem., 2013, 15, 2266-2274.Available at.
Garg, A.; Ali, A.A.; Damarla, K.; Kumar, A.; Sarma, D. Aqueous bile salt accelerated cascade synthesis of 1,2,3-triazoles from arylboronic acids. Tetrahedron Lett., 2018, 59, 3975-4045.Available at.
(a)Clareen, S.S.; Marshall, S.R.; Price, K.E.; Royall, M.B.; Yoder, C.H.; Schaeffer, R.W. J. Chem. Educ., 2000, 77.
(b)Glemser, O.; Sauer, H. Tetraamminecopper (II) SulfateHandbook of Preparative Inorganic Chemistry; 2nd Ed., Academic Press: Cambridge,. , 1963, p. 11021.
Morosin, B. The crystal structures of copper tetraammine complexes. A. Acta Crystallogr., 1969, B25, 19-30.Available at.
Clareen, S.S.; Marshall, S.R.; Price, K.E.; Royall, M.B.; Yoder, C.H.; Schaeffer, R.W. J. Chem. Educ., 2002, 17, 904.
(a)McNulty, J.; Keskar, K.; Vemula, R. The first well-defined silver(I)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature. Chemistry, 2011, 17(52), 14727-14730.Available at.
[http://dx.doi.org/10.1002/chem.201103244] [PMID: 22125272]
(b)McNulty, J.; Keskar, K. Discovery of a robust and efficient homogeneous silver(i) catalyst for the cycloaddition of azides onto terminal alkynes. Eur. J. Org. Chem., 2012, 5462-5470.Available at.
(a)Speers, A.E.; Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol., 2004, 11(4), 535-546.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.012] [PMID: 15123248]
(b)Salic, A.; Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2415-2420.
[http://dx.doi.org/10.1073/pnas.0712168105] [PMID: 18272492]
Abel, G.R., Jr; Calabrese, Z.A.; Ayco, J.; Hein, J.E.; Ye, T. Measuring and suppressing the oxidative damage to DNA during cu(i)-catalyzed azide-alkyne cycloaddition. Bioconjug. Chem., 2016, 27(3), 698-704.Available at.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00665.] [PMID: 26829457]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [65 - 72]
Pages: 8
DOI: 10.2174/1570179417666191223152643
Price: $65

Article Metrics

PDF: 23
PRC: 1