Exploring the Evidence Implicating the Renin-Angiotensin System (RAS) in the Physiopathology of Mood Disorders

Author(s): Satyajit Mohite, Marsal Sanches, Antonio L. Teixeira*

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 6 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Mood disorders include Major Depressive Disorder (MDD), Bipolar Disorder (BD) and variations of both. Mood disorders has a public health significance with high comorbidity, suicidal mortality and economic burden on the health system. Research related to mood disorders has evolved over the years to relate it with systemic conditions. The Renin Angiotensin System (RAS) has been noticed to play major physiological roles beyond renal and cardiovascular systems. Recent studies have linked RAS not only with neuro-immunological processes, but also with psychiatric conditions like mood and anxiety disorders. In this comprehensive review, we integrated basic and clinical studies showing the associations between RAS and mood disorders. Animal studies on mood disorders models - either depression or mania - were focused on the reversal of behavioral and/or cognitive symptoms through the inhibition of RAS components like the Angiotensin- Converting Enzyme (ACE), Angiotensin II Type 1 receptor (AT1) or Mas receptors. ACE polymorphisms, namely insertion-deletion (I/D), were linked to mood disorders and suicidal behavior. Hypertension was associated with neurocognitive deficits in mood disorders, which reversed with RAS inhibition. Low levels of RAS components (renin activity or aldosterone) and mood symptoms improvement with ACE inhibitors or AT1 blockers were also observed in mood disorders. Overall, this review reiterates the strong and under-researched connection between RAS and mood disorders.

Keywords: Mood disorders, depression, bipolar disorder, renin-angiotensin system, angiotensin, Mas receptors.

Association, A.P. Diagnostic and statistical manual of mental disorders (DSM-5®); American Psychiatric Pub, 2013.
Alonso, J.; Petukhova, M.; Vilagut, G.; Chatterji, S.; Heeringa, S.; Üstün, T.B.; Alhamzawi, A.O.; Viana, M.C.; Angermeyer, M.; Bromet, E.; Bruffaerts, R.; de Girolamo, G.; Florescu, S.; Gureje, O.; Haro, J.M.; Hinkov, H.; Hu, C.Y.; Karam, E.G.; Kovess, V.; Levinson, D.; Medina-Mora, M.E.; Nakamura, Y.; Ormel, J.; Posada-Villa, J.; Sagar, R.; Scott, K.M.; Tsang, A.; Williams, D.R.; Kessler, R.C. Days out of role due to common physical and mental conditions: results from the WHO World Mental Health surveys. Mol. Psychiatry, 2011, 16(12), 1234-1246.
[http://dx.doi.org/10.1038/mp.2010.101] [PMID: 20938433]
Grande, I.; Goikolea, J.M.; de Dios, C.; González-Pinto, A.; Montes, J.M.; Saiz-Ruiz, J.; Prieto, E.; Vieta, E. Occupational disability in bipolar disorder: analysis of predictors of being on severe disablement benefit (PREBIS study data). Acta Psychiatr. Scand., 2013, 127(5), 403-411.
[http://dx.doi.org/10.1111/acps.12003] [PMID: 22924855]
Martinez-Aran, A.; Vieta, E.; Torrent, C.; Sanchez-Moreno, J.; Goikolea, J.M.; Salamero, M.; Malhi, G.S.; Gonzalez-Pinto, A.; Daban, C.; Alvarez-Grandi, S.; Fountoulakis, K.; Kaprinis, G.; Tabares-Seisdedos, R.; Ayuso-Mateos, J.L. Functional outcome in bipolar disorder: the role of clinical and cognitive factors. Bipolar Disord., 2007, 9(1-2), 103-113.
[http://dx.doi.org/10.1111/j.1399-5618.2007.00327.x] [PMID: 17391354]
World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. 2017, pp. 1-24.
Merikangas, K.R.; Jin, R.; He, J-P.; Kessler, R.C.; Lee, S.; Sampson, N.A.; Viana, M.C.; Andrade, L.H.; Hu, C.; Karam, E.G.; Ladea, M.; Medina-Mora, M.E.; Ono, Y.; Posada-Villa, J.; Sagar, R.; Wells, J.E.; Zarkov, Z. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch. Gen. Psychiatry, 2011, 68(3), 241-251.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.12] [PMID: 21383262]
Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1545-1602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
Hoang, U.; Stewart, R.; Goldacre, M.J. Mortality after hospital discharge for people with schizophrenia or bipolar disorder: retrospective study of linked English hospital episode statistics, 1999-2006. BMJ, 2011, 343, d5422.
[http://dx.doi.org/10.1136/bmj.d5422] [PMID: 21914766]
Novick, D.M.; Swartz, H.A.; Frank, E. Suicide attempts in bipolar I and bipolar II disorder: a review and meta-analysis of the evidence. Bipolar Disord., 2010, 12(1), 1-9.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00786.x] [PMID: 20148862]
Cipriani, A.; Barbui, C.; Geddes, J.R. Suicide, depression, and antidepressants. BMJ, 2005, 330, 373.
Hawton, K.; Sutton, L.; Haw, C.; Sinclair, J.; Harriss, L. Suicide and attempted suicide in bipolar disorder: a systematic review of risk factors. J. Clin. Psychiatry, 2005, 66(6), 693-704.
[http://dx.doi.org/10.4088/JCP.v66n0604] [PMID: 15960561]
Hawton, K.; Casañas I Comabella, C.; Haw, C.; Saunders, K. Risk factors for suicide in individuals with depression: a systematic review. J. Affect. Disord., 2013, 147(1-3), 17-28.
[http://dx.doi.org/10.1016/j.jad.2013.01.004] [PMID: 23411024]
Tondo, L.; Isacsson, G.; Baldessarini, R. Suicidal behaviour in bipolar disorder: risk and prevention. CNS Drugs, 2003, 17(7), 491-511.
[http://dx.doi.org/10.2165/00023210-200317070-00003] [PMID: 12751919]
Kato, T. Molecular genetics of bipolar disorder and depression. Psychiatry Clin. Neurosci., 2007, 61(1), 3-19.
[http://dx.doi.org/10.1111/j.1440-1819.2007.01604.x] [PMID: 17239033]
Craddock, N.; Forty, L. Genetics of affective (mood) disorders. Eur. J. Hum. Genet., 2006, 14(6), 660-668.
[http://dx.doi.org/10.1038/sj.ejhg.5201549] [PMID: 16721402]
Alloy, L.B.; Abramson, L.Y.; Urosevic, S.; Walshaw, P.D.; Nusslock, R.; Neeren, A.M. The psychosocial context of bipolar disorder: environmental, cognitive, and developmental risk factors. Clin. Psychol. Rev., 2005, 25(8), 1043-1075.
[http://dx.doi.org/10.1016/j.cpr.2005.06.006] [PMID: 16140445]
Brent, D.A. Risk factors for adolescent suicide and suicidal behavior: mental and substance abuse disorders, family environmental factors, and life stress. Suicide Life Threat. Behav., 1995, 25(Suppl.), 52-63.
[http://dx.doi.org/10.1111/j.1943-278X.1995.tb00490.x] [PMID: 8553429]
Strakowski, S.M.; Delbello, M.P.; Adler, C.M. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol. Psychiatry, 2005, 10(1), 105-116.
[http://dx.doi.org/10.1038/sj.mp.4001585] [PMID: 15340357]
Blumberg, H.P.; Kaufman, J.; Martin, A.; Whiteman, R.; Zhang, J.H.; Gore, J.C.; Charney, D.S.; Krystal, J.H.; Peterson, B.S. Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch. Gen. Psychiatry, 2003, 60(12), 1201-1208.
[http://dx.doi.org/10.1001/archpsyc.60.12.1201] [PMID: 14662552]
Ding, Y.; Lawrence, N.; Olié, E.; Cyprien, F.; le Bars, E.; Bonafé, A.; Phillips, M.L.; Courtet, P.; Jollant, F. Prefrontal cortex markers of suicidal vulnerability in mood disorders: a model-based structural neuroimaging study with a translational perspective. Transl. Psychiatry, 2015, 5(2)e516
[http://dx.doi.org/10.1038/tp.2015.1] [PMID: 25710122]
Price, J.L.; Drevets, W.C. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn. Sci. (Regul. Ed.), 2012, 16(1), 61-71.
[http://dx.doi.org/10.1016/j.tics.2011.12.011] [PMID: 22197477]
Rosenblat, J.D.; Cha, D.S.; Mansur, R.B.; McIntyre, R.S. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 53, 23-34.
[http://dx.doi.org/10.1016/j.pnpbp.2014.01.013] [PMID: 24468642]
Baubet, T.; Ranque, B.; Taïeb, O.; Bérezné, A.; Bricou, O.; Mehallel, S.; Moroni, C.; Belin, C.; Pagnoux, C.; Moro, M-R.; Guillevin, L.; Mouthon, L. Mood and anxiety disorders in systemic sclerosis patients. Presse Med., 2011, 40(2), e111-e119.
[http://dx.doi.org/10.1016/j.lpm.2010.09.019] [PMID: 21055901]
Kapczinski, F.; Dal-Pizzol, F.; Teixeira, A.L.; Magalhaes, P.V.; Kauer-Sant’Anna, M.; Klamt, F.; Pasquali, M.A.; Quevedo, J.; Gama, C.S.; Post, R. A systemic toxicity index developed to assess peripheral changes in mood episodes. Mol. Psychiatry, 2010, 15(8), 784-786.
[http://dx.doi.org/10.1038/mp.2009.112] [PMID: 20351717]
Micale, V.; Tamburella, A.; Leggio, G.M.; Mazzola, C.; Li Volsi, V.; Drago, F. Behavioral effects of saredutant, a tachykinin NK2 receptor antagonist, in experimental models of mood disorders under basal and stress-related conditions. Pharmacol. Biochem. Behav., 2008, 90(3), 463-469.
[http://dx.doi.org/10.1016/j.pbb.2008.04.003] [PMID: 18495229]
Rocha, N.P.; Simoes E Silva, A.C.; Prestes, T.R.R.; Feracin, V.; Machado, C.A.; Ferreira, R.N.; Teixeira, A.L.; de Miranda, A.S. RAS in the central nervous system: Potential role in neuropsychiatric disorders. Curr. Med. Chem., 2018, 25(28), 3333-3352.
[http://dx.doi.org/10.2174/0929867325666180226102358] [PMID: 29484978]
Saavedra, J.M.; Sánchez-Lemus, E.; Benicky, J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications. Psychoneuroendocrinology, 2011, 36(1), 1-18.
[http://dx.doi.org/10.1016/j.psyneuen.2010.10.001] [PMID: 21035950]
Mohite, S.; de Campos-Carli, S.M.; Rocha, N.P.; Sharma, S.; Miranda, A.S.; Barbosa, I.G.; Salgado, J.V.; Simoes-E-Silva, A.C.; Teixeira, A.L. Lower circulating levels of angiotensin-converting enzyme (ACE) in patients with schizophrenia. Schizophr. Res., 2018, 202, 50-54.
[http://dx.doi.org/10.1016/j.schres.2018.06.023] [PMID: 29925475]
Saab, Y.B.; Gard, P.R.; Yeoman, M.S.; Mfarrej, B.; El-Moalem, H.; Ingram, M.J. Renin-angiotensin-system gene polymorphisms and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(5), 1113-1118.
[http://dx.doi.org/10.1016/j.pnpbp.2007.04.002] [PMID: 17499413]
Hishimoto, A.; Shirakawa, O.; Nishiguchi, N.; Hashimoto, T.; Yanagi, M.; Nushida, H.; Ueno, Y.; Maeda, K. Association between a functional polymorphism in the renin-angiotensin system and completed suicide. J. Neural Transm. (Vienna), 2006, 113(12), 1915-1920.
[http://dx.doi.org/10.1007/s00702-006-0483-9] [PMID: 16736244]
Khoury, N.M.; Marvar, P.J.; Gillespie, C.F.; Wingo, A.; Schwartz, A.; Bradley, B.; Kramer, M.; Ressler, K.J. The renin-angiotensin pathway in posttraumatic stress disorder: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms. J. Clin. Psychiatry, 2012, 73(6), 849-855.
[http://dx.doi.org/10.4088/JCP.11m07316] [PMID: 22687631]
Braszko, J.J.; Karwowska-Polecka, W.; Halicka, D.; Gard, P.R. Captopril and enalapril improve cognition and depressed mood in hypertensive patients. J. Basic Clin. Physiol. Pharmacol., 2003, 14(4), 323-343.
[http://dx.doi.org/10.1515/JBCPP.2003.14.4.323] [PMID: 15198305]
Deicken, R.F. Captopril treatment of depression. Biol. Psychiatry, 1986, 21(14), 1425-1428.
[http://dx.doi.org/10.1016/0006-3223(86)90334-3] [PMID: 3539210]
Germain, L.; Chouinard, G. Treatment of recurrent unipolar major depression with captopril. Biol. Psychiatry, 1988, 23(6), 637-641.
[http://dx.doi.org/10.1016/0006-3223(88)90010-8] [PMID: 3281718]
Nasr, S.J.; Crayton, J.W.; Agarwal, B.; Wendt, B.; Kora, R. Lower frequency of antidepressant use in patients on renin-angiotensin-aldosterone system modifying medications. Cell. Mol. Neurobiol., 2011, 31(4), 615-618.
[http://dx.doi.org/10.1007/s10571-011-9656-7] [PMID: 21301954]
Zubenko, G.S.; Nixon, R.A. Mood-elevating effect of captopril in depressed patients. Am. J. Psychiatry, 1984, 141(1), 110-111.
[http://dx.doi.org/10.1176/ajp.141.1.110] [PMID: 6318579]
Arregui, A.; Mackay, A.V.; Spokes, E.G.; Iversen, L.L. Reduced activity of angiotensin-converting enzyme in basal ganglia in early onset schizophrenia. Psychol. Med., 1980, 10(2), 307-313.
[http://dx.doi.org/10.1017/S0033291700044068] [PMID: 6247736]
Overstreet, D.H. Modeling depression in animal models.Psychiatric Disorders; Kobeissy, F.; ED; Humana Press: Totowa, NJ, 2012, pp. 125-144.
Flaisher-Grinberg, S.; Overgaard, S.; Einat, H. Attenuation of high sweet solution preference by mood stabilizers: a possible mouse model for the increased reward-seeking domain of mania. J. Neurosci. Methods, 2009, 177(1), 44-50.
[http://dx.doi.org/10.1016/j.jneumeth.2008.09.018] [PMID: 18930764]
Peterson, C. Learned Helplessness. InThe Corsini Encyclopedia of Psychology; Weiner, I.B.; Craighead, W.E., Eds.; Wiley Online Library, 2010.
Henn, F.A.; Vollmayr, B. Stress models of depression: forming genetically vulnerable strains. Neurosci. Biobehav. Rev., 2005, 29(4-5), 799-804.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.019] [PMID: 15925700]
Hasler, G.; Drevets, W.C.; Gould, T.D.; Gottesman, I.I.; Manji, H.K. Toward constructing an endophenotype strategy for bipolar disorders. Biol. Psychiatry, 2006, 60(2), 93-105.
[http://dx.doi.org/10.1016/j.biopsych.2005.11.006] [PMID: 16406007]
Peet, M.; Peters, S. Drug-induced mania. Drug Saf., 1995, 12(2), 146-153.
[http://dx.doi.org/10.2165/00002018-199512020-00007] [PMID: 7766338]
Frey, B.N.; Valvassori, S.S.; Réus, G.Z.; Martins, M.R.; Petronilho, F.C.; Bardini, K.; Dal-Pizzol, F.; Kapczinski, F.; Quevedo, J. Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J. Psychiatry Neurosci., 2006, 31(5), 326-332.,
[PMID: 16951735]
Kato, T.; Kubota, M.; Kasahara, T. Animal models of bipolar disorder. Neurosci. Biobehav. Rev., 2007, 31(6), 832-842.
[http://dx.doi.org/10.1016/j.neubiorev.2007.03.003] [PMID: 17466374]
Gould, T.J.; Keith, R.A.; Bhat, R.V. Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav. Brain Res., 2001, 118(1), 95-105.
[http://dx.doi.org/10.1016/S0166-4328(00)00318-1] [PMID: 11163638]
el-Mallakh, R.S.; Harrison, L.T.; Li, R.; Changaris, D.G.; Levy, R.S. An animal model for mania: preliminary results. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1995, 19(5), 955-962.
[http://dx.doi.org/10.1016/0278-5846(95)00123-D] [PMID: 8539431]
Young, J.W.; Henry, B.L.; Geyer, M.A. Predictive animal models of mania: hits, misses and future directions. Br. J. Pharmacol., 2011, 164(4), 1263-1284.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01318.x] [PMID: 21410454]
Llorens-Cortes, C.; Mendelsohn, F.A. Organisation and functional role of the brain angiotensin system. J. Renin Angiotensin Aldosterone Syst., 2002, 3(Suppl. 1), S39-S48.
[http://dx.doi.org/10.3317/jraas.2002.029] [PMID: 12428219]
von Bohlen und Halbach, O.; Albrecht, D. The CNS renin-angiotensin system. Cell Tissue Res., 2006, 326(2), 599-616.
[http://dx.doi.org/10.1007/s00441-006-0190-8] [PMID: 16555051]
Bild, W.; Hritcu, L.; Stefanescu, C.; Ciobica, A. Inhibition of central angiotensin II enhances memory function and reduces oxidative stress status in rat hippocampus. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 43, 79-88.
[http://dx.doi.org/10.1016/j.pnpbp.2012.12.009] [PMID: 23266710]
de Souza Gomes, J.A.; de Souza, G.C.; Berk, M.; Cavalcante, L.M.; de Sousa, F.C.F.; Budni, J.; de Lucena, D.F.; Quevedo, J.; Carvalho, A.F.; Macêdo, D. Antimanic-like activity of candesartan in mice: Possible involvement of antioxidant, anti-inflammatory and neurotrophic mechanisms. Eur. Neuropsychopharmacol., 2015, 25(11), 2086-2097.
[http://dx.doi.org/10.1016/j.euroneuro.2015.08.005] [PMID: 26321203]
Almeida-Santos, A.F.; Kangussu, L.M.; Moreira, F.A.; Santos, R.A.; Aguiar, D.C.; Campagnole-Santos, M.J. Anxiolytic- and antidepressant-like effects of angiotensin-(1-7) in hypertensive transgenic (mRen2)27 rats. Clin. Sci. (Lond.), 2016, 130(14), 1247-1255.
[http://dx.doi.org/10.1042/CS20160116] [PMID: 27129185]
Furlong, R.A.; Keramatipour, M.; Ho, L.W.; Rubinsztein, J.S.; Michael, A.; Walsh, C.; Paykel, E.S.; Rubinsztein, D.C. No association of an insertion/deletion polymorphism in the angiotensin I converting enzyme gene with bipolar or unipolar affective disorders. Am. J. Med. Genet., 2000, 96(6), 733-735.
[http://dx.doi.org/10.1002/1096-8628(20001204)96:6<733:AID-AJMG7>3.0.CO;2-8] [PMID: 11121171]
Arinami, T.; Li, L.; Mitsushio, H.; Itokawa, M.; Hamaguchi, H.; Toru, M. An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders. Biol. Psychiatry, 1996, 40(11), 1122-1127.
[http://dx.doi.org/10.1016/S0006-3223(95)00597-8] [PMID: 8931914]
Hong, C-J.; Wang, Y-C.; Tsai, S-J. Association study of angiotensin I-converting enzyme polymorphism and symptomatology and antidepressant response in major depressive disorders. J. Neural Transm. (Vienna), 2002, 109(9), 1209-1214.
[http://dx.doi.org/10.1007/s00702-001-0686-z] [PMID: 12203048]
Pauls, J.; Bandelow, B.; Rüther, E.; Kornhuber, J. Polymorphism of the gene of angiotensin converting enzyme: lack of association with mood disorder. J. Neural Transm. (Vienna), 2000, 107(11), 1361-1366.
[http://dx.doi.org/10.1007/s007020070023] [PMID: 11145009]
Bandelow, B.; Saleh, K.; Pauls, J.; Domschke, K.; Wedekind, D.; Falkai, P. Insertion/deletion polymorphism in the gene for angiotensin converting enzyme (ACE) in panic disorder: A gender-specific effect? World J. Biol. Psychiatry, 2010, 11(1), 66-70.
[http://dx.doi.org/10.3109/15622970701459810] [PMID: 20146651]
Sparks, D.L.; Hunsaker, J.C., III; Amouyel, P.; Malafosse, A.; Bellivier, F.; Leboyer, M.; Courtet, P.; Helbecque, N. Angiotensin I-converting enzyme I/D polymorphism and suicidal behaviors. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(2), 290-294.
[http://dx.doi.org/10.1002/ajmg.b.30793] [PMID: 18521860]
Baghai, T.C.; Binder, E.B.; Schule, C.; Salyakina, D.; Eser, D.; Lucae, S.; Zwanzger, P.; Haberger, C.; Zill, P.; Ising, M.; Deiml, T.; Uhr, M.; Illig, T.; Wichmann, H.E.; Modell, S.; Nothdurfter, C.; Holsboer, F.; Müller-Myhsok, B.; Möller, H.J.; Rupprecht, R.; Bondy, B. Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism. Mol. Psychiatry, 2006, 11(11), 1003-1015.
[http://dx.doi.org/10.1038/sj.mp.4001884] [PMID: 16924268]
Meira-Lima, I.V.; Pereira, A.C.; Mota, G.F.; Krieger, J.E.; Vallada, H. Angiotensinogen and angiotensin converting enzyme gene polymorphisms and the risk of bipolar affective disorder in humans. Neurosci. Lett., 2000, 293(2), 103-106.
[http://dx.doi.org/10.1016/S0304-3940(00)01512-3] [PMID: 11027844]
Kucukali, C.I.; Aydin, M.; Ozkok, E.; Bilge, E.; Zengin, A.; Cakir, U.; Kara, I. Angiotensin-converting enzyme polymorphism in schizophrenia, bipolar disorders, and their first-degree relatives. Psychiatr. Genet., 2010, 20(1), 14-19.
[http://dx.doi.org/10.1097/YPG.0b013e3283351194] [PMID: 20010451]
Altamura, A.C.; Morganti, A. Plasma renin activity in depressed patients treated with increasing doses of lithium carbonate. Psychopharmacology (Berl.), 1975, 45(2), 171-175.
[http://dx.doi.org/10.1007/BF00429057] [PMID: 1215447]
Hullin, R.P.; Jerram, T.C.; Lee, M.R.; Levell, M.J.; Tyrer, S.P. Renin and aldosterone relationships in manic depressive psychosis. Br. J. Psychiatry, 1977, 131(6), 575-581.
[http://dx.doi.org/10.1192/bjp.131.6.575] [PMID: 597684]
Murck, H.; Held, K.; Ziegenbein, M.; Künzel, H.; Koch, K.; Steiger, A. The renin-angiotensin-aldosterone system in patients with depression compared to controls--a sleep endocrine study. BMC Psychiatry, 2003, 3(1), 15.
[http://dx.doi.org/10.1186/1471-244X-3-15] [PMID: 14585110]
Hallberg, L.; Westrin, A.; Isaksson, A.; Janelidze, S.; Träskman-Bendz, L.; Brundin, L. Decreased aldosterone in the plasma of suicide attempters with major depressive disorder. Psychiatry Res., 2011, 187(1-2), 135-139.
[http://dx.doi.org/10.1016/j.psychres.2010.07.038] [PMID: 20797799]
Häfner, S.; Baumert, J.; Emeny, R.T.; Lacruz, M.E.; Bidlingmaier, M.; Reincke, M.; Ladwig, K.H. Hypertension and depressed symptomatology: a cluster related to the activation of the renin-angiotensin-aldosterone system (RAAS). Findings from population based KORA F4 study. Psychoneuroendocrinology, 2013, 38(10), 2065-2074.
[http://dx.doi.org/10.1016/j.psyneuen.2013.03.015] [PMID: 23608138]
Kalelioglu, T.; Karamustafalioglu, N.; Genc, A.; Kocabiyik, M. Serum osmolarity in male patients with bipolar disorder manic episode. Exp. Physiol., 2017, 102(10), 1264-1268.
[http://dx.doi.org/10.1113/EP086562] [PMID: 28799261]
Hubenak, J.; Tuma, I.; Bazant, J. Association of arterial hypertension and cognitive impairment in euthymic bipolar disorder., Neuroendocrinol. Lett., 2015, 36(3), 294-300.
[PMID: 26313398]
Boal, A.H.; Smith, D.J.; McCallum, L.; Muir, S.; Touyz, R.M.; Dominiczak, A.F.; Padmanabhan, S. Monotherapy with major antihypertensive drug classes and risk of hospital admissions for mood disorders. Hypertension, 2016, 68(5), 1132-1138.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08188] [PMID: 27733585]
Gard, P.R. The role of angiotensin II in cognition and behaviour. Eur. J. Pharmacol., 2002, 438(1-2), 1-14.
[http://dx.doi.org/10.1016/S0014-2999(02)01283-9] [PMID: 11906704]
Lazaroni, T.L.; Raslan, A.C.S.; Fontes, W.R.; de Oliveira, M.L.; Bader, M.; Alenina, N.; Moraes, M.F.; Dos Santos, R.A.; Pereira, G.S. Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol. Learn. Mem., 2012, 97(1), 113-123.
[http://dx.doi.org/10.1016/j.nlm.2011.10.003] [PMID: 22067210]
Rodrigues Prestes, T.R.; Rocha, N.P.; Miranda, A.S.; Teixeira, A.L.; Simoes-E-Silva, A.C. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: Evidence from basic and clinical research. Curr. Drug Targets, 2017, 18(11), 1301-1313.
[http://dx.doi.org/10.2174/1389450117666160727142401] [PMID: 27469342]
Santos, R.A.; Ferreira, A.J.; Simões E Silva, A.C. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp. Physiol., 2008, 93(5), 519-527.
[http://dx.doi.org/10.1113/expphysiol.2008.042002] [PMID: 18310257]
Marvar, P.J.; Goodman, J.; Fuchs, S.; Choi, D.C.; Banerjee, S.; Ressler, K.J. Angiotensin type 1 receptor inhibition enhances the extinction of fear memory. Biol. Psychiatry, 2014, 75(11), 864-872.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.024] [PMID: 24094510]
Wincewicz, D.; Braszko, J.J. Validation of brain angiotensin system blockade as a novel drug target in pharmacological treatment of neuropsychiatric disorders. Pharmacopsychiatry, 2017, 50(6), 233-247.
[http://dx.doi.org/10.1055/s-0043-112345] [PMID: 28641333]
da Silveira, K.D.; Coelho, F.M.; Vieira, A.T.; Sachs, D.; Barroso, L.C.; Costa, V.V.; Bretas, T.L.B.; Bader, M.; de Sousa, L.P.; da Silva, T.A.; dos Santos, R.A.; Simões e Silva, A.C.; Teixeira, M.M. Anti-inflammatory effects of the activation of the angiotensin-(1-7) receptor, MAS, in experimental models of arthritis. J. Immunol., 2010, 185(9), 5569-5576.
[http://dx.doi.org/10.4049/jimmunol.1000314] [PMID: 20935211]
Iwai, M.; Horiuchi, M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens. Res., 2009, 32(7), 533-536.
[http://dx.doi.org/10.1038/hr.2009.74] [PMID: 19461648]
Bader, M. ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflugers Arch., 2013, 465(1), 79-85.
[http://dx.doi.org/10.1007/s00424-012-1120-0] [PMID: 23463883]
Ferrario, C.M. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin Angiotensin Aldosterone Syst., 2006, 7(1), 3-14.
[http://dx.doi.org/10.3317/jraas.2006.003] [PMID: 17083068]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [449 - 455]
Pages: 7
DOI: 10.2174/0929866527666191223144000
Price: $65

Article Metrics

PDF: 22