Investigation of Formaldehyde Adsorption on Carbon Nanotubes by Density Functional Theory

Author(s): Dazhi Chen, Zhongqing Cao*, Yong J. Yuan*

Journal Name: Current Nanoscience

Volume 16 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Formaldehyde (HCOH) is the most abundant airborne carbonyl indoor volatile organic compound (VOC), which is well-known to cause serious health effects such as respiratory system disease, immune system disorders, and central nervous system damage.

Methods: The interaction between HCOH and intrinsic, congeners of Au, Ag, Cu-doped SWCNTs were investigated by density functional theory (DFT) to evaluate the detection of formaldehyde.

Results: The results demonstrated that the less adsorption on the surface of intrinsic SWCNT, an HCOH molecule tended to be chemisorbed to the Au, Ag, and Cu atoms of doped SWCNT with larger binding energy of 0.4-0.8 eV and smaller binding distance of 1.9-2.3 Å. Furthermore, charge transfer and density of state studies indicated tha t the electronic properties changed evidently in the most stable HCOH-doped SWCNT systems, mainly at the region of -5.5 to -4.5 eV and Fermi level.

Conclusion: More importantly, the adsorption of HCOH affected the electronic conductance of doped SWCNT. It is expected that the results obtained in this study could provide a useful theoretical guidance for the investigation of molecular films interface bonding and design of HCOH sensing devices.

Keywords: SWCNT, HCOH, DFT, doped, adsorption, carbon nanotubes.

[1]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56-58.
[http://dx.doi.org/10.1038/354056a0]
[2]
Cinke, M.; Li, J.; Chen, B.; Cassell, A.; Delzeit, L.; Han, J.; Meyyappan, M. Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett., 2002, 365, 69-74.
[http://dx.doi.org/10.1016/S0009-2614(02)01420-3]
[3]
Soleymanabadi, H.; Kakemam, J. A DFT study of H-2 adsorption on functionalized carbon nanotubes. Physica E, 2013, 54, 115-117.
[http://dx.doi.org/10.1016/j.physe.2013.06.015]
[4]
Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287(5459), 1801-1804.
[http://dx.doi.org/10.1126/science.287.5459.1801] [PMID: 10710305]
[5]
Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett., 2003, 3, 929-933.
[http://dx.doi.org/10.1021/nl034220x]
[6]
Quinonero, D.; Frontera, A.; Deya, P. Feasibility of single-walled carbon nanotubes as materials for CO2 adsorption: A DFT study. J. Phys. Chem. C, 2012, 116, 21083-21092.
[http://dx.doi.org/10.1021/jp306586f]
[7]
Zhang, X.; Dai, Z.; Chen, Q.; Tang, J. A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes. Phys. Scr., 2014, 89, 5803-5810.
[http://dx.doi.org/10.1088/0031-8949/89/6/065803]
[8]
Duclaux, L. Review of the doping of carbon nanotubes. Carbon, 2002, 40, 1751-1764.
[http://dx.doi.org/10.1016/S0008-6223(02)00043-X]
[9]
Kong, J.; Chapline, M.; Dai, H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater., 2001, 13, 1384-1386.
[http://dx.doi.org/10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8]
[10]
Chen, D.; Yuan, Y.J. Thin-film sensors for detection of formaldehyde: A review. IEEE Sens. J., 2015, 15, 6749-6760.
[http://dx.doi.org/10.1109/JSEN.2015.2457931]
[11]
Wang, X.; Ding, B.; Sun, M.; Yu, J.; Sun, G. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sens. Actuators B Chem., 2010, 144, 11-17.
[http://dx.doi.org/10.1016/j.snb.2009.08.023]
[12]
Bunkoed, O.; Davis, F.; Kanatharana, P.; Thavarungkul, P.; Higson, S.P. Sol-gel based sensor for selective formaldehyde determination. Anal. Chim. Acta, 2010, 659(1-2), 251-257.
[http://dx.doi.org/10.1016/j.aca.2009.11.034] [PMID: 20103132]
[13]
Kawamura, K.; Kerman, K.; Fujihara, M.; Nagatani, N.; Hashiba, T.; Tamiya, E. Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sens. Actuators B Chem., 2005, 105, 495-501.
[http://dx.doi.org/10.1016/j.snb.2004.07.010]
[14]
Allouch, A.; Guglielmino, M.; Bernhardt, P.; Serra, C.; Calve, S.L. Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection. Sens. Actuators B Chem., 2013, 181, 551-558.
[http://dx.doi.org/10.1016/j.snb.2013.02.043]
[15]
Zhang, Z.Q.; Zhang, H.; He, G.F. Preconcentration with membrane cell and adsorptive polarographic determination of formaldehyde in air. Talanta, 2002, 57(2), 317-322.
[http://dx.doi.org/10.1016/S0039-9140(02)00029-2] [PMID: 18968632]
[16]
Wagner, B.K.; Carrinski, H.A.; Ahn, Y.H.; Kim, Y.K.; Gilbert, T.J.; Fomina, D.A.; Schreiber, S.L.; Chang, Y.T.; Clemons, P.A. Small-molecule fluorophores to detect cell-state switching in the context of high-throughput screening. J. Am. Chem. Soc., 2008, 130(13), 4208-4209.
[http://dx.doi.org/10.1021/ja077656d] [PMID: 18327938]
[17]
Penteado, J.; Sobral, A.; Masini, J. Evaluation of monolithic columns for determination of formaldehyde and acetaldehyde in sugar cane spirits by High-Performance Liquid Chromatography. Anal. Lett., 2008, 41, 1674-1681.
[http://dx.doi.org/10.1080/00032710802122537]
[18]
Li, Y.L.; Liu, J.; Guan, W.S. Determination of trace formaldehyde in alcoholic beverage by chromotropic acid spectrophotometry. 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009.Beijing, China, 11-13 June 2009
[http://dx.doi.org/10.1109/ICBBE.2009.5162632]
[19]
Bagheri, H.; Ghambarian, M.; Salemi, A.; Es-Haghi, A. Trace determination of free formaldehyde in DTP and DT vaccines and diphtheria-tetanus antigen by single drop microextraction and gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2009, 50(3), 287-292.
[http://dx.doi.org/10.1016/j.jpba.2009.04.039] [PMID: 19525083]
[20]
Chen, M.; Ye, M.; Zeng, X.; Fan, Y.; Yan, Z. Determination of sulfur anions by ion chromatography-postcolumn derivation and UV detection. Chin. Chem. Lett., 2009, 20, 1241-1244.
[http://dx.doi.org/10.1016/j.cclet.2009.05.003]
[21]
Zhou, Q.; Wang, C.; Fu, Z.; Zhang, H.; Tang, Y. Adsorption of formaldehyde molecule on Al-doped vacancy-defected single-walled carbon nanotubes: A theoretical study. Comput. Mater. Sci., 2014, 82, 337-344.
[http://dx.doi.org/10.1016/j.commatsci.2013.09.046]
[22]
Wang, X.; Liew, K. Silicon carbide nanotubes serving as a highly sensitive gas chemical sensor for formaldehyde. J. Phys. Chem. C, 2011, 115, 10388-10393.
[http://dx.doi.org/10.1021/jp2005937]
[23]
Wang, R.; Zhang, D.; Zhang, Y.; Liu, C. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. J. Phys. Chem. B, 2006, 110(37), 18267-18271.
[http://dx.doi.org/10.1021/jp061766+] [PMID: 16970445]
[24]
Yoosefian, M.; Raissi, H.; Mola, A. The hybrid of Pd and SWCNT as an efficient sensor for the formaldehyde molecule detection: A DFT study. Sens. Actuators B Chem., 2015, 212, 55-62.
[http://dx.doi.org/10.1016/j.snb.2015.02.004]
[25]
Xie, H.; Sheng, C.; Chen, X.; Wang, X.; Li, Z.; Zhou, J. Multi-wall carbon nanotube gas sensors modified with amino-group to detect low concentration of formaldehyde. Sens. Actuators B Chem., 2012, 168, 34-38.
[http://dx.doi.org/10.1016/j.snb.2011.12.112]
[26]
Chen, D.; Yuan, Y.J. Formaldehyde adsorption on carbon nanotubes fragment by density functional theory. Int. J. Mod. Phys. B, 2017, 31, 16-19.
[http://dx.doi.org/10.1142/S021797921744074X]
[27]
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys., 1990, 92, 508-517.
[http://dx.doi.org/10.1063/1.458452]
[28]
Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868.
[http://dx.doi.org/10.1103/PhysRevLett.77.3865] [PMID: 10062328]
[29]
Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta, 1977, 44, 129-138.
[http://dx.doi.org/10.1007/BF00549096]
[30]
Li, W.; Lu, X.; Li, G.; Ma, J.; Zeng, P.; Chen, J.; Pan, Z.; He, Q. First-principle study of SO2 molecule adsorption on Ni-doped vacancy-defected single-walled (8,0) carbon nanotubes. Appl. Surf. Sci., 2016, 364, 560-566.
[http://dx.doi.org/10.1016/j.apsusc.2015.12.177]
[31]
Wang, R.; Zhang, D.; Sun, W.; Han, Z.; Liu, C. A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. J. Mol. Struct. Theochem., 2007, 806, 93-97.
[http://dx.doi.org/10.1016/j.theochem.2006.11.012]
[32]
Zhang, J.; Yang, C.; Chen, Y.; Zhang, B.; Shao, W. A density functional theory study of absorption behavior of CO on Au-doped single-walled carbon nanotubes. Wuli Xuebao, 2011, 60, 495-500.
[33]
Chi, M.; Zhao, Y. Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study. Comput. Mater. Sci., 2009, 46, 1085-1090.
[http://dx.doi.org/10.1016/j.commatsci.2009.05.017]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 05 October, 2020
Page: [846 - 850]
Pages: 5
DOI: 10.2174/1573413716666191223130059

Article Metrics

PDF: 21
HTML: 2