The Interfacial Effect on H2 Production from Oxidative Steam Reforming of Ethanol Over Rh/Ce1-xLaxO2-δ Nanocatalysts

Author(s): Kang Yang, Yafei Wang*, Yujie Yang, Hongrui Hao, Xue Han*

Journal Name: Current Nanoscience

Volume 16 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The production of hydrogen from catalytic reforming ethanol has attracted wide attention, which provides a promising way to replace fossil fuels with sustainable energy carriers.

Methods: In this work, the Ce1-xLaxO2-δ solid solution (CL) supported Rh catalysts (nRh/CL, n = 0.5, 1 and 2 wt.%) were prepared by a traditional impregnation method with a variation of Rh loading. The different interface structure of nRh/CL catalysts and their catalytic performance in oxidative steam reforming (OSR) reaction were investigated.

Results: Rh was loaded by the traditional impregnation method, and ethanol conversion and H2 yield declined in the order of 1%Rh/CL > 2%Rh/CL > 0.5%Rh/CL.

Conclusion: The supports of the nRh/CL catalysts were confirmed to be Ce1-xLaxO2-δ solid solution, but only for the 1%Rh/CL catalyst, the Rh species were well-dispersed on the support and formed a Rh2O3//Ce1-xLaxO2-δ interface structure. The super-cell structure of Rh3+-O-RE3/4+ (RE = Ce, La) on the surface of 0.5%Rh/CL catalyst and the formation of interfacial Ce1-x-yLaxRhyO2-δ solid solution for 2%Rh/CL catalyst had effects on the self-activation of the nRh/CL catalysts. The typical lattice expansion of Ce1-xLaxO2-δ solid solution lowered the energy for migration. And the excellent hydrogen and oxygen mobility at the Rh//Ce1-xLaxO2-δ interface for 1%Rh/CL catalyst guaranteed the good catalytic performance for OSR at low temperature.

Keywords: Hydrogen production, Rh catalysts, Ce-La solid solution, interfacial solid solution, self-activation, ethanol.

[1]
Hou, T.; Zhang, S.; Chen, Y.; Wang, D.; Cai, W. Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. Renew. Sustain. Energy Rev., 2015, 44, 132-148.
[http://dx.doi.org/10.1016/j.rser.2014.12.023]
[2]
Chen, S.; Li, L.; Hu, W.; Huang, X.; Li, Q.; Xu, Y.; Zuo, Y.; Li, G. Anchoring high-concentration oxygen vacancies at interfaces of CeO2–x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces, 2015, 7(41), 22999-23007.
[http://dx.doi.org/10.1021/acsami.5b06302] [PMID: 26444246]
[3]
Mattos, L.V.; Jacobs, G.; Davis, B.H.; Noronha, F.B. Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem. Rev., 2012, 112(7), 4094-4123.
[http://dx.doi.org/10.1021/cr2000114] [PMID: 22617111]
[4]
Mondal, T.; Pant, K.K.; Dalai, A.K. Oxidative and non-oxidative steam reforming of crude bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Appl. Catal. A Gen., 2015, 499, 19-31.
[http://dx.doi.org/10.1016/j.apcata.2015.04.004]
[5]
Garcia, V.M.; Serra, M.; Llorca, J. Controllability study of an ethanol steam reforming process for hydrogen production. J. Power Sources, 2011, 196(9), 4411-4417.
[http://dx.doi.org/10.1016/j.jpowsour.2010.12.062]
[6]
Benito, M.; Sanz, J.; Isabel, R.; Padilla, R.; Arjona, R.; Daza, L. Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. J. Power Sources, 2005, 151, 11-17.
[http://dx.doi.org/10.1016/j.jpowsour.2005.02.046]
[7]
Pereira, E.B.; de la Piscina, P.R.; Marti, S.; Homs, N. H2 production by oxidative steam reforming of ethanol over K promoted Co-Rh/CeO2-ZrO2 catalysts. Energy Environ. Sci., 2010, 3, 487-493.
[http://dx.doi.org/10.1039/b924624j]
[8]
Mondal, T.; Pant, K.K.; Dalai, A.K. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2–ZrO2 catalyst. Int. J. Hydrogen Energy, 2015, 40(6), 2529-2544.
[http://dx.doi.org/10.1016/j.ijhydene.2014.12.070]
[9]
Kurnatowska, M.; Kepinski, L. Structure and thermal stability of nanocrystalline Ce1-xRhxO2-y in reducing and oxidizing atmosphere. Mater. Res. Bull., 2013, 48(2), 852-862.
[http://dx.doi.org/10.1016/j.materresbull.2012.11.076]
[10]
Lu, Z.; Yang, Z.; Hermansson, K.; Castleton, C.W.M. Several different charge transfer and Ce3+ localization scenarios for Rh-CeO2(111). J. Mater. Chem. A. Mater, 2014, 2(7), 2333-2345.
[http://dx.doi.org/10.1039/C3TA11169E]
[11]
Han, X.; Yu, Y.; He, H.; Zhao, J.; Wang, Y. Oxidative steam reforming of ethanol over Rh catalyst supported on Ce1−xLaxOy (x = 0.3) solid solution prepared by urea co-precipitation method. J. Power Sources, 2013, 238, 57-64.
[http://dx.doi.org/10.1016/j.jpowsour.2013.03.032]
[12]
Han, X.; Yu, Y.; He, H.; Shan, W. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce–La solid solution. Int. J. Hydrogen Energy, 2013, 38(25), 10293-10304.
[http://dx.doi.org/10.1016/j.ijhydene.2013.05.137]
[13]
Reddy, B.M.; Katta, L.; Thrimurthulu, G. Novel nanocrystalline Ce1-xLaxO2-δ (x=0.2) solid solutions: Structural characteristics and catalytic performance. Chem. Mater., 2010, 22(2), 467-475.
[http://dx.doi.org/10.1021/cm903282w]
[14]
Jampaiah, D.; Tur, K.M.; Ippolito, S.J.; Sabri, Y.M.; Tardio, J.; Bhargava, S.K.; Reddy, B.M. Structural characterization and catalytic evaluation of transition and rare earth metal doped ceria-based solid solutions for elemental mercury oxidation. RSC Adv., 2013, 3(31), 12963-12974.
[http://dx.doi.org/10.1039/c3ra41441h]
[15]
Wang, X.; Rodriguez, J.A.; Hanson, J.C.; Gamarra, D.; Martínez-Arias, A.; Fernandez-García, M. Unusual physical and chemical properties of Cu in Ce(1-x)Cu(x)O(2) oxides. J. Phys. Chem. B, 2005, 109(42), 19595-19603.
[http://dx.doi.org/10.1021/jp051970h] [PMID: 16853534]
[16]
Ke, J.; Zhu, W.; Jiang, Y.; Si, R.; Wang, Y.J.; Li, S.C.; Jin, C.; Liu, H.; Song, W.G.; Yan, C.H.; Zhang, Y.W. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Catal., 2015, 5(9), 5164-5173.
[http://dx.doi.org/10.1021/acscatal.5b00832]
[17]
Katta, L.; Sudarsanam, P.; Thrimurthulu, G.; Reddy, B.M. Doped nanosized ceria solid solutions for low temperature soot oxidation: Zirconium versus lanthanum promoters. Appl. Catal. B, 2010, 101(1-2), 101-108.
[http://dx.doi.org/10.1016/j.apcatb.2010.09.012]
[18]
Haneda, M.; Kaneko, T.; Kamiuchi, N.; Ozawa, M. Improved three-way catalytic activity of bimetallic Ir-Rh catalysts supported on CeO2-ZrO2. Catal. Sci. Technol., 2015, 5(3), 1792-1800.
[http://dx.doi.org/10.1039/C4CY01502A]
[19]
Li, G.; Zhao, B.; Wang, Q.; Zhou, R. The effect of Ni on the structure and catalytic behavior of model Pd/Ce0.67Zr0.33O2 three-way catalyst before and after aging. Appl. Catal. B, 2010, 97(1-2), 41-48.
[http://dx.doi.org/10.1016/j.apcatb.2010.03.022]
[20]
Sharma, P.K.; Saxena, N.; Roy, P.K.; Bhatt, A. Hydrogen generation by ethanol steam reforming over Rh/Al2O3 and Rh/CeZrO2 catalysts: A comparative study. Int. J. Hydrogen Energy, 2016, 41(14), 6123-6133.
[http://dx.doi.org/10.1016/j.ijhydene.2015.09.137]
[21]
Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003, 301(5635), 935-938.
[http://dx.doi.org/10.1126/science.1085721] [PMID: 12843399]
[22]
Petallidou, K.C.; Efstathiou, A.M. Low-temperature water-gas shift on Pt/Ce1-xLaxO2-δ: Effect of Ce/La ratio. Appl. Catal. B, 2013, 140, 333-347.
[http://dx.doi.org/10.1016/j.apcatb.2013.04.007]
[23]
Katta, L.; Kumar, T.V.; Durgasri, D.N.; Reddy, B.M. Nanosized Ce1-xLaxO2-δ/Al2O3 solid solutions for CO oxidation: Combined study of structural characteristics and catalytic evaluation. Catal. Today, 2012, 198(1), 133-139.
[http://dx.doi.org/10.1016/j.cattod.2012.07.015]
[24]
McFarland, E.W.; Metiu, H. Catalysis by doped oxides. Chem. Rev., 2013, 113(6), 4391-4427.
[http://dx.doi.org/10.1021/cr300418s] [PMID: 23350590]
[25]
Jobbagy, M.; Sorbello, C.; Sileo, E.E. Crystalline Ce(III)-La(III) double basic carbonates: A chemical shortcut to obtain nanometric La(III)-doped ceria. J. Phys. Chem. C, 2009, 113(25), 10853-10857.
[http://dx.doi.org/10.1021/jp810321y]
[26]
Zhang, B.; Li, D.; Wang, X. Catalytic performance of La–Ce–O mixed oxide for combustion of methane. Catal. Today, 2010, 158(3-4), 348-353.
[http://dx.doi.org/10.1016/j.cattod.2010.04.019]
[27]
Delimaris, D.; Ioannides, T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method. Appl. Catal. B, 2009, 89(1-2), 295-302.
[http://dx.doi.org/10.1016/j.apcatb.2009.02.003]
[28]
Jia, A.P.; Hu, G.S.; Meng, L.; Xie, Y.L.; Lu, J.Q.; Luo, M.F. CO oxidation over CuO/Ce1−xCuxO2−δ and Ce1−xCuxO2−δ catalysts: Synergetic effects and kinetic study. J. Catal., 2012, 289(1), 199-209.
[http://dx.doi.org/10.1016/j.jcat.2012.02.010]
[29]
Gayen, A.; Priolkar, K.R.; Sarode, R.; Jayaram, V.; Hegde, M.S.; Subbanna, G.N.; Emura, S. Ce1-xRhxO2-delta solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater., 2004, 16(11), 2317-2328.
[http://dx.doi.org/10.1021/cm040126l]
[30]
Reddy, B.M.; Bharali, P.; Seo, Y.H.; Prasetyanto, E.A.; Park, S.E. Surfactant-controlled and microwave-assisted synthesis of highly active Ce(x)Zr(1-x)O(2) nano-oxides for CO oxidation. Catal. Lett., 2008, 126(1-2), 125-133.
[http://dx.doi.org/10.1007/s10562-008-9591-5]
[31]
Krishna, K.; Bueno-Lopez, A.; Makkee, M.; Moulijn, J.A. Potential rare earth modified CeO2 catalysts for soot oxidation I. Characterisation and catalytic activity with O2. Appl. Catal. B, 2007, 75(3-4), 189-200.
[http://dx.doi.org/10.1016/j.apcatb.2007.04.010]
[32]
Bueno-Lopez, A.; Krishna, K.; Makkee, M.; Moulijn, J.A. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal., 2005, 230(1), 237-248.
[http://dx.doi.org/10.1016/j.jcat.2004.11.027]
[33]
Balaguer, M.; Solis, C.; Serra, J.M. Structural-transport properties relationships on Ce(1-x)Ln(x)O(2-delta) system (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and effect of cobalt addition. J. Phys. Chem. C, 2012, 116(14), 7975-7982.
[http://dx.doi.org/10.1021/jp211594d]
[34]
Polychronopoulou, K.; Fierro, J.L.G.; Efstathiou, A.M. The phenol steam reforming reaction over MgO-based supported Rh catalysts. J. Catal., 2004, 228(2), 417-432.
[http://dx.doi.org/10.1016/j.jcat.2004.09.016]
[35]
Shan, W.J.; Feng, Z.C.; Li, Z.L.; Jing, Z.; Shen, W.J.; Can, L. Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combustion methods. J. Catal., 2004, 228(1), 206-217.
[http://dx.doi.org/10.1016/j.jcat.2004.07.010]
[36]
Avgouropoulos, G.; Papavasiliou, J.; Ioannides, T. Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts. Chem. Eng. J., 2009, 154(1-3), 274-280.
[http://dx.doi.org/10.1016/j.cej.2009.03.019]
[37]
Bueno-Lopez, A.; Such-Basanez, I.; Salinas-Martinez de Lecea, C. Stabilization of active Rh2O3 species for catalytic decomposition of N2O on La-, Pr-doped CeO2. J. Catal., 2006, 244(1), 102-112.
[http://dx.doi.org/10.1016/j.jcat.2006.08.021]
[38]
Ferreira, V.J.; Tavares, P.; Figueiredo, J.L.; Faria, J.L. Ce-Doped La2O3 based catalyst for the oxidative coupling of methane. Catal. Commun., 2013, 42, 50-53.
[http://dx.doi.org/10.1016/j.catcom.2013.07.035]
[39]
Ji, P.; Zhang, J.; Chen, F.; Anpo, M. Ordered mesoporous CeO2 synthesized by nanocasting from cubic Ia3d mesoporous MCM-48 silica: Formation, characterization and photocatalytic activity. J. Phys. Chem. C, 2008, 112(46), 17809-17813.
[http://dx.doi.org/10.1021/jp8054087]
[40]
Cai, W.; Wang, F.; Vanveen, A.; Provendier, H.; Mirodatos, C.; Shen, W. Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst. Catal. Today, 2008, 138(3-4), 152-156.
[http://dx.doi.org/10.1016/j.cattod.2008.05.019]
[41]
Colussi, S.; Gayen, A.; Farnesi Camellone, M.; Boaro, M.; Llorca, J.; Fabris, S.; Trovarelli, A. Nanofaceted Pd-O sites in Pd-Ce surface superstructures: enhanced activity in catalytic combustion of methane. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8481-8484.
[http://dx.doi.org/10.1002/anie.200903581] [PMID: 19802862]
[42]
Kurnatowska, M.; Kepinski, L.; Mista, W. Structure evolution of nanocrystalline Ce1-xPdxO2-y mixed oxide in oxidizing and reducing atmosphere: Reduction-induced activity in low-temperature CO oxidation. Appl. Catal. B, 2012, 117, 135-147.
[http://dx.doi.org/10.1016/j.apcatb.2011.12.034]
[43]
Qian, L.; Yue, B.; Pei, S.; Zhang, L.; Ye, L.; Cheng, J.; Tsang Shik, C.; He, H. Reforming of CH4 with CO2 over Rh/H-Beta: Effect of Rhodium dispersion on the catalytic activity and coke resistance. Chin. J. Chem., 2010, 28, 1864-1870.
[http://dx.doi.org/10.1002/cjoc.201090311]
[44]
Iulianelli, A.; Liguori, S.; Wilcox, J.; Basile, A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review. Catal. Rev., Sci. Eng., 2016, 58(1), 1-35.
[http://dx.doi.org/10.1080/01614940.2015.1099882]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 04 October, 2020
Page: [837 - 845]
Pages: 9
DOI: 10.2174/1573413716666191223125402
Price: $65

Article Metrics

PDF: 19
HTML: 1