Melanoma Detection and Classification using Computerized Analysis of Dermoscopic Systems: A Review

Author(s): Muhammad Nasir, Muhammad Attique Khan*, Muhammad Sharif, Muhammad Younus Javed, Tanzila Saba, Hashim Ali, Junaid Tariq

Journal Name: Current Medical Imaging
Formerly: Current Medical Imaging Reviews

Volume 16 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Malignant melanoma is considered as one of the most deadly cancers, which has broadly increased worldwide since the last decade. In 2018, around 91,270 cases of melanoma were reported and 9,320 people died in the US. However, diagnosis at the initial stage indicates a high survival rate. The conventional diagnostic methods are expensive, inconvenient and subject to the dermatologist’s expertise as well as a highly equipped environment. Recent achievements in computerized based systems are highly promising with improved accuracy and efficiency. Several measures such as irregularity, contrast stretching, change in origin, feature extraction and feature selection are considered for accurate melanoma detection and classification. Typically, digital dermoscopy comprises four fundamental image processing steps including preprocessing, segmentation, feature extraction and reduction, and lesion classification. Our survey is compared with the existing surveys in terms of preprocessing techniques (hair removal, contrast stretching) and their challenges, lesion segmentation methods, feature extraction methods with their challenges, features selection techniques, datasets for the validation of the digital system, classification methods and performance measure. Also, a brief summary of each step is presented in the tables. The challenges for each step are also described in detail, which clearly indicate why the digital systems are not performing well. Future directions are also given in this survey.

Keywords: Skin lesion, segmentation, feature extraction, classification, melanoma, cancer.

[1]
Hendriks FM, Brokken D, Oomens CW, Bader DL, Baaijens FP. The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med Eng Phys 2006; 28(3): 259-66.
[http://dx.doi.org/10.1016/j.medengphy.2005.07.001] [PMID: 16099191]
[2]
McGrath J, Eady R, Pope F. Anatomy and organization of human skin. Rook’s textbook of dermatology. 7th ed Malden, MA Blackwell 2004; pp. 45-128.
[http://dx.doi.org/10.1002/9780470750520.ch3]
[3]
Gao Y, Tannenbaum A, Chen H, et al. Automated skin segmentation in ultrasonic evaluation of skin toxicity in breast cancer radiotherapy. Ultrasound Med Biol 2013; 39(11): 2166-75.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2013.04.006] [PMID: 23993172]
[4]
Khan MA, Akram T, Sharif M, et al. Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech 2019; 82(6): 741-63.
[http://dx.doi.org/10.1002/jemt.23220] [PMID: 30768826]
[5]
Afza F, Khan MA, Sharif M, Rehman A. Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection. Microsc Res Tech 2019; 82(9): 1471-88.
[http://dx.doi.org/10.1002/jemt.23301] [PMID: 31168871]
[6]
Papamichail M, Nikolaidis I, Nikolaidis N, et al. Merkel cell carcinoma of the upper extremity: case report and an update. World J Surg Oncol 2008; 6: 32.
[http://dx.doi.org/10.1186/1477-7819-6-32] [PMID: 18328106]
[7]
Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ. Early detection and treatment of skin cancer. Am Fam Physician 2000; 62(2) 357-368, 375-36, 381-32
[PMID: 10929700]
[8]
Markovic SN, Erickson LA, Rao RD, et al. Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc 2007; 82(3): 364-80.
[9]
American Cancer Society Cancer facts & figures 2018. Available fromhttps://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html
[10]
Baldwin L, Dunn J. Global controversies and advances in skin cancer. Asian Pac J Cancer Prev 2013; 14(4): 2155-7.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2155] [PMID: 23725105]
[11]
Freedberg KA, Geller AC, Miller DR, Lew RA, Koh HK. Screening for malignant melanoma: A cost-effectiveness analysis. J Am Acad Dermatol 1999; 41(5 Pt 1): 738-45.
[http://dx.doi.org/10.1016/S0190-9622(99)70010-1] [PMID: 10534637]
[12]
Garg N, Sharma V, Kaur P. Melanoma skin cancer detection using image processing. Sensors and image processing.Berlin: Springer 2018; pp. 111-9.
[http://dx.doi.org/10.1007/978-981-10-6614-6_12]
[13]
Saladi RN, Persaud AN. The causes of skin cancer: a comprehensive review. Drugs Today (Barc) 2005; 41(1): 37-53.
[http://dx.doi.org/10.1358/dot.2005.41.1.875777] [PMID: 15753968]
[14]
Day GR, Barbour RH. Automated melanoma diagnosis: where are we at? Skin Res Technol 2000; 6(1): 1-5.
[http://dx.doi.org/10.1034/j.1600-0846.2000.006001001.x] [PMID: 11428935]
[15]
Abbasi NR, Shaw HM, Rigel DS, et al. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA 2004; 292(22): 2771-6.
[http://dx.doi.org/10.1001/jama.292.22.2771] [PMID: 15585738]
[16]
Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E, Delfino M. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol 1998; 134(12): 1563-70.
[http://dx.doi.org/10.1001/archderm.134.12.1563] [PMID: 9875194]
[17]
Khan MA, Sharif M, Akram T, Syed ACB, Nayak RS. Developed newton-raphson based deep features selection framework for skin lesion recognition. Pattern Recognit Lett 2019; 129: 293-303.
[http://dx.doi.org/10.1016/j.patrec.2019.11.034]
[18]
Argenziano G, Zalaudek I, Hofmann-Wellenhof R, et al. Total body skin examination for skin cancer screening in patients with focused symptoms. J Am Acad Dermatol 2012; 66(2): 212-9.
[http://dx.doi.org/10.1016/j.jaad.2010.12.039] [PMID: 21757257]
[19]
Parsons S K, Chan J A, Winifred W Y, et al. Noninvasive diagnostic techniques for the detection of skin cancers. 2011 Available fromhttps://www.ncbi.nlm.nih.gov/books/NBK82493/
[20]
Thomas L, Puig S. Dermoscopy, Digital dermoscopy and other diagnostic tools in the early detection of melanoma and follow-up of high-risk skin cancer patients. Acta Dermato- Venereological 2017; 97: 14-21.
[21]
Smith L, Macneil S. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res Technol 2011; 17(3): 257-69.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00503.x] [PMID: 21342292]
[22]
Schmid-Saugeona P, Guillodb J, Thirana J-P. Towards a computer-aided diagnosis system for pigmented skin lesions. Comput Med Imaging Graph 2003; 27(1): 65-78.
[http://dx.doi.org/10.1016/S0895-6111(02)00048-4] [PMID: 12573891]
[23]
Campos-do-Carmo G, Ramos-e-Silva M. Dermoscopy: basic concepts. Int J Dermatol 2008; 47(7): 712-9.
[http://dx.doi.org/10.1111/j.1365-4632.2008.03556.x] [PMID: 18613881]
[24]
Argenziano G, Soyer HP, Chimenti S, et al. Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet. J Am Acad Dermatol 2003; 48(5): 679-93.
[http://dx.doi.org/10.1067/mjd.2003.281] [PMID: 12734496]
[25]
Goodson AG, Grossman D. Strategies for early melanoma detection: Approaches to the patient with nevi. J Am Acad Dermatol 2009; 60(5): 719-35.
[http://dx.doi.org/10.1016/j.jaad.2008.10.065] [PMID: 19389517]
[26]
Marchionda P, Krause L, Jensen J, Dellavalle R. A North American perspective on dermoscopy: benefits, limitations, and grey zones. G Ital Dermatol Venereol 2010; 145: 89-97.
[27]
Blum A, Kreusch J, Stolz W, et al. Dermoscopy for malignant and benign skin tumors: Indication and standardized terminology. Der Hautarzt 2017; 68(8): 653-73.
[28]
Rosenberg A, Meyerle JH. Total-body photography in skin cancer screening: the clinical utility of standardized imaging. Cutis 2017; 99(5): 312-6.
[PMID: 28632800]
[29]
Winkelmann RR, Rigel DS, Ferris L, Sober A, Tucker N, Cockerell CJ. Correlation between the evaluation of pigmented lesions by a multi-spectral digital skin lesion analysis device and the clinical and histological features of melanoma. J Clin Aesthet Dermatol 2016; 9(3): 36-8.
[PMID: 27354886]
[30]
Rocha L, Menzies SW, Lo S, et al. Analysis of an electrical impedance spectroscopy system in short-term digital dermoscopy imaging of melanocytic lesions. Br J Dermatol 2017; 177(5): 1432-8.
[http://dx.doi.org/10.1111/bjd.15595] [PMID: 28421597]
[31]
Rajadhyaksha M, Marghoob A, Rossi A, Halpern AC, Nehal KS. Reflectance confocal microscopy of skin in vivo: From bench to bedside. Lasers Surg Med 2017; 49(1): 7-19.
[http://dx.doi.org/10.1002/lsm.22600] [PMID: 27785781]
[32]
Alex A, Weingast J, Weinigel M, et al. Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology. J Biophotonics 2013; 6(4): 352-62.
[http://dx.doi.org/10.1002/jbio.201200085] [PMID: 22711418]
[33]
Fink C, Hofmann M, Jagoda A, et al. Study protocol for a prospective, non-controlled, multicentre clinical study to evaluate the diagnostic accuracy of a stepwise two-photon excited melanin fluorescence in pigmented lesions suspicious for melanoma (FLIMMA study). BMJ Open 2016; 6(12): e012730.
[http://dx.doi.org/10.1136/bmjopen-2016-012730] [PMID: 27993903]
[34]
Godoy SE, Ramirez DA, Myers SA, et al. Dynamic infrared imaging for skin cancer screening. Infrared Phys Technol 2015; 70: 147-52.
[http://dx.doi.org/10.1016/j.infrared.2014.09.017]
[35]
Haniffa MA, Lloyd JJ, Lawrence CM. The use of a spectrophotometric intracutaneous analysis device in the real-time diagnosis of melanoma in the setting of a melanoma screening clinic. Br J Dermatol 2007; 156(6): 1350-2.
[http://dx.doi.org/10.1111/j.1365-2133.2007.07932.x] [PMID: 17535234]
[36]
Bard RL. High-frequency ultrasound examination in the diagnosis of skin cancer. Dermatol Clin 2017; 35(4): 505-11.
[http://dx.doi.org/10.1016/j.det.2017.06.011] [PMID: 28886806]
[37]
Levine A, Wang K, Markowitz O. Optical coherence tomography in the diagnosis of skin cancer. Dermatol Clin 2017; 35(4): 465-88.
[http://dx.doi.org/10.1016/j.det.2017.06.008] [PMID: 28886803]
[38]
Mayer J. Systematic review of the diagnostic accuracy of dermatoscopy in detecting malignant melanoma. Med J Aust 1997; 167(4): 206-10.
[http://dx.doi.org/10.5694/j.1326-5377.1997.tb138847.x] [PMID: 9293268]
[39]
Kittler H, Pehamberger H, Wolff K, Binder M. Diagnostic accuracy of dermoscopy. Lancet Oncol 2002; 3(3): 159-65.
[http://dx.doi.org/10.1016/S1470-2045(02)00679-4] [PMID: 11902502]
[40]
Barata C, Ruela M, Francisco M, Mendonça T, Marques JS. Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J 2014; 8: 965-79.
[http://dx.doi.org/10.1109/JSYST.2013.2271540]
[41]
Malvehy J, Puig S. Follow-up of melanocytic skin lesions with digital total-body photography and digital dermoscopy: a two-step method. Clin Dermatol 2002; 20(3): 297-304.
[http://dx.doi.org/10.1016/S0738-081X(02)00220-1] [PMID: 12074871]
[42]
Rajpara SM, Botello AP, Townend J, Ormerod AD. Systematic review of dermoscopy and digital dermoscopy/artificial intelligence for the diagnosis of melanoma. Br J Dermatol 2009; 161(3): 591-604.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09093.x] [PMID: 19302072]
[43]
Stoecker WV, Moss RH. Digital imaging in dermatology. Comput Med Imaging Graph 1992; 16(3): 145-50.
[http://dx.doi.org/10.1016/0895-6111(92)90068-K] [PMID: 1623489]
[44]
Hall PN, Claridge E, Smith JD. Computer screening for early detection of melanoma-is there a future? Br J Dermatol 1995; 132(3): 325-38.
[http://dx.doi.org/10.1111/j.1365-2133.1995.tb08664.x] [PMID: 7718448]
[45]
Rosado B, Menzies S, Harbauer A, et al. Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Arch Dermatol 2003; 139(3): 361-7.
[http://dx.doi.org/10.1001/archderm.139.3.361] [PMID: 12622631]
[46]
Taouil K, Romdhane NB, Bouhlel MS. A new automatic approach for edge detection of skin lesion images. 2nd International Conference on Information & Communication Technologies 2006 Apr 24-28 Damascus, Syria New Jesey: IEEE 2006.
[http://dx.doi.org/10.1109/ICTTA.2006.1684373]
[47]
Jamil U, Khalid S. Valuable pre-processing & segmentation techniques used in automated skin lesion detection systems. SRM 2015; 59: 92-112.
[48]
Kleinberg J, Papadimitriou C, Raghavan P. Segmentation problems. JACM 2004; 51: 263-80.
[http://dx.doi.org/10.1145/972639.972644]
[49]
Burg G. Das melanom: wissenswertes über muttermal, sonne und andere risikofaktoren: informationen und ratschläge munich (germany): piper. Serie Gesundheit VCH 1993.
[50]
Arasi MA, El-Dahshan E-SA, El-Horbaty E-SM, Salem A-BM. Malignant melanoma detection based on machine learning techniques: a survey. Egyptian Comput Sci J 2016; 40(3): 1-10.
[51]
Hoshyar AN, Al-Jumaily A, Sulaiman R. Review on automatic early skin cancer detection. International Conference on Computer Science and Service System (CSSS) 2011 June 27-29 Nanjing, China New Jersey: IEEE 2011.
[52]
Korotkov K, Garcia R. Computerized analysis of pigmented skin lesions: a review. Artif Intell Med 2012; 56(2): 69-90.
[http://dx.doi.org/10.1016/j.artmed.2012.08.002] [PMID: 23063256]
[53]
Sathiya SB, Kumar S, Prabin A. A survey on recent computer-aided diagnosis of melanoma. International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) 2014 July 10-11 Kanyakumari, India New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/ICCICCT.2014.6993179]
[54]
Maglogiannis I, Doukas CN. Overview of advanced computer vision systems for skin lesions characterization. IEEE Trans Inf Technol Biomed 2009; 13(5): 721-33.
[http://dx.doi.org/10.1109/TITB.2009.2017529] [PMID: 19304487]
[55]
Saranya D, Radha V. Melanoma skin cancer detection: a review. Int J Adv Stud Comput Sci Engineer 2014; 3: 18.
[56]
Harpreet K, Aashdeep S. A review on automatic diagnosis of skin lesion based on the ABCD rule & thresholding method. Int J Adv Res Comput Sci Softw Engineer 2015; 5: 1-10.
[57]
Filho M, Ma Z, Tavares JM. A review of the quantification and classification of pigmented skin lesions: From dedicated to hand-held devices. J Med Syst 2015; 39(11): 177.
[http://dx.doi.org/10.1007/s10916-015-0354-8] [PMID: 26411929]
[58]
Thompson F, Jeyakumar M. Review of segmentation methods on malignant melanoma. International Conference on Circuit, Power and Computing Technologies (ICCPCT) 2016 Mar 18-19 Nagercoil, India New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/ICCPCT.2016.7530350]
[59]
Santy A, Joseph R. Segmentation methods for computer aided melanoma detection. Global Conference on Communication Technologies (GCCT) 2015 Apr 23-24 Thuckalay, India. New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/GCCT.2015.7342710]
[60]
Revathi V, Chithra A. A review on segmentation techniques. Skin lesion images. IRJET 2015; 2: 1-8.
[61]
Abbas Q, Celebi ME, García IF. Hair removal methods: a comparative study for dermoscopy images. Biomed Signal Process Control 2011; 6: 395-404.
[http://dx.doi.org/10.1016/j.bspc.2011.01.003]
[62]
Celebi ME, Wen Q, Iyatomi H, Shimizu K, Zhou H, Schaefer G. A state-of-the-art survey on lesion border detection in dermoscopy images. Biom Sign Process Control 2015; 6: 395-404.
[http://dx.doi.org/10.1201/b19107-5]
[63]
Oliveira RB, Papa JP, Pereira AS, Tavares JMR. Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Appl 2016; 2016: 1-24.
[64]
Oliveira RB, Filho ME, Ma Z, Papa JP, Pereira AS, Tavares JMR. Computational methods for the image segmentation of pigmented skin lesions: A review. Comput Methods Programs Biomed 2016; 131: 127-41.
[http://dx.doi.org/10.1016/j.cmpb.2016.03.032] [PMID: 27265054]
[65]
Celebi ME, Iyatomi H, Schaefer G, Stoecker WV. Lesion border detection in dermoscopy images. Comput Med Imaging Graph 2009; 33(2): 148-53.
[http://dx.doi.org/10.1016/j.compmedimag.2008.11.002] [PMID: 19121917]
[66]
Irum I, Raza M, Sharif M. Morphological techniques for medical images: A review. Res J Appl Sci 2012; 4.
[67]
Eltayef K, Li Y, Liu X. Detection of melanoma skin cancer in dermoscopy images. J Phys 2017; 2017: 012034.
[http://dx.doi.org/10.1088/1742-6596/787/1/012034]
[68]
Lee T, Ng V, Gallagher R, Coldman A, McLean D. DullRazor: a software approach to hair removal from images. Comput Biol Med 1997; 27(6): 533-43.
[http://dx.doi.org/10.1016/S0010-4825(97)00020-6] [PMID: 9437554]
[69]
Aswin R, Jaleel JA, Salim S. Hybrid genetic algorithm-artificial neural network classifier for skin cancer detection. International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) 2014 July 10-11 Kanyakumari, India New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/ICCICCT.2014.6993162]
[70]
Alishba A, Attique KM, Muhammad S, Faisal A, Tariq U, Shaohua W. Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion. SUSCOM 2019; 24100349
[http://dx.doi.org/10.1016/j.suscom.2019.08.002]
[71]
Supot S. Skin lesion detection of dermoscopy images using estimate localization technique. Fourth International Conference on Communication Systems and Network Technologies 2014 Apr 7- 9; Bhopal, India. New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/CSNT.2014.173]
[72]
Kiani K, Sharafat AR. E-shaver: an improved DullRazor(®) for digitally removing dark and light-colored hairs in dermoscopic images. Comput Biol Med 2011; 41(3): 139-45.
[http://dx.doi.org/10.1016/j.compbiomed.2011.01.003] [PMID: 21316042]
[73]
Ahn E, Kim J, Bi L, et al. Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE J Biomed Health Inform 2017; 21(6): 1685-93.
[http://dx.doi.org/10.1109/JBHI.2017.2653179] [PMID: 28092585]
[74]
Jaworek-Korjakowska J, Tadeusiewicz R. Determination of border irregularity in dermoscopic color images of pigmented skin lesions. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2014 Aug 26-30; Chicago, IL, USA. New Jeresy: IEEE 2014.
[http://dx.doi.org/10.1109/EMBC.2014.6945107]
[75]
Maglogiannis I, Delibasis K. Hair removal on dermoscopy images. Conf Proc IEEE Eng Med Biol Soc 2015; 2015: 2960-3.
[http://dx.doi.org/10.1109/EMBC.2015.7319013]
[76]
Barata C, Marques JS, Rozeira J. A system for the detection of pigment network in dermoscopy images using directional filters. IEEE Trans Biomed Eng 2012; 59(10): 2744-54.
[http://dx.doi.org/10.1109/TBME.2012.2209423] [PMID: 22829364]
[77]
Nasonova A, Nasonov A, Krylov A, Pechenko I, Umnov A, Makhneva N. Image warping in dermatological image hair removal. 11th International Conference on Image Analysis and Recognition 2014 Oct 22-24 Vilamoura, Portugal Berlin: Springer 2014.
[http://dx.doi.org/10.1007/978-3-319-11755-3_18]
[78]
Abbas Q, Celebi ME, Fondón García I. Skin tumor area extraction using an improved dynamic programming approach. Skin Res Technol 2012; 18(2): 133-42.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00544.x] [PMID: 21507072]
[79]
Abbas Q, Celebi ME, Garcia I. A novel perceptually-oriented approach for skin tumor segmentation. Int J Innov Comput, Inf Control 2012; 8: 1837-48.
[80]
Fleming MG, Steger C, Zhang J, et al. Techniques for a structural analysis of dermatoscopic imagery. Comput Med Imaging Graph 1998; 22(5): 375-89.
[http://dx.doi.org/10.1016/S0895-6111(98)00048-2] [PMID: 9890182]
[81]
Bi L, Kim J, Ahn E, Feng D, Fulham M. Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification. 13th International Symposium on Biomedical Imaging (ISBI) 2016 Apr 13-16 Prague, Czech Republic New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/isbi.2016.7493447]
[82]
Capdehourat G, Corez A, Bazzano A, Alonso R, Musé P. Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions. Pattern Recognit Lett 2011; 32: 2187-96.
[http://dx.doi.org/10.1016/j.patrec.2011.06.015]
[83]
Wighton P, Lee TK, Atkins MS. Dermascopic hair disocclusion using inpainting. Med Imaging 2008; 2008: 691427-691427-8.
[http://dx.doi.org/10.1117/12.770776]
[84]
Criminisi A, Pérez P, Toyama K. Region filling and object removal by exemplar-based image inpainting. IEEE Trans Image Process 2004; 13(9): 1200-12.
[http://dx.doi.org/10.1109/TIP.2004.833105] [PMID: 15449582]
[85]
Wighton P, Lee TK, Lui H, McLean DI, Atkins MS. Generalizing common tasks in automated skin lesion diagnosis. IEEE Trans Inf Technol Biomed 2011; 15(4): 622-9.
[http://dx.doi.org/10.1109/TITB.2011.2150758] [PMID: 21550892]
[86]
Kopparapu SK, Desai UB. Bayesian approach to image interpretation. Springer Science and Business Media 2001.
[87]
Sultana A, Dumitrache I, Vocurek M, Ciuc M. Removal of artifacts from dermatoscopic images. 10th International Conference on Communications (COMM) 2014 May 29-31; bucharest, Romania New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/iccomm.2014.6866757]
[88]
Saleh FS, Azmi R. Automated lesion border detection of dermoscopy images using spectral clustering. 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA) 2015 Mar 11-12 Rasht, Iran New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/pria.2015.7161640]
[89]
Dhawan AP, D’Alessandro B, Patwardhan S, Mullani N. Multispectral optical imaging of skin-lesions for detection of malignant melanomas. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 5352-5.
[http://dx.doi.org/10.1109/IEMBS.2009.5334045]
[90]
Suganya R. An automated computer aided diagnosis of skin lesions detection and classification for dermoscopy images. International Conference on Recent Trends in Information Technology (ICRTIT) 2016 Apr 8-9 Chennai, India New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/ICRTIT.2016.7569538]
[91]
Takruri M, Al-Jumaily A, Mahmoud MKA. Automatic recognition of melanoma using support vector machines: A study based on wavelet, curvelet and color features. International Conference on Industrial Automation, Information and Communications Technology 2014 Aug 8-30 Bali, Indonesia New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/IAICT.2014.6922110]
[92]
Lézoray O, Revenu M, Desvignes M. Graph-based skin lesion segmentation of multispectral dermoscopic images. International Conference on Image Processing (ICIP) 2014 Oct 27-30 Paris, France New Jeresy: IEEE 2015.
[http://dx.doi.org/10.1109/ICIP.2014.7025180]
[93]
Jafari MH, Nasr-Esfahani E, Karimi N, Soroushmehr S, Samavi S, Najarian K. Extraction of skin lesions from non-dermoscopic images using deep learning. arXiv preprint arXiv:160902374 2016.
[94]
He K, Sun J, Tang X. Guided image filtering. IEEE Trans Pattern Anal Mach Intell 2013; 35(6): 1397-409.
[http://dx.doi.org/10.1109/TPAMI.2012.213] [PMID: 23599054]
[95]
Levin A, Lischinski D, Weiss Y. A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 2008; 30(2): 228-42.
[http://dx.doi.org/10.1109/TPAMI.2007.1177] [PMID: 18084055]
[96]
Huang A, Kwan S-Y, Chang W-Y, Liu M-Y, Chi M-H, Chen G-S. A robust hair segmentation and removal approach for clinical images of skin lesions. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2013 July 3-7; Osaka, Japan. New Jersey: IEEE 2013.
[http://dx.doi.org/10.1109/EMBC.2013.6610250]
[97]
Huang A, Chang W-Y, Liu H-Y, Chen G-S. Capillary detection for clinical images of basal cell carcinoma. 9th IEEE International Symposium on Biomedical Imaging (ISBI) 2011 Oct 31; Barcelona, Spain New Jersey: IEEE 2012.
[http://dx.doi.org/10.1109/ISBI.2012.6235545]
[98]
Martínez AM, Kak AC. PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 2001; 23: 228-33.
[http://dx.doi.org/10.1109/34.908974]
[99]
Mirzaalian H, Lee TK, Hamarneh G. Hair enhancement in dermoscopic images using dual-channel quaternion tubularness filters and MRF-based multilabel optimization. IEEE Trans Image Process 2014; 23(12): 5486-96.
[http://dx.doi.org/10.1109/TIP.2014.2362054] [PMID: 25312927]
[100]
Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. International Conference on Medical Image Computing and Computer-Assisted Intervention 1998 Oct 11-13 Cambridge, MA, USA Berlin Springer 1998.
[101]
Mirzaalian H, Hamarneh G. Vessel scale-selection using MRF optimization. Computer Society Conference on Computer Vision and Pattern Recognition 2010 June 13-18 San Francisco, CA, USA New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/CVPR.2010.5540051]
[102]
Shi L, Funt B, Hamarneh G. Quaternion color curvature. Soc Imaging Sci Technol 2008; 2008: 338-41.
[103]
Saba T, Khan MA, Rehman A, Marie-Sainte SL. Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction. J Med Syst 2019; 43(9): 289.
[http://dx.doi.org/10.1007/s10916-019-1413-3] [PMID: 31327058]
[104]
Alina S, Ciuc CM, Radulescu T, Wanyu L, Petrache D. Preliminary work on dermatoscopic lesion segmentation. Proceedings of the 20th European Signal Processing Conference (EUSIPCO) 2012 Aug 27-31 Bucharest, Romania New Jersey: IEEE 2012.
[105]
Raikar A, Sangani S, Hanabaratti KD. Diagnosis of melanomas by check-list method. Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) 2013 July 4-6 Tiruchengode, India New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/ICCCNT.2013.6726775]
[106]
Ebrahimi SMS, Pourghassem H, Ashourian M. Lesion detection in dermoscopy images using sarsa reinforcement algorithm. 17th Iranian Conference of Biomedical Engineering (ICBME) 2010 Nov 3-4 Isfahan, Iran New Jersey: IEEE 2011.
[107]
Garnavi R, Aldeen M, Celebi ME, Varigos G, Finch S. Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput Med Imaging Graph 2011; 35(2): 105-15.
[http://dx.doi.org/10.1016/j.compmedimag.2010.08.001] [PMID: 20832992]
[108]
Di Leo G, Liguori C, Paolillo A, Sommella P. A web-based application for dermoscopic measurements and learning. IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings; 2015 May 7-9; Turin, Italy. New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/MeMeA.2015.7145213]
[109]
Schmid P. Lesion detection in dermatoscopic images using anisotropic diffusion and morphological flooding. Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348); 1999 Oct 24-28; Kobe, Japan. New Jersey: IEEE 2002.
[http://dx.doi.org/10.1109/ICIP.1999.817154]
[110]
Toossi MTB, Pourreza HR, Zare H, Sigari MH, Layegh P, Azimi A. An effective hair removal algorithm for dermoscopy images. Skin Res Technol 2013; 19(3): 230-5.
[http://dx.doi.org/10.1111/srt.12015] [PMID: 23560826]
[111]
Gu Y, Zhou J, Qian B. Melanoma Detection Based on Mahalanobis Distance Learning and Constrained Graph Regularized Nonnegative Matrix Factorization. Winter Conference on Applications of Computer Vision (WACV) 2017 Mar 24-31 Santa Rosa, CA, USA New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/WACV.2017.94]
[112]
Sharif M, Tanvir U, Munir EU, Khan MA, Yasmin M. Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. J Ambient Intell Humaniz Comput 2018; 2018: 1-20.
[http://dx.doi.org/10.1007/s12652-018-1075-x]
[113]
Nguyen NH, Lee TK, Atkins MS. Segmentation of light and dark hair in dermoscopic images: a hybrid approach using a universal kernel. SPIE Med Imaging 2010; 2010: 76234N-76234N-8.
[http://dx.doi.org/10.1117/12.844572]
[114]
Jaworek-Korjakowska J, Tadeusiewicz R. Assessment of dots and globules in dermoscopic color images as one of the 7-point check list criteria. International Conference on Image Processing (Image Process); 2013 Sept 15-18; Melbourne, VIC, Australia. New Jersey: IEEE 2013.
[http://dx.doi.org/10.1109/ICIP.2013.6738299]
[115]
Fiorese M, Peserico E, Silletti A. VirtualShave: automated hair removal from digital dermatoscopic images. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011 30 Aug - 3 Sept; Boston, MA, USA. New Jersey: IEEE 2011.
[http://dx.doi.org/10.1109/IEMBS.2011.6091274]
[116]
Zhou H, Chen M, Gass R, et al. Feature-preserving artifact removal from dermoscopy images. Med Imaging 2008; 2018: 69141B-69141B-9.
[http://dx.doi.org/10.1117/12.770824]
[117]
Abbas Q, Fondón I, Rashid M. Unsupervised skin lesions border detection via two-dimensional image analysis. Comput Methods Programs Biomed 2011; 104(3): e1-e15.
[http://dx.doi.org/10.1016/j.cmpb.2010.06.016] [PMID: 20663582]
[118]
Abbas Q, Celebi ME, Fondón García I, Rashid M. Lesion border detection in dermoscopy images using dynamic programming. Skin Res Technol 2011; 17(1): 91-100.
[http://dx.doi.org/10.1111/j.1600-0846.2010.00472.x] [PMID: 21226876]
[119]
Jahanifar M, Tajeddin NZ, Asl BM. Segmentation of lesions in dermoscopy images using saliency map and contour propagation. arXiv preprint arXiv: 170300087 2017.
[120]
Zare H, Toossi MTB. Early detection of melanoma in dermoscopy of skin lesion images by computer vision based systemed. Boca Raton: CRC Press 2015; pp. 345-84.
[http://dx.doi.org/10.1201/b19107-12]
[121]
Abbas Q, Celebi ME, Fondón I. Computer-aided pattern classification system for dermoscopy images. Skin Res Technol 2012; 18(3): 278-89.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00562.x] [PMID: 22093020]
[122]
Pennisi A, Bloisi D, Nardi D, Giampetruzzi A, Mondino C, Facchiano A. Melanoma detection using delaunay triangulation. 27th International Conference on Tools with Artificial Intelligence (ICTAI) 2015 Nov 9-11 Vietri sul Mare, Italy New Jeresy: IEEE 2016.
[http://dx.doi.org/10.1109/ICTAI.2015.117]
[123]
Wang H, Moss RH, Chen X, et al. Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images. Comput Med Imaging Graph 2011; 35(2): 116-20.
[http://dx.doi.org/10.1016/j.compmedimag.2010.09.006] [PMID: 20970307]
[124]
Yasmin M, Sharif M, Masood S, Raza M, Mohsin S. Brain image enhancement-A survey. World Appl Sci J 2012; 17: 1192-204.
[125]
Sookpotharom S. Border detection of skin lesion images based on fuzzy C-means thresholding. Third International Conference on Genetic and Evolutionary Computing 2009 Oct 14-17 Guilin, China New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/WGEC.2009.96]
[126]
Di Leo G, Paolillo A, Pietrosanto A, Sommella P, Fabbrocini G, Cacciapuoti S. A distributed measurement system for dermoscopic analysis of pigmented skin lesions. International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings; 2015 May 11-14; Pisa, Italy. New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/I2MTC.2015.7151526]
[127]
Barata C, Celebi ME, Marques JS. Improving dermoscopy image classification using color constancy. IEEE J Biomed Health Inform 2015; 19(3): 1146-52.
[PMID: 25073179]
[128]
Barata C, Marques JS, Celebi ME. Improving dermoscopy image analysis using color constancy. IEEE International Conference on Image Processing (ICIP) 2014 Oct 27-30 Paris, France New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/ICIP.2014.7025716]
[129]
Wighton P, Lee TK, Lui H, McLean D, Atkins MS. Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes. Skin Res Technol 2011; 17(3): 339-47.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00504.x] [PMID: 21338405]
[130]
Schaefer G, Rajab MI, Celebi ME, Iyatomi H. Colour and contrast enhancement for improved skin lesion segmentation. Comput Med Imaging Graph 2011; 35(2): 99-104.
[http://dx.doi.org/10.1016/j.compmedimag.2010.08.004] [PMID: 21035303]
[131]
[132]
Buchsbaum G. A spatial processor model for object colour perception. J Franklin Inst 1980; 310: 1-26.
[http://dx.doi.org/10.1016/0016-0032(80)90058-7]
[133]
Sadeghi M, Razmara M, Lee TK, Atkins MS. A novel method for detection of pigment network in dermoscopic images using graphs. Comput Med Imaging Graph 2011; 35(2): 137-43.
[http://dx.doi.org/10.1016/j.compmedimag.2010.07.002] [PMID: 20724109]
[134]
Mete M, Kockara S, Aydin K. Fast density-based lesion detection in dermoscopy images. Comput Med Imaging Graph 2011; 35(2): 128-36.
[http://dx.doi.org/10.1016/j.compmedimag.2010.07.007] [PMID: 20800995]
[135]
Abbas Q, Garcia IF, Emre Celebi M, Ahmad W, Mushtaq Q. A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images. Skin Res Technol 2013; 19(1): e490-7.
[http://dx.doi.org/10.1111/j.1600-0846.2012.00670.x] [PMID: 22882675]
[136]
Jamil U, Akram MU, Khalid S, Abbas S, Saleem K. Computer based melanocytic and nevus image enhancement and segmentation. Patt Recogn Bioinform 2016; 2016: 2082589.
[http://dx.doi.org/10.1155/2016/2082589]
[137]
Cavalcanti PG, Scharcanski J. Automated prescreening of pigmented skin lesions using standard cameras. Comput Med Imaging Graph 2011; 35(6): 481-91.
[http://dx.doi.org/10.1016/j.compmedimag.2011.02.007] [PMID: 21489751]
[138]
Abbas Q, García IF, Rashid M. Automatic skin tumour border detection for digital dermoscopy using a new digital image analysis scheme. Br J Biomed Sci 2010; 67(4): 177-83.
[http://dx.doi.org/10.1080/09674845.2010.11730316] [PMID: 21294444]
[139]
Lu Y, Xie F, Wu Y, Jiang Z, Meng R. No reference uneven illumination assessment for dermoscopy images. IEEE Signal Process Lett 2015; 22: 534-8.
[http://dx.doi.org/10.1109/LSP.2014.2357015]
[140]
Norton KA, Iyatomi H, Celebi ME, et al. Three-phase general border detection method for dermoscopy images using non-uniform illumination correction. Skin Res Technol 2012; 18(3): 290-300.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00569.x] [PMID: 22092500]
[141]
Pei S-C, Hsiao Y-Z, Tzeng M, Chang FJ. Uneven illumination removal and image enhancement using empirical mode decomposition. J Electron Imaging 2013; 22: 043037-7.
[http://dx.doi.org/10.1117/1.JEI.22.4.043037]
[142]
Leong FJ, Brady M, McGee JOD. Correction of uneven illumination (vignetting) in digital microscopy images. J Clin Pathol 2003; 56(8): 619-21.
[http://dx.doi.org/10.1136/jcp.56.8.619] [PMID: 12890815]
[143]
Grana C, Pellacani G, Seidenari S. Practical color calibration for dermoscopy, applied to a digital epiluminescence microscope. Skin Res Technol 2005; 11(4): 242-7.
[http://dx.doi.org/10.1111/j.0909-725X.2005.00127.x] [PMID: 16221140]
[144]
Gómez DD, Butakoff C, Ersbøll BK, Stoecker W. Independent histogram pursuit for segmentation of skin lesions. IEEE Trans Biomed Eng 2008; 55(1): 157-61.
[http://dx.doi.org/10.1109/TBME.2007.910651] [PMID: 18232357]
[145]
Celebi ME, Iyatomi H, Schaefer G. Contrast enhancement in dermoscopy images by maximizing a histogram bimodality measure. International Conference on Image Processing (ICIP) 2009 Nov 7-10 , Cairo, Egypt New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/ICIP.2009.5413990]
[146]
Quintana J, Garcia R, Neumann L. A novel method for color correction in epiluminescence microscopy. Comput Med Imaging Graph 2011; 35(7-8): 646-52.
[http://dx.doi.org/10.1016/j.compmedimag.2011.03.006] [PMID: 21531539]
[147]
Iyatomi H, Celebi ME, Schaefer G, Tanaka M. Automated color calibration method for dermoscopy images. Comput Med Imaging Graph 2011; 35(2): 89-98.
[http://dx.doi.org/10.1016/j.compmedimag.2010.08.003] [PMID: 20933366]
[148]
Manic KS, Hasoon FN, Al Shibli N, Satapathy SC, Rajinikanth V. An approach to examine brain tumor based on kapur’s entropy and chan-vese algorithm. Third international congress on information and communication technology. Berlin: Springer 2018 pp. 901-9
[http://dx.doi.org/10.1007/978-981-13-1165-9_81]
[149]
Khan MA, Lali IU, Rehman A, et al. Brain tumor detection and classification: A framework of marker-based watershed algorithm and multilevel priority features selection. Microsc Res Tech 2019; 82(6): 909-22.
[http://dx.doi.org/10.1002/jemt.23238] [PMID: 30801840]
[150]
Safdar A, Khan MA, Shah JH, et al. Intelligent microscopic approach for identification and recognition of citrus deformities. Microsc Res Tech 2019; 82(9): 1542-56.
[http://dx.doi.org/10.1002/jemt.23320] [PMID: 31209970]
[151]
Khan MA, Sharif M, Akram T, Yasmin M, Nayak RS. Stomach deformities recognition using rank-based deep features selection. J Med Syst 2019; 43(12): 329.
[http://dx.doi.org/10.1007/s10916-019-1466-3] [PMID: 31676931]
[152]
Barcelos CAZ, Pires V. An automatic based nonlinear diffusion equations scheme for skin lesion segmentation. Appl Math Comput 2009; 215: 251-61.
[http://dx.doi.org/10.1016/j.amc.2009.04.081]
[153]
Masood S, Sharif M, Masood A, Yasmin M, Raza M. A survey on medical image segmentation. Curr Med Imaging Rev 2015; 11: 3-14.
[http://dx.doi.org/10.2174/157340561101150423103441]
[154]
Wong A, Scharcanski J, Fieguth P. Automatic skin lesion segmentation via iterative stochastic region merging. IEEE Trans Inf Technol Biomed 2011; 15(6): 929-36.
[http://dx.doi.org/10.1109/TITB.2011.2157829] [PMID: 21622078]
[155]
Abuzaghleh O, Barkana BD, Faezipour M. Automated skin lesion analysis based on color and shape geometry feature set for melanoma early detection and prevention. Long Island Systems, Applications and Technology (LISAT) Conference; 2014 May 2-2; Farmingdale, NY, USA. New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/LISATl.2014.6845199]
[156]
Antony A, Ramesh A, Sojan A, Mathews B, Varghese MTA. Skin cancer detection using artificial neural networking. Skin 2016; 2016: 4.
[157]
Arroyo JLG, Zapirain BG, Zorrilla AM. Blue-white veil and dark-red patch of pigment pattern recognition in dermoscopic images using machine-learning techniques. International Symposium on Signal Processing and Information Technology (ISSPIT) 14-2011 Dec 17; Bilbao, Spain. New Jersey: IEEE 2012.
[http://dx.doi.org/10.1109/ISSPIT.2011.6151559]
[158]
Kaur R, Albano PP, Cole JG, et al. Real-time supervised detection of pink areas in dermoscopic images of melanoma: importance of color shades, texture and location. Skin Res Technol 2015; 21(4): 466-73.
[http://dx.doi.org/10.1111/srt.12216] [PMID: 25809473]
[159]
Peruch F, Bogo F, Bonazza M, Cappelleri V-M, Peserico E. Simpler, faster, more accurate melanocytic lesion segmentation through MEDS. IEEE Trans Biomed Eng 2014; 61(2): 557-65.
[http://dx.doi.org/10.1109/TBME.2013.2283803] [PMID: 24081839]
[160]
Sagar C, Saini LM. Color channel based segmentation of skin lesion from clinical images for the detection of melanoma. 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) 2016 July 4-6 Delhi, India New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/ICPEICES.2016.7853624]
[161]
Satheesha T, Sathyanarayana D, Prasad MG. Proposed threshold algorithm for accurate segmentation for skin lesion. Oncology: breakthroughs in research and practice. Pennsylvania IGI Global 2016; pp 302.
[162]
Sheha MA, Sharwy A, Mabrouk MS. Pigmented skin lesion diagnosis using geometric and chromatic features. Proceedings of the 7th Cairo International Biomedical Engineering Conference Cairo 2014.
[http://dx.doi.org/10.1109/CIBEC.2014.7020931]
[163]
Lee H, Chen Y-PP. Skin cancer extraction with optimum fuzzy thresholding technique. Appl Intell 2014; 40: 415-26.
[http://dx.doi.org/10.1007/s10489-013-0474-0]
[164]
Zortea M, Flores E, Scharcanski J. A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recognit 2017; 64: 92-104.
[http://dx.doi.org/10.1016/j.patcog.2016.10.031]
[165]
Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision. 4th ed. Boston: Cengage Learning 2014.
[166]
Al-abayechi AAA, Logeswaran R, Guo X, Tan W-H. Lesion border detection in dermoscopy images using bilateral filter. International Conference on Signal and Image Processing Applications 2013 Oct 8-10 Melaka, Malaysia New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/ICSIPA.2013.6708034]
[167]
Sáez A, Serrano C, Acha B. Model-based classification methods of global patterns in dermoscopic images. IEEE Trans Med Imaging 2014; 33(5): 1137-47.
[http://dx.doi.org/10.1109/TMI.2014.2305769] [PMID: 24770918]
[168]
Yasmin J, Sathik M. An improved iterative segmentation algorithm using canny edge detector for skin lesion border detection. Int Arab J Inf Technol 2015; 12: 325-32.
[169]
Angelina S, Suresh LP, Veni SK. Image segmentation based on genetic algorithm for region growth and region merging. International Conference on Computing, Electronics and Electrical Technologies (ICCEET) 2012 Mar 21-22 Kumaracoil, India. New Jersey: IEEE 2012.
[http://dx.doi.org/10.1109/ICCEET.2012.6203833]
[170]
Saleh FS, Azmi R. Automatic multiple regions segmentation of dermoscopy images. The International Symposium on Artificial Intelligence and Signal Processing (AISP) 2015 Mar 3-5 Mashhad, Iran. New Jersey :IEEE 2015.
[http://dx.doi.org/10.1109/AISP.2015.7123482]
[171]
Abbas Q, Fondón I, Sarmiento A, Celebi ME. An improved segmentation method for non-melanoma skin lesions using active contour model. International Conference on Image Analysis and Recognition 2014 Oct 22-24 Vilamoura, Portugal Berlin: Springer 2014.
[http://dx.doi.org/10.1007/978-3-319-11755-3_22]
[172]
Riaz F, Hassan A, Zeb J. Distance regularized curve evolution: A formulation using creaseness features for dermoscopic image segmentation. 12th International Conference on Signal Processing (ICSP) 2014 Oct 19-23 Hangzhou, China New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/ICOSP.2014.7015166]
[173]
Satheesha T, Satyanarayana D, Giriprasad M, Nagesh K. Detection of melanoma using distinct features. 3rd MEC International Conference on Big Data and Smart City (ICBDSC) 2016 Mar 15-16 Muscat, Oman New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/ICBDSC.2016.7460367]
[174]
Ghanta S, Jordan MI, Kose K, Brooks DH, Rajadhyaksha M, Dy JG. A marked poisson process driven latent shape model for 3d segmentation of reflectance confocal microscopy image stacks of human skin. IEEE Trans Image Process 2017; 26(1): 172-84.
[http://dx.doi.org/10.1109/TIP.2016.2615291] [PMID: 27723590]
[175]
Khan J, Malik AS, Kamel N, Dass SC, Affandi AM. Segmentation of acne lesion using fuzzy C-means technique with intelligent selection of the desired cluster. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015 Aug 25-29; Milan, Italy. New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/EMBC.2015.7319042]
[176]
Kharazmi P, AlJasser MI, Lui H, Wang ZJ, Lee TK. Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification. IEEE J Biomed Health Inform 2016; 21(6): 1675-84.
[PMID: 27959832]
[177]
Mohamed A A I, Ali MM, Nusrat K, Rahebi J, Sayiner A, Kandemirli F. Melanoma skin cancer segmentation with image region growing based on fuzzy clustering mean. Int J Engineer Innov Res 2017; 6(2): 91-5.
[178]
Ray PJ, Priya S, Kumar TA. Nuclear segmentation for skin cancer diagnosis from histopathological images. Global Conference on Communication Technologies (GCCT) 2015 Apr 23-24 Thuckalay, India. New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/GCCT.2015.7342692]
[179]
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Conference on Computer Vision and Pattern Recognition (CVPR) 2015 Jun 7-12 Boston, MA, USA New Jersey: IEEE 2015.
[180]
Yuan Y, Chao M, Lo Y-C. Automatic skin lesion segmentation with fully convolutional-deconvolutional networks arXiv preprint arXiv:170305165, 2017.
[181]
Bi L, Kim J, Ahn E, Feng D, Fulham M. Semi-automatic skin lesion segmentation via fully convolutional networks 14th International Symposium on Biomedical Imaging (ISBI 2017) 2017 Apr 18-21 Melbourne, VIC, Australia New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/ISBI.2017.7950583]
[182]
Bozorgtabar B, Ge Z, Chakravorty R, Abedini M, Demyanov S, Garnavi R. Investigating deep side layers for skin lesion segmentation. 14th International Symposium on Biomedical Imaging (ISBI 2017) 2017 Apr 18-21 Melbourne, VIC, Australia New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/ISBI.2017.7950514]
[183]
Shin H-C, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35(5): 1285-98.
[http://dx.doi.org/10.1109/TMI.2016.2528162] [PMID: 26886976]
[184]
Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl 2004; 86(5): 334-8.
[http://dx.doi.org/10.1308/147870804290] [PMID: 15333167]
[185]
Rajab MI, Woolfson MS, Morgan SP. Application of region-based segmentation and neural network edge detection to skin lesions. Comput Med Imaging Graph 2004; 28(1-2): 61-8.
[http://dx.doi.org/10.1016/S0895-6111(03)00054-5] [PMID: 15127750]
[186]
Yuan X, Situ N, Zouridakis G. Automatic segmentation of skin lesion images using evolution strategies. Biomed Signal Process Control 2008; 3: 220-8.
[http://dx.doi.org/10.1016/j.bspc.2008.02.003]
[187]
Celebi ME, Hwang S, Iyatomi H, Schaefer G. Robust border detection in dermoscopy images using threshold fusion. International Conference on Image Processing 2010 Sept 26-29 Hong Kong, China New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/ICIP.2010.5653514]
[188]
Ming D, Wen Q, Chen J, Liu W. A generalized fusion approach for segmenting dermoscopy images using Markov random field Image. 6th International Congress on Image and Signal Processing (CISP) 2013 Dec16-18; Hangzhou, China New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/CISP.2013.6744054]
[189]
Wen Q, Ming D, Chen J. A novel fusion approach for segmenting dermoscopy image based on region consistency. International Conference on Computational Problem-Solving (ICCP) 2013 Oct 26-28 Jiuzhai, China. New Jersey: IEEE 2013.
[http://dx.doi.org/10.1109/ICCPS.2013.6893488]
[190]
Do T-T, Zhou Y, Zheng H, Cheung N-M, Koh D. Early melanoma diagnosis with mobile imaging. Conf Proc IEEE Eng Med Biol Soc 2014; 2014: 6752-7.
[191]
Felzenszwalb PF, Huttenlocher DP. Efficient graph-based image segmentation. Int J Comput Vis 2004; 59: 167-81.
[http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77]
[192]
Level Otsu N. A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern 1979; 9: 62-6.
[http://dx.doi.org/10.1109/TSMC.1979.4310076]
[193]
Silveira M, Nascimento JC, Marques JS, et al. Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Signal Process 2009; 3: 35-45.
[http://dx.doi.org/10.1109/JSTSP.2008.2011119]
[194]
Vidhya K, Revathi S, Ashwini S S S, Vanitha S. Review on digital image segmentation techniques. Int Res J Engineer Technol 201; 3(2): 1-8.
[195]
Mendonca T, Marcal AR, Vieira A, et al. Comparison of segmentation methods for automatic diagnosis of dermoscopy images. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2007 Aug 22-26; Lyon, France. New Jersey: IEEE 2007.
[http://dx.doi.org/10.1109/IEMBS.2007.4353865]
[196]
Ahn E, Bi L, Jung YH, et al. Automated saliency-based lesion segmentation in dermoscopic images. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015 Aug 25-29; Milan, Italy. New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/EMBC.2015.7319025]
[197]
Bi L, Kim J, Ahn E, Feng D, Fulham M. Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata. 13th International Symposium on Biomedical Imaging (ISBI) 2016 Apr 13-16 Prague, Czech Republic New: Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/ISBI.2016.7493448]
[198]
Ma Z, Tavares JMR. A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J Biomed Health Inform 2016; 20(2): 615-23.
[http://dx.doi.org/10.1109/JBHI.2015.2390032] [PMID: 25585429]
[199]
Iyatomi H, Norton K-A, Celebi ME, Schaefer G, Tanaka M, Ogawa K. Classification of melanocytic skin lesions from non-melanocytic lesions. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 5407-10.
[http://dx.doi.org/10.1109/IEMBS.2010.5626500]
[200]
Sforza G, Castellano G, Arika SK, et al. Using adaptive thresholding and skewness correction to detect gray areas in melanoma in situ images. IEEE Trans Instrum Meas 2012; 61: 1839-47.
[http://dx.doi.org/10.1109/TIM.2012.2192349]
[201]
Sforza G, Castellano G, Stanley RJ, Stoecker WV, Hagerty J. Adaptive segmentation of gray areas in dermoscopy images.International Symposium on Medical Measurements and Applications 2011 May 30-31 Bari, Italy New Jersey: IEEE 2011.
[http://dx.doi.org/10.1109/MeMeA.2011.5966741]
[202]
Yüksel ME, Borlu M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst 2009; 17: 976-82.
[http://dx.doi.org/10.1109/TFUZZ.2009.2018300]
[203]
Emre Celebi M, Wen Q, Hwang S, Iyatomi H, Schaefer G. Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res Technol 2013; 19(1): e252-8.
[http://dx.doi.org/10.1111/j.1600-0846.2012.00636.x] [PMID: 22676490]
[204]
Attia M, Hossny M, Nahavandi S, Yazdabadi A. Spatially aware melanoma segmentation using hybrid deep learning techniques. arXiv preprint arXiv:170207963 2017.
[205]
Ramachandram D, DeVries T. LesionSeg: semantic segmentation of skin lesions using deep convolutional neural network. arXiv preprint arXiv:170303372, 2017.
[206]
Yang X, Zeng Z, Yeo SY, Tan C, Tey HL, Su Y. A novel multitask deep learning model for skin lesion segmentation and classification. arXiv preprint arXiv:170301025 2017.
[207]
Yuan Y, Chao M, Lo Y-C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans Med Imaging 2017; 36(9): 1876-86.
[http://dx.doi.org/10.1109/TMI.2017.2695227] [PMID: 28436853]
[208]
Li Y, Shen L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors (Basel) 2018; 18(2): 556.
[http://dx.doi.org/10.3390/s18020556] [PMID: 29439500]
[209]
He X, Yu Z, Wang T, Lei B, Shi Y. Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation. Technol Health Care 2018; 26(S1): 307-16.
[http://dx.doi.org/10.3233/THC-174633] [PMID: 29758959]
[210]
Al-Masni MA, Al-Antari MA, Choi M-T, Han S-M, Kim T-S. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Programs Biomed 2018; 162: 221-31.
[http://dx.doi.org/10.1016/j.cmpb.2018.05.027] [PMID: 29903489]
[211]
Sadri AR, Zekri M, Sadri S, Gheissari N, Mokhtari M, Kolahdouzan F. Segmentation of dermoscopy images using wavelet networks. IEEE Trans Biomed Eng 2013; 60(4): 1134-41.
[http://dx.doi.org/10.1109/TBME.2012.2227478] [PMID: 23193305]
[212]
Bozorgtabar B, Abedini M, Garnavi R. Sparse coding based skin lesion segmentation using dynamic rule-based refinement. International Workshop Machine Learning in Medical Imaging 2016 Oct 17 Athens, Greece Berlin: Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-47157-0_31]
[213]
Sciolla B, Cowell L, Dambry T, Guibert B, Delachartre P. Segmentation of skin tumors in high-frequency 3-D ultrasound images. Ultrasound Med Biol 2017; 43(1): 227-38.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.08.029] [PMID: 27720519]
[214]
Riaz F, Naeem S, Nawaz R, Coimbra MT. Active contours based segmentation and lesion periphery analysis for characterization of skin lesions in dermoscopy images. IEEE J Biomed Health Inform 2018; 23(2): 489-500.
[PMID: 29993589]
[215]
Parolin A, Herzer E, Jung CR. Semi-automated diagnosis of melanoma through the analysis of dermatological images. 23rd SIBGRAPI Conference on Graphics, Patterns and Images 2010 Aug 30-Sept 3 Gramado, Brazil New Jersey: IEEE 2011.
[http://dx.doi.org/10.1109/SIBGRAPI.2010.18]
[216]
Urooj S, Singh S. A novel computer assisted approach for diagnosis of skin disease. 2nd International Conference on Computing for Sustainable Global Development (INDIACom) 2015 Mar 11-13 New Delhi, India New Jersey: IEEE 2015.
[217]
Devi RS, Suresh LP, Shunmuganathan K. Intelligent fussy system based dermoscopic image segmentation for melanoma detection. International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2011) 2011 Jul 20-22 Chennai, India New Jersey: IEEE 2012.
[http://dx.doi.org/10.1049/cp.2011.0461]
[218]
Zhou H, Schaefer G, Sadka AH, Celebi ME. Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J Sel Top Signal Process 2009; 3: 26-34.
[http://dx.doi.org/10.1109/JSTSP.2008.2010631]
[219]
Hamzah N, Asli MS, Lee R. Skin cancer image detection using watershed marker-controlled and canny edge detection techniques. Trans Sci Technol 2018; 5(1): 1-4.
[220]
Schaefer G, Rajab MI, Celebi ME, Iyatomi H. Skin lesion segmentation using co-operative neural network edge detection and colour normalization. 9th International Conference on Information Technology and Applications in Biomedicine 2009 Nov 4-7 Larnaca, Cyprus New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/ITAB.2009.5394389]
[221]
Yasmin JJ, Sathik MM, Beevi SZ. Robust segmentation algorithm using LOG edge detector for effective border detection of noisy skin lesions. International Conference on Computer, Communication and Electrical Technology (ICCCET) 2011 Mar 18-19 Tamilnadu, India New Jersey IEEE 2011.
[222]
Khan MA, Akram T, Sharif M, et al. An integrated framework of skin lesion detection and recognition through saliency method and optimal deep neural network features selection. Neural Comput & Applic. 2019.Available from: https://link.springer.com/article/10.1007%2Fs00521-019-04514-0#citeas
[http://dx.doi.org/10.1007/s00521-019-04514-0]
[223]
D’Alessandro B, Dhawan AP, Mullani N. Computer aided analysis of epi-illumination and transillumination images of skin lesions for diagnosis of skin cancers. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011 Aug 30- Sept 3; Boston, MA, USA. New Jersey: IEEE 2011.
[http://dx.doi.org/10.1109/IEMBS.2011.6090929]
[224]
Schaefer G, Krawczyk B, Celebi ME, Iyatomi H. Melanoma classification using dermoscopy imaging and ensemble learning. 2nd IAPR Asian Conference on Pattern Recognition 2013 Nov 5-8 Naha, Japan New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/ACPR.2013.102]
[225]
Situ N, Yuan X, Zouridakis G, Mullani N. Automatic segmentation of skin lesion images using evolutionary strategy. International Conference on Image Processing 2007 Sept 16-Oct 19 San Antonio, TX, USA New Jersey: IEEE 2007.
[http://dx.doi.org/10.1109/ICIP.2007.4379575]
[226]
Khan MA, Akram T, Sharif M, Javed MY, Muhammad N, Yasmin M. An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Pattern Anal Appl 2018; 2018: 1-21.
[227]
Sharif M, Khan MA, Faisal M, Yasmin M, Fernandes SL. A framework for offline signature verification system: Best features selection approach. Pattern Recognit Lett 2018; 2018: 1-8.
[http://dx.doi.org/10.1016/j.patrec.2018.01.021]
[228]
Sharif M, Khan MA, Akram T, Javed MY, Saba T, Rehman A. A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection. EURASIP J Image Video Process 2017; 2017: 89.
[http://dx.doi.org/10.1186/s13640-017-0236-8]
[229]
Khan MA, Sharif M, Javed MY, Akram T, Yasmin M, Saba T. License number plate recognition system using entropy-based features selection approach with SVM. IET Image Process 2017; 12: 200-9.
[http://dx.doi.org/10.1049/iet-ipr.2017.0368]
[230]
Raza M, Sharif M, Yasmin M, Khan MA, Saba T, Fernandes SL. Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning. Future Gener Comput Syst 2018; 88: 28-39.
[http://dx.doi.org/10.1016/j.future.2018.05.002]
[231]
Sharif M, Khan MA, Iqbal Z, Azam MF, Lali MIU, Javed MY. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Comput Electron Agric 2018; 150: 220-34.
[http://dx.doi.org/10.1016/j.compag.2018.04.023]
[232]
Liaqat A, Khan MA, Shah JH, Sharif M, Yasmin M, Fernandes SL. Automated ulcer and bleeding classification from wce images using multiple features fusion and selection. J Mech Med Biol 2018; 2018: 1850038.
[233]
Amin J, Sharif M, Yasmin M, Fernandes SL. Big data analysis for brain tumor detection: Deep convolutional neural networks. Future Gener Comput Syst 2018; 2018: 1-10.
[http://dx.doi.org/10.1016/j.future.2018.04.065]
[234]
Ansari GJ, Shah JH, Yasmin M, Sharif M, Fernandes SL. A novel machine learning approach for scene text extraction. Future Gener Comput Syst 2018; 87: 328-40.
[http://dx.doi.org/10.1016/j.future.2018.04.074]
[235]
Irshad M, Muhammad N, Sharif M, Yasmeen M. Automatic segmentation of the left ventricle in a cardiac MR short axis image using blind morphological operation. Eur Phys J Plus 2018; 133: 148.
[http://dx.doi.org/10.1140/epjp/i2018-11941-0]
[236]
Ali H, Yasmin M, Sharif M, Rehmani MH. Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images. Comput Methods Programs Biomed 2018; 157: 39-47.
[http://dx.doi.org/10.1016/j.cmpb.2018.01.013] [PMID: 29477434]
[237]
Ercal F, Chawla A, Stoecker WV, Lee H-C, Moss RH. Neural network diagnosis of malignant melanoma from color images. IEEE Trans Biomed Eng 1994; 41(9): 837-45.
[http://dx.doi.org/10.1109/10.312091] [PMID: 7959811]
[238]
Celebi ME, Zornberg A. Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification. IEEE Syst J 2014; 8: 980-4.
[http://dx.doi.org/10.1109/JSYST.2014.2313671]
[239]
Iyatomi H, Norton K-A, Celebi ME, Schaefer G, Tanaka M, Ogawa K. Classification of melanocytic skin lesions from non-melanocytic lesions. Annual International Conference of the IEEE Engineering in Medicine and Biology; Buenos Aires, Argentina. New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/IEMBS.2010.5626500]
[240]
Schaefer G, Krawczyk B, Celebi ME, Iyatomi H. An ensemble classification approach for melanoma diagnosis. Memetic Computing 2014; 6: 233-40.
[http://dx.doi.org/10.1007/s12293-014-0144-8]
[241]
Barata C, Celebi ME, Marques JS. Melanoma detection algorithm based on feature fusion. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015 Aug 25-29; Milan, Italy. New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/EMBC.2015.7318937]
[242]
García Arroyo JL, García Zapirain B. Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis. Comput Biol Med 2014; 44: 144-57.
[http://dx.doi.org/10.1016/j.compbiomed.2013.11.002] [PMID: 24314859]
[243]
Rahman MM, Bhattacharya P, Desai BC. A multiple expert-based melanoma recognition system for dermoscopic images of pigmented skin lesions. IEEE International Conference on BioInformatics and BioEngineering; 2008 8-10 Oct; Athens, Greece. New Jersey: IEEE 2008.
[http://dx.doi.org/10.1109/BIBE.2008.4696799]
[244]
Haralick RM. Statistical and structural approaches to texture. Proc IEEE 1979; 67: 786-804.
[http://dx.doi.org/10.1109/PROC.1979.11328]
[245]
Rahman MM, Bhattacharya P. An integrated and interactive decision support system for automated melanoma recognition of dermoscopic images. Comput Med Imaging Graph 2010; 34(6): 479-86.
[http://dx.doi.org/10.1016/j.compmedimag.2009.10.003] [PMID: 19942406]
[246]
Skrøvseth SO, Schopf TR, Thon K, et al. A computer aided diagnostic system for malignant melanomas. Neural Comput Applic 2013; 23: 2059-71.
[http://dx.doi.org/10.1109/ISABEL.2010.5702825]
[247]
Mirzaalian H, Lee TK, Hamarneh G. Learning features for streak detection in dermoscopic color images using localized radial flux of principal intensity curvature. Workshop on Mathematical Methods in Biomedical Image Analysis 2012 Jan 9-10 Breckenridge, CO, USA New Jersey: IEEE 2012.
[http://dx.doi.org/10.1109/MMBIA.2012.6164758]
[248]
Thon K, Rue H, Skrøvseth SO, Godtliebsen F. Bayesian multiscale analysis of images modeled as Gaussian Markov random fields. Comput Stat Data Anal 2012; 56: 49-61.
[http://dx.doi.org/10.1016/j.csda.2011.07.009]
[249]
Shimizu K, Iyatomi H, Celebi ME, Norton K-A, Tanaka M. Four-class classification of skin lesions with task decomposition strategy. IEEE Trans Biomed Eng 2015; 62(1): 274-83.
[http://dx.doi.org/10.1109/TBME.2014.2348323] [PMID: 25137721]
[250]
Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern 1973; 610-21.
[http://dx.doi.org/10.1109/TSMC.1973.4309314]
[251]
Abedini M, Chen Q, Codella NC, Garnavi R, Sun X. Accurate and scalable system for automatic detection of malignant melanoma. 1st ed. Dermoscopy Image Analysis. Florida: CRC Press 2015 pp. 293343
[http://dx.doi.org/10.1201/b19107-11]
[252]
Cavalcanti PG, Scharcanski J. Macroscopic pigmented skin lesion segmentation and its influence on lesion classification and diagnosis. In: Celebi M, Schaefer G, Eds Color Medical Image Analysis.Berlin: Springer 2013; pp. 15-39.
[http://dx.doi.org/10.1007/978-94-007-5389-1_2]
[253]
Madasu VK, Lovell BC. Blotch detection in pigmented skin lesions using fuzzy co-clustering and texture segmentation. Digital Image Computing: Techniques and Applications; 2009 Dec 1-3; Melbourne, VIC, Australia. New Jersey: IEEE.
[http://dx.doi.org/10.1109/DICTA.2009.15]
[254]
Yuan X, Yang Z, Zouridakis G, Mullani N. SVM-based texture classification and application to early melanoma detection. Conf Proc IEEE Eng Med Biol Soc 2006; 2006: 4775-8.
[http://dx.doi.org/10.1109/IEMBS.2006.260056]
[255]
Situ N, Yuan X, Zouridakis G. Assisting main task learning by heterogeneous auxiliary tasks with applications to skin cancer screening. J Mach Learn Res 2011; 15: 688-97.
[256]
Tanaka T, Torii S, Kabuta I, Shimizu K, Tanaka M. Pattern classification of nevus with texture analysis. IEEJ Trans Electr Electron Eng 2008; 3: 143-50.
[http://dx.doi.org/10.1002/tee.20246]
[257]
Rastgoo M, Garcia R, Morel O, Marzani F. Automatic differentiation of melanoma from dysplastic nevi. Comput Med Imaging Graph 2015; 43: 44-52.
[http://dx.doi.org/10.1016/j.compmedimag.2015.02.011] [PMID: 25797605]
[258]
Celebi ME, Kingravi HA, Uddin B, et al. A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 2007; 31(6): 362-73.
[http://dx.doi.org/10.1016/j.compmedimag.2007.01.003] [PMID: 17387001]
[259]
Maglogiannis I, Delibasis KK. Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy. Comput Methods Programs Biomed 2015; 118(2): 124-33.
[http://dx.doi.org/10.1016/j.cmpb.2014.12.001] [PMID: 25540998]
[260]
Zhou Y, Smith M, Smith L, Warr R. A new method describing border irregularity of pigmented lesions. Skin Res Technol 2010; 16(1): 66-76.
[http://dx.doi.org/10.1111/j.1600-0846.2009.00403.x] [PMID: 20384885]
[261]
Ma L, Staunton RC. Analysis of the contour structural irregularity of skin lesions using wavelet decomposition. Pattern Recognit 2013; 46: 98-106.
[http://dx.doi.org/10.1016/j.patcog.2012.07.001]
[262]
Lee TK, McLean DI, Atkins MS. Irregularity index: a new border irregularity measure for cutaneous melanocytic lesions. Med Image Anal 2003; 7(1): 47-64.
[http://dx.doi.org/10.1016/S1361-8415(02)00090-7] [PMID: 12467721]
[263]
Mendonc T. PH 2-A Public database for the analysis of dermoscopic images Dermoscopy Image Analysis. 1st ed. Florida: CRC Press 2015.
[264]
Wollina U, Burroni M, Torricelli R, et al. Digital dermoscopy in clinical practise: a three-centre analysis. Skin Res Technol 2007; 13(2): 133-42.
[http://dx.doi.org/10.1111/j.1600-0846.2007.00219.x] [PMID: 17374053]
[265]
Satheesha TY, Satyanarayana D, Prasad MNG, Dhruve KD. Melanoma is skin deep: a 3D reconstruction technique for computerized dermoscopic skin lesion classification. IEEE J Transl Eng Health Med 2017; 20177: 54300117.
[http://dx.doi.org/10.1109/JTEHM.2017.2648797] [PMID: 28512610]
[266]
Stoecker WV, Wronkiewiecz M, Chowdhury R, et al. Detection of granularity in dermoscopy images of malignant melanoma using color and texture features. Comput Med Imaging Graph 2011; 35(2): 144-7.
[http://dx.doi.org/10.1016/j.compmedimag.2010.09.005] [PMID: 21036538]
[267]
Oliveira RB, Pereira AS, Tavares JMRS. Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation. Comput Methods Programs Biomed 2017; 149: 43-53.
[http://dx.doi.org/10.1016/j.cmpb.2017.07.009] [PMID: 28802329]
[268]
Khan MA, Rashid M, Sharif M, Javed K, Akram T. Classification of gastrointestinal diseases of stomach from WCE using improved saliency-based method and discriminant features selection. Multimedia Tools Appl 2019; 2019: 1-28.
[http://dx.doi.org/10.1007/s11042-019-07875-9]
[269]
Jain AK. Advances in statistical pattern recognition Pattern Recognition Theory and Applications. Berlin: Springer 1987; pp. 1-19.
[http://dx.doi.org/10.1007/978-3-642-83069-3_1]
[270]
Xie F, Fan H, Li Y, Jiang Z, Meng R, Bovik A. Melanoma classification on dermoscopy images using a neural network ensemble model. IEEE Trans Med Imaging 2017; 36(3): 849-58.
[http://dx.doi.org/10.1109/TMI.2016.2633551] [PMID: 27913337]
[271]
Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997; 97: 273-324.
[http://dx.doi.org/10.1016/S0004-3702(97)00043-X]
[272]
Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognit 2000; 33: 25-41.
[http://dx.doi.org/10.1016/S0031-3203(99)00041-2]
[273]
Dash M, Liu H. Feature selection for classification. Intell Data Anal 1997; 1: 131-56.
[http://dx.doi.org/10.3233/IDA-1997-1302]
[274]
Ain QU, Xue B, Al-Sahaf H, Zhang M. Genetic programming for skin cancer detection in dermoscopic images. IEEE Congress on Evolutionary Computation (CEC) 2017 June 5-8 San Sebastian, Spain New Jersey: IEEE 2017.
[275]
Iyatomi H, Oka H, Celebi ME, et al. Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin. J Invest Dermatol 2008; 128(8): 2049-54.
[http://dx.doi.org/10.1038/jid.2008.28] [PMID: 18323788]
[276]
Kruk M, Świderski B, Osowski S, Kurek J, Słowińska M, Walecka I. Melanoma recognition using extended set of descriptors and classifiers. EURASIP J Image Video Process 2015; 2015: 43.
[http://dx.doi.org/10.1186/s13640-015-0099-9]
[277]
Situ N, Yuan X, Zouridakis G. Boosting instance prototypes to detect local dermoscopic features. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 5561-4.
[http://dx.doi.org/10.1109/IEMBS.2010.5626776]
[278]
Situ N, Wadhawan T, Yuan X, Zouridakis G. Modeling spatial relation in skin lesion images by the graph walk kernel. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 6130-3.
[http://dx.doi.org/10.1109/IEMBS.2010.5627798]
[279]
Wazaefi Y, Paris S, Fertil B. Contribution of a classifier of skin lesions to the dermatologist’s decision. 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA) 2012 Oct 15-18 Istanbul, Turkey New Jersey: IEEE 2013.
[http://dx.doi.org/10.1109/IPTA.2012.6469560]
[280]
Garnavi R, Aldeen M, Bailey J. Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis. IEEE Trans Inf Technol Biomed 2012; 16(6): 1239-52.
[http://dx.doi.org/10.1109/TITB.2012.2212282] [PMID: 22893445]
[281]
Hu R, Queen CM, Zouridakis G. Detection of Buruli ulcer disease: preliminary results with dermoscopic images on smart handheld devices. Point-of-Care Healthcare Technologies; 2013 Jan 16-18; Bangalore, India. New Jersey: IEEE 2013.
[282]
Sadeghi M, Lee TK, McLean D, Lui H, Atkins MS. Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans Med Imaging 2013; 32(5): 849-61.
[http://dx.doi.org/10.1109/TMI.2013.2239307] [PMID: 23335664]
[283]
Scharcanski J, Celebi ME. Computer vision techniques for the diagnosis of skin cancer. Berlin: Springer 2013.
[284]
Møllersen K, Hardeberg JY, Godtliebsen F. Divergence-based colour features for melanoma detection. Colour and Visual Computing Symposium (CVCS) 2015 Aug 25-26 Gjovik, Norway New Jersey: IEEE 2015.
[285]
Kropidlowski K, Kociolek M, Strzelecki M, Czubinski D. Nevus atypical pigment network distinction and irregular streaks detection in skin lesions images. Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA); 2015 Sept 23-25; Poznan, Poland. New Jersey: IEEE 2015.
[http://dx.doi.org/10.1109/SPA.2015.7365135]
[286]
Mengistu AD, Alemayehu DM. Computer vision for skin cancer diagnosis and recognition using RBF and SOM. Int J Image Process 2015; 9: 311.
[287]
Amarathunga A, Ellawala E, Abeysekara G, Amalraj C. Expert system for diagnosis of skin diseases Int J Sci Technol Res 2015; 2015: 4.
[288]
Kaur K. A Collaborative Biomedical image-mining framework along with image annotation. Int Comput 2015; 2015: 116-20.
[http://dx.doi.org/10.5120/20398-2699]
[289]
Alfed N, Khelifi F, Bouridane A. Improving a bag of words approach for skin cancer detection in dermoscopic images. International Conference on Control, Decision and Information Technologies (CoDIT) 2016 Apr 6-8 St. Julian's, Malta. New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/CoDIT.2016.7593529]
[290]
Sundar RS, Vadivel M. Performance analysis of melanoma early detection using skin lession classification system. International Conference on Circuit, Power and Computing Technologies (ICCPCT) 2016 Mar 18-19 Nagercoil, India New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/ICCPCT.2016.7530182]
[291]
Alfed N, Khelifi F. Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images. Expert Syst Appl 2017; 90: 101-10.
[http://dx.doi.org/10.1016/j.eswa.2017.08.010]
[292]
Nasir M, Attique Khan M, Sharif M, Lali IU, Saba T, Iqbal T. An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 2018; 81(6): 528-43.
[http://dx.doi.org/10.1002/jemt.23009] [PMID: 29464868]
[293]
Navarro F, Escudero-Vinolo M, Bescos J. Accurate segmentation and registration of skin lesion images to evaluate lesion change. IEEE J Biomed Health Inform 2018; 23(2): 501-8.
[PMID: 29993849]
[294]
Kharazmi P, Zheng J, Lui H, Jane Wang Z, Lee TK. A Computer-aided decision support system for detection and localization of cutaneous vasculature in dermoscopy images via deep feature learning. J Med Syst 2018; 42(2): 33.
[http://dx.doi.org/10.1007/s10916-017-0885-2] [PMID: 29318397]
[295]
Khan MA, Akram T, Sharif M, et al. An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 2018; 18(1): 638.
[http://dx.doi.org/10.1186/s12885-018-4465-8] [PMID: 29871593]
[296]
Betta G, Di Leo G, Fabbrocini G, Paolillo A, Sommella P. Dermoscopic image-analysis system: estimation of atypical pigment network and atypical vascular pattern. International Workshop on Medical Measurement and Applications 2006 Apr 20-21 Benevento, Italy New Jersey: IEEE 2006.
[http://dx.doi.org/10.1109/MEMEA.2006.1644462]
[297]
Di Leo G, Liguori C, Paolillo A, Sommella P. An improved procedure for the automatic detection of dermoscopic structures in digital ELM images of skin lesions. Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems 2008 July 14-16 Istanbul, Turkey New Jersey: IEEE 2008.
[http://dx.doi.org/10.1109/VECIMS.2008.4592778]
[298]
Di Leo G, Paolillo A, Sommella P, Fabbrocini G. Automatic diagnosis of melanoma: a software system based on the 7-point check-list. 43rd Hawaii International Conference on System Sciences 2010 Jan 5-8 Honolulu, HI, USA New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/HICSS.2010.76]
[299]
Sadeghi M, Razmara M, Wighton P, Lee TK, Atkins MS. Modeling the dermoscopic structure pigment network using a clinically inspired feature set. International Workshop on Medical Imaging and Virtual Reality 2010 Sep 19-20; Beijing, China. Berlin: Springer
[http://dx.doi.org/10.1007/978-3-642-15699-1_49]
[300]
Anantha M, Moss RH, Stoecker WV. Detection of pigment network in dermatoscopy images using texture analysis. Comput Med Imaging Graph 2004; 28(5): 225-34.
[http://dx.doi.org/10.1016/j.compmedimag.2004.04.002] [PMID: 15249068]
[301]
Grana C, Cucchiara R, Pellacani G, Seidenari S. Line detection and texture characterization of network patterns. International Conference on Pattern Recognition (ICPR’06) 2006 Aug 20-24 Hong Kong, China New Jersey: IEEE 2006.
[http://dx.doi.org/10.1109/ICPR.2006.764]
[302]
Shrestha B, Bishop J, Kam K, et al. Detection of atypical texture features in early malignant melanoma. Skin Res Technol 2010; 16(1): 60-5.
[http://dx.doi.org/10.1111/j.1600-0846.2009.00402.x] [PMID: 20384884]
[303]
Barhoumi W, Baâzaoui A. Pigment network detection in dermatoscopic images for melanoma diagnosis. IRBM 2014; 35: 128-38.
[http://dx.doi.org/10.1016/j.irbm.2013.12.010]
[304]
Fabbrocini G, Betta G, Di Leo G, et al. Epiluminescence image processing for melanocytic skin lesion diagnosis based on 7-point check-list: a preliminary discussion on three parameters. Open Dermatol J 2010; 4: 57.
[http://dx.doi.org/10.2174/1874372201004010110]
[305]
Dalal A, Moss RH, Stanley RJ, et al. Concentric decile segmentation of white and hypopigmented areas in dermoscopy images of skin lesions allows discrimination of malignant melanoma. Comput Med Imaging Graph 2011; 35(2): 148-54.
[http://dx.doi.org/10.1016/j.compmedimag.2010.09.009] [PMID: 21074971]
[306]
Di Leo G, Fabbrocini G, Paolillo A, Rescigno O, Sommella P. Towards an automatic diagnosis system for skin lesions: estimation of blue-whitish veil and regression structures. 6th International Multi-Conference on Systems, Signals and Devices; 2009 Mar 23- 26; Djerba, Tunisia. New Jersey: IEEE 2009.
[http://dx.doi.org/10.1109/SSD.2009.4956770]
[307]
Abbas Q, Emre Celebi M, Garcia IF, Ahmad W. Melanoma recognition framework based on expert definition of ABCD for dermoscopic images. Skin Res Technol 2013; 19(1): e93-102.
[308]
Abbas Q, Celebi ME, Serrano CIF, Garcí A, Ma G. Pattern classification of dermoscopy images: A perceptually uniform model. Pattern Recognit 2013; 46: 86-97.
[http://dx.doi.org/10.1016/j.patcog.2012.07.027]
[309]
Demyanov S, Chakravorty R, Abedini M, Halpern A, Garnavi R. Classification of dermoscopy patterns using deep convolutional neural networks. 13th International Symposium on Biomedical Imaging (ISBI) 2016 Apr 13-16 Prague, Czech Republic New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/ISBI.2016.7493284]
[310]
Khan A, Gupta K, Stanley RJ, et al. Fuzzy logic techniques for blotch feature evaluation in dermoscopy images. Comput Med Imaging Graph 2009; 33(1): 50-7.
[http://dx.doi.org/10.1016/j.compmedimag.2008.10.001] [PMID: 19027266]
[311]
Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer 2001; 91(8): 1615-35.
[http://dx.doi.org/10.1002/1097-0142(20010415)91:8+<1615:AID-CNCR1175>3.0.CO;2-L] [PMID: 11309760]
[312]
Binder M, Kittler H, Seeber A, Steiner A, Pehamberger H, Wolff K. Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network. Melanoma Res 1998; 8(3): 261-6.
[http://dx.doi.org/10.1097/00008390-199806000-00009] [PMID: 9664148]
[313]
Johnson J, Vijayan A. Neural Network Ensemble Model with Back Propagation for Classifying Melanoma on Dermoscopy Images-A Survey. Int J Adv Res Ideas Innov Technol 2018; 4: 112-5.
[314]
Mughal B, Sharif M, Muhammad N, Saba T. A novel classification scheme to decline the mortality rate among women due to breast tumor. Microsc Res Tech 2018; 81(2): 171-80.
[http://dx.doi.org/10.1002/jemt.22961] [PMID: 29143395]
[315]
Cheerla N, Frazier D. Automatic melanoma detection using multi-stage neural networks. Int J Innov Res Sci Engineer Technol 2014; 3(2): 9164-83.
[316]
Ozay M, Vural FTY. On the performance of stacked generalization classifiers. International Conference on Image Analysis and Recognition 2008 June 25-27 Póvoa de Varzim, Portugal Berlin Springer
[http://dx.doi.org/10.1007/978-3-540-69812-8_44]
[317]
Zaamout K, Zhang JZ. Improving neural networks classification through chaining. International Conference on Artificial Neural Networks 2012 Sept 11-14 Lausanne, Switzerland Berlin Springer
[318]
Alcón JF, Ciuhu C, Ten Kate W, et al. Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J Sel Top Signal Process 2009; 3: 14-25.
[http://dx.doi.org/10.1109/JSTSP.2008.2011156]
[319]
Chatterjee S, Dey D, Munshi S. Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions. Biomed Signal Process Control 2018; 40: 252-62.
[http://dx.doi.org/10.1016/j.bspc.2017.09.028]
[320]
Zortea M, Schopf TR, Thon K, et al. Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists. Artif Intell Med 2014; 60(1): 13-26.
[http://dx.doi.org/10.1016/j.artmed.2013.11.006] [PMID: 24382424]
[321]
Kostopoulos SA, Asvestas PA, Kalatzis IK, et al. Adaptable pattern recognition system for discriminating Melanocytic Nevi from Malignant Melanomas using plain photography images from different image databases. Int J Med Inform 2017; 105: 1-10.
[http://dx.doi.org/10.1016/j.ijmedinf.2017.05.016] [PMID: 28750902]
[322]
Thamizhvani T, Lakshmanan S, Sivaramakrishnan R. Computer aided diagnosis of skin tumours from dermal images Computational vision and bio inspired computing. Springer 2018; pp. 349-65.
[http://dx.doi.org/10.1007/978-3-319-71767-8_30]
[323]
Vapnik VN, Vapnik V. Statistical learning theory Wiley. New York 1998.
[324]
Wadhawan T, Situ N, Rui H, Lancaster K, Yuan X, Zouridakis G. Implementation of the 7-point checklist for melanoma detection on smart handheld devices. IEEE Eng Med Biol Soc 2011; 2011: 3180-3.
[http://dx.doi.org/10.1109/IEMBS.2011.6090866]
[325]
Amelard R, Glaister J, Wong A, Clausi DA. High-level intuitive features (HLIFs) for intuitive skin lesion description. IEEE Trans Biomed Eng 2015; 62(3): 820-31.
[http://dx.doi.org/10.1109/TBME.2014.2365518] [PMID: 25361498]
[326]
Chamasemani FF, Singh YP. Multi-class support vector machine (SVM) classifiers-an application in hypothyroid detection and classification. Sixth International Conference on Bio-Inspired Computing: Theories and Applications 2011 Sept 27-29 Penang, Malaysia New Jersey: IEEE 2011.
[http://dx.doi.org/10.1109/BIC-TA.2011.51]
[327]
Maurya R, Singh SK, Maurya AK, Kumar A. GLCM and multi class support vector machine based automated skin cancer. International Conference on Computing for Sustainable Global Development (INDIACom) 2014 Mar 5-7 New Delhi, India New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/IndiaCom.2014.6828177]
[328]
Fix E, Hodges JL Jr. Discriminatory analysis-nonparametric discrimination: consistency properties. DTIC Document 1951; 57(3): 238-47.
[329]
Ferris LK, Harkes JA, Gilbert B, et al. Computer-aided classification of melanocytic lesions using dermoscopic images. J Am Acad Dermatol 2015; 73(5): 769-76.
[http://dx.doi.org/10.1016/j.jaad.2015.07.028] [PMID: 26386631]
[330]
Di Leo G, Paolillo A, Sommella P, Fabbrocini G, Rescigno O. A software tool for the diagnosis of melanomas. Instrumentation & Measurement Technology Conference Proceedings; 2010 May 3-6; Austin, TX, USA. New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/IMTC.2010.5488165]
[331]
Kittler J, Hatef M, Duin RP, Matas J. On combining classifiers. IEEE Trans Pattern Anal Mach Intell 1998; 20: 226-39.
[http://dx.doi.org/10.1109/34.667881]
[332]
Sboner A, Eccher C, Blanzieri E, et al. A multiple classifier system for early melanoma diagnosis. Artif Intell Med 2003; 27(1): 29-44.
[http://dx.doi.org/10.1016/S0933-3657(02)00087-8] [PMID: 12473390]
[333]
Ballerini L, Fisher RB, Aldridge B, Rees J. A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions Color medical image analysis. Berlin: Springer 2013; pp. 63-86.
[http://dx.doi.org/10.1007/978-94-007-5389-1_4]
[334]
Dreiseitl S, Ohno-Machado L, Kittler H, Vinterbo S, Billhardt H, Binder M. A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J Biomed Inform 2001; 34(1): 28-36.
[http://dx.doi.org/10.1006/jbin.2001.1004] [PMID: 11376540]
[335]
Torre EL, Caputo B, Tommasi T. Learning methods for melanoma recognition. Int J Imaging Syst Technol 2010; 20: 316-22.
[http://dx.doi.org/10.1002/ima.20261]
[336]
Maglogiannis IG, Zafiropoulos EP. Characterization of digital medical images utilizing support vector machines. BMC Med Inform Decis Mak 2004; 4: 4.
[http://dx.doi.org/10.1186/1472-6947-4-4] [PMID: 15113418]
[337]
Cheng Y, Swamisai R, Umbaugh SE, et al. Skin lesion classification using relative color features. Skin Res Technol 2008; 14(1): 53-64.
[PMID: 18211602]
[338]
Maglogiannis I, Pavlopoulos S, Koutsouris D. An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images. IEEE Trans Inf Technol Biomed 2005; 9(1): 86-98.
[http://dx.doi.org/10.1109/TITB.2004.837859] [PMID: 15787011]
[339]
Situ N, Yuan X, Chen J, Zouridakis G. Malignant melanoma detection by bag-of-features classification. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2008 Aug 20-25; Vancouver, BC, Canada. New Jersey: IEEE 2008.
[http://dx.doi.org/10.1109/IEMBS.2008.4649862]
[340]
Amirjahan M, Sujatha I D N. Comparative analysis of various classification algorithms for skin cancer detection. Open Dermatol J 2010; 4: 57.
[341]
Ruiz D, Berenguer V, Soriano A. A decision support system for the diagnosis of melanoma: A comparative approach. Expert Syst Appl 2011; 38: 15217-23.
[http://dx.doi.org/10.1016/j.eswa.2011.05.079]
[342]
Arora G, Dubey AK, Jaffery ZA. Classifiers for the detection of skin cancerin smart computing and informatics. Berlin: Springer 2018; pp. 351-60.
[http://dx.doi.org/10.1007/978-981-10-5547-8_36]
[343]
Berseth M. ISIC 2017-skin lesion analysis towards melanoma detection.0 arXiv preprint arXiv:170300523 2017.
[344]
Gutman D, Codella NC, Celebi E, et al. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC) arXiv preprint arXiv:160501397 2016.
[345]
Alvarez D, Iglesias M. K-means clustering and ensemble of regressions: An algorithm for the ISIC 2017 skin lesion segmentation challenge arXiv preprint arXiv:170207333, 2017.
[346]
Guo S, Luo Y, Song Y. Random forests and VGG-NET: An algorithm for the ISIC 2017 skin lesion classification challenge arXiv preprint arXiv:170305148, 2017.
[347]
Gutiérrez-Arriola JM, Gómez-Álvarez M, Osma-Ruiz V, Sáenz-Lechón N, Fraile R. Skin lesion segmentation based on preprocessing, thresholding and neural networks arXiv preprint arXiv:170304845, 2017.
[348]
Jiji GW, Raj P. An Extensive technique to detect and analyze melanoma: A challenge at the international symposium on Biomedical Imaging (ISBI) 2017 arXiv preprint arXiv:170208717 2017.
[349]
Menegola A, Tavares J, Fornaciali M, Li LT, Avila S, Valle E. RECOD Titans at ISIC challenge 2017 arXiv preprint arXiv: 170304819 2017.
[350]
Murphree DH, Ngufor C. Transfer learning for melanoma detection: participation in ISIC 2017 skin lesion classification challenge arXiv preprint arXiv:170305235 2017.
[351]
Sousa RT, de Moraes LV. Araguaia medical vision lab at ISIC 2017 Skin Lesion Classification Challenge arXiv preprint arXiv: 170300856 2017.
[352]
Zhang W, Gao L, Liu R. Using Deep Learning Method for Classification: A Proposed Algorithm for the ISIC 2017 Skin Lesion Classification Challenge arXiv preprint arXiv:170302182 2017.
[353]
Radhakrishnan A, Durham C, Soylemezoglu A, Uhler C. Patchnet: Interpretable Neural Networks for Image Classification arXiv preprint arXiv:170508078 2017.
[354]
Charfi S, El Ansari M. Computer-aided diagnosis system for ulcer detection in wireless capsule endoscopy videos. 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) 2017 May 22-24 Fez, Morocco New Jersey: IEEE 2017.
[http://dx.doi.org/10.1109/ATSIP.2017.8075590]
[355]
DermIS (2017),[Online]. Available from: http://www.dermis.net/dermisroot/en/home/index.htm Retrieved August 20, 2017.
[356]
Mendonça T, Ferreira PM, Marques JS, Marcal AR, Rozeira J. PH 2-A dermoscopic image database for research and benchmarking Engineering in Medicine and Biology Society (EMBC). Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 5437-40.
[357]
Cavalcanti PG, Scharcanski J, Baranoski GV. A two-stage approach for discriminating melanocytic skin lesions using standard cameras. Expert Syst Appl 2013; 40: 4054-64.
[http://dx.doi.org/10.1016/j.eswa.2013.01.002]
[358]
Haider S, Cho D, Amelard R, Wong A, Clausi DA. Enhanced classification of malignant melanoma lesions via the integration of physiological features from dermatological photographs. IEEE Eng Med Biol Soc 2014; 2014: 6455-8.
[http://dx.doi.org/10.1109/EMBC.2014.6945106]
[359]
Kawahara J, Daneshvar S, Argenziano G, Hamarneh G. Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J Biomed Health Inform 2019; 23: 538-46.
[http://dx.doi.org/10.1109/JBHI.2018.2824327]
[360]
Khakabi S, Wighton P, Lee TK, Atkins MS. Multilevel feature extraction for skin lesion segmentation in dermoscopic images SPIE Med Imaging 2012; 83150E-7.
[http://dx.doi.org/10.1117/12.911664]
[361]
Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset: a large collection of multi-source dermatoscopic images of common pigmented skin lesions arXiv preprint arXiv:180310417 2018.
[http://dx.doi.org/10.1038/sdata.2018.161]
[362]
Bono A, Tolomio E, Trincone S, et al. Micro-melanoma detection: a clinical study on 206 consecutive cases of pigmented skin lesions with a diameter < or = 3 mm. Br J Dermatol 2006; 155(3): 570-3.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07396.x] [PMID: 16911283]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2020
Page: [794 - 822]
Pages: 29
DOI: 10.2174/1573405615666191223122401
Price: $65

Article Metrics

PDF: 25
HTML: 2