A Mini Review on Recent Advancements in the Therapeutic Potentials of Benzothiazoles

Author(s): Rubina Bhutani*, Garima Kapoor, Dharam P. Pathak, Asif Husain, Ravi Kant, Ruhi Ali

Journal Name: Current Bioactive Compounds

Volume 17 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Among the various fused heterocyclic rings, benzothiazole and its analogs have been explored broadly in search of newer therapeutic medicinal agents. The benzothiazole scaffold has been associated with huge biological potential like anticancer, antidiabetic, anti-inflammatory, antitubercular, antiviral, anti-convulsant etc. The occurrence of benzothiazole core in various compounds proves its value in the sphere of pharmaceutical chemistry. The connected research and developments in benzothiazole based chemistry become an active topic for medicinal scientists. A large number of benzothiazole and its heterocyclic derivatives are available in the market and used for the treatment as clinical drugs have been extensively used in practice to treat diverse types of ailments with high therapeutic potential. This review presents the latest therapeutic developments of benzothiazole containing compounds in the medicinal chemistry.

Keywords: Anti-diabetic, anti-inflammatory, anti-viral, benzothiazole, biological potential, fused heterocycle.

[1]
Gandhi, D.; Kalal, P.; Agarwal, S. Synthetic aspects and biological studies of some heterocycles. CBIJ, 2017, 7(2), 79-101.
[2]
Satyadev, S.A.; Prasad, Y.R.; Avupati, V.R.; Aparna, K.; Rudru, M.J. A review on benzothiazole – A versatile scaffold in the field of pharmaceutical chemistry. Int. J. Pharm., 2016, 6(2), 150-158.
[3]
Prabhu, P.P.; Shastry, C.S.; Pandea, S.S.; Selvama, T.P. Design, synthesis, characterization and biological evaluation of Benzothiazole-6-carboxylate derivatives. Res. Pharm, 2011, 1(2), 6-12.
[4]
Sathe, B.S.E.; Jaychandran, E.; Jagtap, V.A.; Sreenivasa, G.M. Synthesis, characterization and in vitro anti-inflammatory evaluation of new fluorobenzothiazole shiff’s bases. IJPRD, 2011, 3(3), 164-169.
[5]
Nalawade, S.; Deshmukh, V.; Chaudhari, S. Design, microwave assisted synthesis and pharmacological activities of substituted pyrimido[2,1-b][1,3]benzothiazole-3-carboxylate derivatives. J. Pharm. Res., 2013, 7, 433-438.
[http://dx.doi.org/10.1016/j.jopr.2013.04.045]
[6]
Siddiqui, N.; Ahuja, P.; Malik, S.; Arya, S.K. Design of benzothiazole-1,3,4-thiadiazole conjugates: Synthesis and anticonvulsant evaluation. Arch. Pharm. (Weinheim), 2013, 346(11), 819-831.
[http://dx.doi.org/10.1002/ardp.201300083] [PMID: 24081512]
[7]
Kumar, A. Designing of hybrid form of benzothiazole-quinazoline as GABA-A inhibitor with anticonvulsant profile: An in-silico approach. Am. J. Pharmacol. Sci., 2013, 1(6), 116-120.
[http://dx.doi.org/10.12691/ajps-1-6-2]
[8]
Pasternak, L.; Meltzer-Mats, E.; Babai-Shani, G.; Cohen, G.; Viskind, O.; Eckel, J.; Cerasi, E.; Sasson, S.; Gruzman, A. Benzothiazole derivatives augment glucose uptake in skeletal muscle cells and stimulate insulin secretion from pancreatic β-cells via AMPK activation. Chem. Commun. (Camb.), 2014, 50(76), 11222-11225.
[http://dx.doi.org/10.1039/C4CC03310H] [PMID: 25116279]
[9]
Suresh, C.H.; Rao, J.V.; Jayaveera, K.N.; Subudhi, S.K. Synthesis and anthelmintic activity of 3-(2-hydrozino benzothiazole)-substituted indole-2-one. Int. J. Pharm., 2013, 2, 257-261.
[10]
Gurdal, E.E.; Buclulgan, E.; Durmaz, I.; Cetin-Atalay, R.; Yarim, M. Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives. Anticancer. Agents Med. Chem., 2015, 15(3), 382-389.
[http://dx.doi.org/10.2174/1871520615666141216151101] [PMID: 25511511]
[11]
Yurttaş, L.; Çavuşoğlu, B.K.; Sever, A.; Çiftçi, G.A. A preliminary investigation of anticancer activity of novel benzothiazole derivatives against A549 lung carcinoma cell line. Turk. J. Biochem., 2017, 42(5), 535-544.
[http://dx.doi.org/10.1515/tjb-2017-0015]
[12]
Lau, C.K.; Dufresne, C.; Gareau, Y.; Zamboni, R.; Labelle, M.; Young, R.N. Evolution of a series of non-quinoline leukotriene D4 receptor antagonist; synthesis and sar of benzothiazoles and thiazoles substituted benzyl alcohols as potent LTD4 antagonists. Bioorg. Med. Chem., 1995, 5(15), 1615-1620.
[http://dx.doi.org/10.1016/0960-894X(95)00265-U]
[13]
Apelt, J.; Grassmann, S.; Ligneau, X.; Pertz, H.H.; Ganellin, C.R.; Arrang, J.M.; Schwartz, J.C.; Schunack, W.; Stark, H. Search for histamine H3 receptor antagonists with combined inhibitory potency at Ntau-methyltransferase: Ether derivatives. Pharmazie, 2005, 60(2), 97-106.
[PMID: 15739896]
[14]
Papenfuh, T. Preparation of benzothiazoles as intermediates for dyes, plant protectants and pharmaceuticals. Ger. Pat., 1987, 3, 528-032.
[15]
Tapia, R.A.; Prieto, Y.; Pautet, F.; Domard, M.; Sarciron, M.E.; Walchshofer, N. Synthesis and antileishmanial activity of indoloquinones containing a fused benzothiazole Ring. Eur. J. Org. Chem., 2002, 23, 4005-4010.
[http://dx.doi.org/10.1002/1099-0690(200212)2002:23<4005:AID-EJOC4005>3.0.CO;2-L]
[16]
Chikhale, R.; Thorat, S.; Pant, A.; Jadhav, A.; Thatipamula, K.C.; Bansode, R.; Bhargavi, G.; Karodia, N.; Rajasekharan, M.V.; Paradkar, A.; Khedekar, P. Design, synthesis and pharmacological evaluation of pyrimidobenzothiazole-3-carboxylate derivatives as selective L-type calcium channel blockers. Bioorg. Med. Chem., 2015, 23(20), 6689-6713.
[http://dx.doi.org/10.1016/j.bmc.2015.09.009] [PMID: 26385444]
[17]
Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem., 2011, 46(5), 1874-1881.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.051] [PMID: 21414694]
[18]
Gilani, S.J.; Khan, S.A.; Siddiqui, N.; Verma, S.P.; Mullick, P.; Alam, O. Synthesis and in vitro antimicrobial activity of novel N-(6-chlorobenzo[d]thiazol-2-yl) hydrazine carboxamide derivatives of benzothiazole class. J. Enzyme Inhib. Med. Chem., 2011, 26(3), 332-340.
[http://dx.doi.org/10.3109/14756366.2010.508441] [PMID: 20807086]
[19]
Gill, R.K.; Rawal, R.K.; Bariwal, J. Recent advances in the chemistry and biology of benzothiazoles. Arch. Pharm. (Weinheim), 2015, 348(3), 155-178.
[http://dx.doi.org/10.1002/ardp.201400340] [PMID: 25682746]
[20]
Mohapatra, R.K.; Sarangi, A.K.; Azam, M.; Elajaily, M.M.; Zahan, M.K.E.; Patjoshi, S.B.; Dash, D.C. Synthesis, structural investigations, DFT, molecular docking and antifungal studies of transition metal complexes with benzothiazole based Schiff base ligands. J. Mol. Struct., 2018, 1179(5), 65-67.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.070]
[21]
Zehra, S.; Khan, M.S.; Ahmad, I.; Arjmand, F. New tailored substi tuted‒benzothiazole Schiff base Cu(II)/Zn(II) antitumor drug entities: Effect of substituents on DNA binding profile, antimicrobial and cyto toxic activity. J. Biomol. Struct. Dyn., 2018, 37(7), 1863-1879.
[http://dx.doi.org/10.1080/07391102.2018.1467794] [PMID: 29676660]
[22]
Alhaidry, W.A.A.H.; Jamel, H.O. Synthesis and characterization of new benzothiazole-derived ligand and its complexes with some transitional metal ions with evaluation of their biological activities. J. Pharm. Sci. Res., 2018, 10(12), 3241-3246.
[23]
Mohamed, A.; Ahamed, R.; Raja, S.; Azarudeen, N.; Kani, M. Antimicrobial applications of transition metal complexes of benzothiazole based terpolymer: Synthesis, characterization, and effect on bacterial and fungal strains. Bioinorg. Chem. Appl., 2014, 2014, 1-16.
[http://dx.doi.org/10.1155/2014/764085]
[24]
Chelation as a strategy with the potential to overcome multidrug resistance in cancer, Dissertation, University of Bonn: Bonn, Germany, 2015.https://d-nb.info/1139775111/34
[25]
Zhang, K. Spectroelectrochemical investigations of the interaction of flotation reagents with gold surfaces., Dissertation, Griffith University: Brisbane, Australia, 2015. Avaialble at . https://research-repository.griffith.edu.au/handle/10072/366588
[26]
Bhardwaj, A. A review on diverse role of heterocyclic moieties containing aminoquinoline and azoles. Int. J. Curr. Res. Acad. Rev., 2018, 6(8), 12-39.
[http://dx.doi.org/10.20546/ijcrar.2018.608.003]
[27]
Bradshaw, T.D.; Shil, D.F.; Schultz, R.J.; Paull, K.D.; Kelland, L.L.; Wilson, A.; Garner, C.; Fiebig, H.H.; Wrigley, S.; Stevens, M.F.G. Influence of 2-(4maminophenyl)benzothiazoles on growth of human ovariancarcinoma cells in vitro and in vivo. Br. J. Cancer, 1998, 78(4), 421-429.
[http://dx.doi.org/10.1038/bjc.1998.510] [PMID: 9716022]
[28]
Pape, V.F.S.; Tóth, S.; Füredi, A.; Szebényi, K.; Lovrics, A.; Szabó, P.; Wiese, M.; Szakács, G. Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur. J. Med. Chem., 2016, 117, 335-354.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.078] [PMID: 27161177]
[29]
Mergu, N.; Moon, J.H.; Kim, H.; Heo, G.; Son, Y.A. Highly selective naphthalimide-benzothiazole hybrid-based colorimetric and turn on fluorescent chemosensor for cyanide and tryptophan detection in aqueous media. Sens. Actuators B Chem., 2018, 273, 143-152.
[http://dx.doi.org/10.1016/j.snb.2018.05.165]
[30]
Sweeney, N.L.; Shadrick, W.R.; Mukherjee, S.; Li, K.; Frankowski, K.J.; Schoenen, F.J.; Frick, D.N. Primuline derivatives that mimic RNA to stimulate hepatitis C virus NS3 helicase-catalyzed ATP hydrolysis. J. Biol. Chem., 2013, 288(27), 19949-19957.
[http://dx.doi.org/10.1074/jbc.M113.463166] [PMID: 23703611]
[31]
Kamal, A.; Shetti, R.V.; Swapna, P.; Azeeza, S.; Reddy, A.M.; Khan, I.A.; Tasduq, S. Synthesis of new benzothiazole derivatives as potential anti-tubercular agents. US Patent 9949970B2 . 2018.
[32]
Harty, R.N.; Freedman, B.D.; Wrobel, J.E.; Reitz, A.B.; Loughran, H.M.M. Novel antiviral compounds and related u.s. Application data Methods using same. U.S. Patent. 2017.
[33]
Yang, J. Benzothiazole amphiphiles. U.S Patent 2017120198 A1,. 2017.
[34]
Chauhan, K.; Kumari, B. Novel benzothiazole derivatives with enhanced biological activity. WO2017025980 A3. 2017.
[35]
Raje, P.; Klunk, W.E.; Mathis, C.A.; Wang, Y. Benzothiazole derivative compounds, compositions, and uses. US Patent 8691185 B2,. 2014.
[36]
Shaikh, Z.K.H.; Priyanka, S.; Sharma, P.Y.; Patel, N.U. Benzothiazole the molecule of diverse biological activities. Pharma Sci. Monitor, 2014, 5(1), 2017-2225.
[37]
Prajapat, P. Importance of Benzothiazole motif in modern drug discovery. Introduction. Mod. Appro. Drug Des., 2018, 1(4), 1-2.
[38]
Bhoi, M.N.; Borad, M.A.; Patel, H.D. Synthetic strategies for fused benzothiazoles: The past, present and future. Synth. Commun., 2014, 44(17), 2427-2457.
[http://dx.doi.org/10.1080/00397911.2014.907426]
[39]
Abrol, S.; Bodla, R.B.; Goswami, C. A comprehensive review on benzothiazole derivatives for their biological activities. IJPSR, 2019, 10(7), 3196-3209.
[40]
Racané, L.; Ptiček, L.; Sedić, M.; Grbčić, P.; Kraljević Pavelić, S.; Bertoša, B.; Sović, I.; Karminski-Zamola, G. Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates. Mol. Divers., 2018, 22(3), 723-741.
[http://dx.doi.org/10.1007/s11030-018-9827-2] [PMID: 29667008]
[41]
Eshghi, H.; Eshkil, F.; Saljooghi, A.S.; Bakavoli, M. Synthesis of new benzothiazole derivatives and evaluation of cytotoxicity of N-(6-Substitued-1,3-benzothiazol-2-yl)-4-phenyl-1,3-thiazol-2(3H)-imine compounds. Org. Chem. Res., 2019, 5(1), 87-94.
[42]
Osmaniye, D.; Levent, S.; Karaduman, A.B.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of new benzothiazole acylhydrazones as anticancer agents. Molecules, 2018, 23(5), 1054.
[http://dx.doi.org/10.3390/molecules23051054] [PMID: 29724002]
[43]
Firoozpour, L.; Mokhtari, A.; Moghimi, S.; Safavi, M.; Foroumadi, A. Synthesis and biological evaluation of 2-phenyl benzothiazole derivatives as cytotoxic agents. J. Sci., 2018, 29(4), 335-340.
[44]
Dadmal, T.L.; Appalanaidu, K.; Kumbhare, R.M.; Mondal, T.; Ramaiah, M.J.; Bhadra, M.P. Synthesis and biological evaluation of triazole and isoxazole tagged benzothiazole/benzoxazole derivatives as potent cytotoxic agents. New J. Chem., 2018, 42, 15546-15551.
[http://dx.doi.org/10.1039/C8NJ01249K]
[45]
Hu, X.; Li, S.; He, Y.; Ai, P.; Wu, S.; Su, Y.; Li, X.; Cai, L.; Peng, X. Antitumor and antimetastatic activities of a novel benzothiazole-2-thiol derivative in a murine model of breast cancer. Oncotarget, 2017, 8(7), 11887-11895.
[http://dx.doi.org/10.18632/oncotarget.14431] [PMID: 28060755]
[46]
Abdelgawad, M.A.; Bakr, R.B.; Omar, H.A.; Omar, A. Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. Bioorg. Chem., 2017, 74, 82-90.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.007] [PMID: 28772160]
[47]
Lad, N.P.; Manohar, Y.; Mascarenhas, M.; Pandit, Y.B.; Kulkarni, M.R.; Sharma, R.; Salkar, K.; Suthar, A.; Pandit, S.S. Methylsulfonyl Benzothiazoles (MSBT) derivatives: Search for new potential antimicrobial and anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1319-1324.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.032] [PMID: 28188067]
[48]
Lei, D.Q.; Deng, X.L.; Zhao, H.Y.; Zhang, F.C.; Liu, R.E. Inhibition of tumor growth and angiogenesis by 2-(4-aminophenyl) benzothiazole in orthotopicglioma C6 rat model. Saudi J. Biol. Sci., 2017, 25(7), 1483-1487.
[http://dx.doi.org/10.1016/j.sjbs.2017.04.007]
[49]
Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.H.; Kraljević Pavelić, S.; Karminski-Zamola, G.; Hranjec, M. Novel amidino substituted benzimidazole and benzothiazole benzo[b]thieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur. J. Med. Chem., 2017, 136, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.014] [PMID: 28525845]
[50]
Mistry, B.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Evaluation of the biological potencies of newly synthesized berberine derivatives bearing benzothiazole moieties with substituted functionalities. J. Saudi Chem. Soc., 2017, 21(2), 210-219.
[http://dx.doi.org/10.1016/j.jscs.2015.11.002]
[51]
Abdelgawad, M.A.; Lamie, P.F.; Ahmed, O.M. Synthesis of new quinolone derivatives linked to benzothiazole or benzoxazole moieties as anticancer and anti-oxidant agents. Med. Chem., 2016, 6(10), 652-657.
[52]
El-Damasy, A.K.; Lee, J.H.; Seo, S.H.; Cho, N.C.; Pae, A.N.; Keum, G. Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-Raf(V600E) and C-Raf kinase inhibitory activities. Eur. J. Med. Chem., 2016, 115, 201-216.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.039] [PMID: 27017549]
[53]
Ashraf, M.; Shaik, T.B.; Malik, M.S.; Syed, R.; Mallipeddi, P.L.; Vardhan, M.V.P.S.V.; Kamal, A. Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorg. Med. Chem. Lett., 2016, 26(18), 4527-4535.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.044] [PMID: 27515320]
[54]
Singh, M.; Modi, A.; Narayan, G.; Singh, S.K. Benzothiazole derivatives bearing amide moiety: Potential cytotoxic and apoptosis-inducing agents against cervical cancer. Anticancer Drugs, 2016, 27(6), 519-532.
[http://dx.doi.org/10.1097/CAD.0000000000000357] [PMID: 26945135]
[55]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Ni, N. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases. Chin. Chem. Lett., 2016, 27, 380.
[http://dx.doi.org/10.1016/j.cclet.2015.12.033]
[56]
Bhutani, R.; Pathak, D.P.; Kapoor, G.; Husain, A.; Iqbal, M.A. Novel hybrids of benzothiazole-1,3,4-oxadiazole-4-thiazolidinone: Synthesis, in silico ADME study, molecular docking and in vivo anti-diabetic assessment. Bioorg. Chem., 2019, 83, 6-19.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.025] [PMID: 30339863]
[57]
Bhutani, R.; Pathak, D.P.; Kapoor, G.; Husain, A.; Kant, R.; Iqbal, M.A. Synthesis, molecular modelling studies and ADME prediction of benzothiazole clubbed oxadiazole-Mannich bases, and evaluation of their anti-diabetic activity through in vivo model. Bioorg. Chem., 2018, 77, 6-15.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.037] [PMID: 29316509]
[58]
Kumar, S.; Rathore, D.S.; Garg, G.; Khatri, K.; Saxena, R.; Sahu, S.K. Synthesis and evaluation of some Benzothiazole derivatives as antidiabetic agents. Int. J. Pharm. Pharm. Sci., 2017, 9(2), 60-68.
[http://dx.doi.org/10.22159/ijpps.2017v9i2.14359]
[59]
Gong, Z.; Peng, Y.; Qiu, J.; Cao, A.; Wang, G.; Peng, Z. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of novel benzothiazole-triazole derivatives. Molecules, 2017, 22(9), 1555.
[http://dx.doi.org/10.3390/molecules22091555] [PMID: 28914795]
[60]
Kumar, S.; Rathore, D.S.; Garg, G.; Khatri, K.; Saxena, R.; Sahu, S.K. Synthesis and evaluation of some 2-((benzothiazol-2-ylthio) methyl)-5- phenyl-1, 3, 4-oxadiazole derivatives as antidiabetic agents. Asian Pac. J. Health Sci., 2016, 3(4), 65-74.
[http://dx.doi.org/10.21276/apjhs.2016.3.4.10]
[61]
Puranik, N.V.; Puntambekar, H.M.; Srivastava, P. Antidiabetic potential and enzyme kinetics of benzothiazole derivatives and their non-bonded interactions with a-glucosidase and a-amylase. Med. Chem. Res., 2016, 25, 805-816.
[http://dx.doi.org/10.1007/s00044-016-1520-3]
[62]
Ahmadi, A.; Khalili, M.; Ghaderi, P.; Rastegar, G.; Niknafs, B.N. Synthesis and blood glucose and lipid-lowering effects of benzothiazole-substituted benzenesulfonylurea derivatives. Monatsh, 2015, 146, 2059-2065.
[http://dx.doi.org/10.1007/s00706-015-1471-2]
[63]
Najafian, M.; Amini, S.; Dehestani, B.; Parivar, K.; Ebrahim-Habibi, A. Thioflavin T effect in diabetic Wistar rats: Reporting the antihyperglycemic property of an amyloid probing dye. Pharmacol. Rep., 2015, 67(2), 364-369.
[http://dx.doi.org/10.1016/j.pharep.2014.10.013] [PMID: 25712665]
[64]
Taha, M.; Ismail, N.H.; Lalani, S.; Fatmi, M.Q. Atia-Tul-Wahab; Siddiqui, S.; Khan, K.M.; Imran, S.; Choudhary, M.I. Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. Eur. J. Med. Chem., 2015, 92, 387-400.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.009] [PMID: 25585009]
[65]
Ismail, M.A.H.; Ella, D.A.A.E.; Abouzid, K.A.M.; Abdou, N.S.; Lahham, A. Molecular modeling design, synthesis, and anti-hyperglycemic evaluation of certain 5-(aryl-alkoxy-benzylidine)-imidazolidine-2,4-dione derivatives as potential PPARc agonists. Med. Chem. Res., 2015, 24, 2115-2126.
[http://dx.doi.org/10.1007/s00044-014-1278-4]
[66]
Mariappan, G.; Prabhat, P.; Sutharson, L.; Banerjee, J.; Patangia, U.; Nath, S. Synthesis and antidiabetic evaluation of benzothiazole derivatives. J. Korean Chem. Soc., 2012, 56(2), 251-256.
[67]
Park, M.H.; Park, J.Y.; Lee, H.J.; Kim, D.H.; Park, D.; Jeong, H.O.; Park, C.H.; Chun, P.; Moon, H.R.; Chung, H.Y. Potent anti-diabetic effects of MHY908, a newly synthesized PPAR a/c dual agonist in db/db mice. PLoS One, 2013, 8(11)e78815
[68]
Meltzer-Mats, E.; Babai-Shani, G.; Pasternak, L.; Uritsky, N.; Getter, T.; Viskind, O.; Eckel, J.; Cerasi, E.; Senderowitz, H.; Sasson, S.; Gruzman, A. Synthesis and mechanism of hypoglycemic activity of benzothiazole derivatives. J. Med. Chem., 2013, 56(13), 5335-5350.
[http://dx.doi.org/10.1021/jm4001488] [PMID: 23750537]
[69]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Ali, Y.; Dhulap, A.; Alam, P.; Pasha, M.A.Q. Novel benzothiazole based sulfonylureas/sulfonylthioureas: Design, synthesis and evaluation of their antidiabetic potential. New J. Chem., 2016, 8, 6777-6786.
[http://dx.doi.org/10.1039/C5NJ03589A]
[70]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Ali, Y.; Dhulap, A.; Alam, P.; Pasha, M.A.Q. Novel piperine derivatives with antidiabetic effect as PPAR-γ agonists. Chem. Biol. Drug Des., 2016, 88(3), 354-362.
[http://dx.doi.org/10.1111/cbdd.12760] [PMID: 27037532]
[71]
Patil, V.; Asrondkar, A.; Bhadane, V.; Bobade, A.S.; Chowdhary, A. Synthesis and anti-inflammatory activity of 2-amino-6-methoxy benzothiazole derivative. IOSR. J. Appl. Chem., 2015, 8(1), 2278-5736.
[http://dx.doi.org/10.9790/5736-08110102]
[72]
Kumar, V.; Sharma, S.; Husain, A. Synthesis and in vivo anti-inflammatory and analgesic activities of oxadiazoles clubbed with benzothiazole nucleus. Int. Curr. Pharm. J., 2015, 4(12), 457-461.
[http://dx.doi.org/10.3329/icpj.v4i12.25597]
[73]
Srivastava, P.; Vyas, V.K.; Variya, B.; Patel, P.; Qureshi, G.; Ghate, M. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorg. Chem., 2016, 67, 130-138.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.004] [PMID: 27376460]
[74]
Iyer, V.B.; Gurupadayya, B.; Koganti, V.S.; Inturi, B.; Chandan, R.S. Design, synthesis and biological evaluation of 1,3,4-oxadiazoles as promising anti-inflammatory agents. Med. Chem. Res., 2016, 26(1), 190-204.
[http://dx.doi.org/10.1007/s00044-016-1740-6]
[75]
Gandhi, D.; Agarwal, D.K.; Kalal, P.; Bhargava, A.; Jangid, D.; Agarwal, S. Synthesis, characterization and evaluation of novel benzothiazole clubbed chromene derivatives for their anti-inflammatory potential. Phosphor Sulf Silicon Relat. Elem., 2018, 193(12), 840-847.
[http://dx.doi.org/10.1080/10426507.2018.1514502]
[76]
Ugwu, D.I.; Okoro, U.C.; Ukoha, P.O.; Gupta, A.; Okafor, S.N. Novel anti-inflammatory and analgesic agents: Synthesis, molecular docking and in vivo studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 405-415.
[http://dx.doi.org/10.1080/14756366.2018.1426573] [PMID: 29372659]
[77]
Ahmadi, A.; Khalili, M.; Zandieh, H.; Niknafs, B.N. Synthesis and evaluation of analgesic and anti-inflammatory properties of novel ibuprofen analogs. Pharm. Chem. J., 2015, 49(8), 530-536.
[http://dx.doi.org/10.1007/s11094-015-1321-x]
[78]
Sadhasivam, G.; Kulanthai, K.S. Synthesis, characterization, and evaluation of anti-inflammatory and anti-diabetic activity of new benzothiazole derivatives. J. Chem. Pharm. Res., 2015, 7(8), 425-431.
[79]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorg. Med. Chem., 2014, 22(21), 5804-5812.
[http://dx.doi.org/10.1016/j.bmc.2014.09.028] [PMID: 25311566]
[80]
Kashinath, D.V.; Rajmani, Y.M.; Ravindra, C.S. Synthesis and anti-inflammatory activity of substituted pyrimido[2,1-b][1,3]benzothiazole derivatives. JPR, 2013, 1(6), 574-578.
[81]
Saxena, P.; Singh, D.C.P.; Ali, A.; Sharma, V. Synthesis of some derivatives of 2-mercaptobenzothiazole and their evaluation as anti-inflammatory agents. Int. J. Pharm. Pharm. Sci., 2013, 5(1), 454-458.
[82]
Thakur, A.; Gupta, P.S. Synthesis, biological evaluation of 4-aminoquinoline 1, 2, 4-triazole conjugated benzothiazole as potent analgesic, anti-inflammatory. Pharma Chem., 2017, 9(19), 40-47.
[83]
Shafi, S.; Alam, M.M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A.M.; Pallu, R.; Alam, M.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem., 2012, 49, 324-333.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.032] [PMID: 22305614]
[84]
Verma, A.K.; Martin, A.; Singh, A.K. Synthesis, characterization and evaluation of anti-inflammatory and analgesic activity of benzothiazole derivatives. Indian J. Pharm. Biol. Res., 2014, 2(3), 84-89.
[http://dx.doi.org/10.30750/ijpbr.2.3.14]
[85]
Chandran, D.; Pappachen, L.K.; Prathap, M.; Jinsha, M.J.; Jilsha, G. In silico drug design and molecular docking studies of some novel Benzothiazole derivatives as anti-cancer and anti-inflammatory agents. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 203-208.
[86]
Abdulfatai, U.; Uzairu, A.; Uba, S. Molecular docking and quantitative structure-activity relationship study of anticonvulsant activity of aminobenzothiazole derivatives, Beni-Seuf Univ. J. Appl., 2018, 7, 204-214.
[87]
Siddiqui, N.; Rana, A.; Khan, S.R.; Alam, O.; Ahsan, W.; Ali, R. Design, synthesis and anticonvulsant screening of newer benzothiazole-semicarbazones. AJPS, 2012, 2(10), 8-17.
[88]
Khokra, S.L.; Arora, K.; Khan, S.A.; Kaushik, P.; Saini, R.; Husain, A. Synthesis, computational studies and anticonvulsant activity of novel benzothiazole coupled sulfonamide derivatives. Iran. J. Pharm. Res., 2019, 18(1), 1-15.
[PMID: 31089339]
[89]
Liu, D.C.; Zhang, H.J.; Jin, C.M.; Quan, Z.S. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticonvulsant agents. Molecules, 2016, 21(3), 164.
[http://dx.doi.org/10.3390/molecules21030164] [PMID: 26938519]
[90]
Shanmukha, I.; Madhusudhana, A.M.; Jayachandran, E.; Kumar, M.V.; Prakash, B. Comparative study of anticonvulsant property among different fluoro substituted synthesized benzothiazole derivatives. BJPR, 2014, 4(6), 759-769.
[http://dx.doi.org/10.9734/BJPR/2014/6876]
[91]
Singh, R.; Sharma, S. Synthesis, characterization and evaluation of 2-imino benzothiazole derivatives as anticonvulsant agents. IJPR, 2014, 5(5), 213-217.
[92]
Liu, D.C.; Deng, X.Q.; Wang, S-B.; Quan, Z.S. Synthesis and anticonvulsant activity evaluation of 7-alkoxy[1,2,4]triazolo[3,4-b]benzothiazol-3(2H)-ones. Arch. Pharm. (Weinheim), 2014, 347(4), 268-275.
[http://dx.doi.org/10.1002/ardp.201300277] [PMID: 24448887]
[93]
Firdaus, J.U.; Habib, A.; Siddiqui, N.; Alam, O.; Naim, M.J.; Partap, S.; Sahu, M. Design, synthesis, and molecular docking study of benzothiazolotriazine derivatives for anticonvulsant potential. Arch. Pharm. Chem. Life Sci., 2018, 351(12)e1800154
[94]
Sheikh, M.; Mohammad, S.; Mohammad, A. Design, synthesis, and screening of hybrid benzothiazolyl-oxadiazoles as anticonvulsant agents. Lett. Drug Des. Discov., 2018, 15(4), 398-405.
[http://dx.doi.org/10.2174/1570180814666170526154914]
[95]
Siddiqui, N.; Alam, M.S.; Sahu, M.; Naim, M.J.; Yar, M.S.; Alam, O. Design, synthesis, anticonvulsant evaluation and docking study of 2-[(6-substituted benzo[d]thiazol-2-ylcarbamoyl)methyl]-1-(4-substituted phenyl)isothioureas. Bioorg. Chem., 2017, 71, 230-243.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.009] [PMID: 28238402]
[96]
Coleman, N.; Nguyen, H.M.; Cao, Z.; Brown, B.M.; Jenkins, D.P.; Zolkowska, D.; Chen, Y.J.; Tanaka, B.S.; Goldin, A.L.; Rogawski, M.A.; Pessah, I.N.; Wulff, H. The riluzole derivative 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a mixed KCa2 activator and NaV blocker, is a potent novel anticonvulsant. Neurotherapeutics, 2015, 12(1), 234-249.
[http://dx.doi.org/10.1007/s13311-014-0305-y] [PMID: 25256961]
[97]
Cannalire, R.; Tarantino, D.; Piorkowski, G.; Carletti, T.; Massari, S.; Felicetti, T.; Barreca, M.L.; Sabatini, S.; Tabarrini, O.; Marcello, A.; Milani, M.; Cecchetti, V.; Mastrangelo, E.; Manfroni, G.; Querat, G. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Res., 2019, 167, 6-12.
[http://dx.doi.org/10.1016/j.antiviral.2019.03.004] [PMID: 30849420]
[98]
Shaikh, F.M.; Patel, N.B.; Sanna, G.; Busonera, B.; Colla, P.L.; Rajani, D.P. Synthesis of some new 2-amino-6-thiocyanato benzothiazole derivatives bearing 2,4-thiazolidinediones and screening of their in vitro antimicrobial, antitubercular and antiviral activities. Med. Chem. Res., 2015, 24, 3129-3142.
[http://dx.doi.org/10.1007/s00044-015-1358-0]
[99]
Tang, X.; Wang, Z.; Zhong, X.; Wang, X.; Chen, L.; He, M.; Xue, W. Synthesis and biological activities of benzothiazole derivatives bearing a 1,3,4-thiadiazole moiety. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 241-248.
[http://dx.doi.org/10.1080/10426507.2018.1539992]
[100]
Xiao, H.; Li, P.; Hu, D.; Song, B.A. Synthesis and anti-TMV activity of novel β-amino acid ester derivatives containing quinazoline and benzothiazole moieties. Bioorg. Med. Chem. Lett., 2014, 24(15), 3452-3454.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.073] [PMID: 24934508]
[101]
Ke, S.; Wei, Y.; Yang, Z.; Wang, K.; Liang, Y.; Shi, L. Novel cycloalkylthiophene-imine derivatives bearing benzothiazole scaffold: Synthesis, characterization and antiviral activity evaluation. Bioorg. Med. Chem. Lett., 2013, 23(18), 5131-5134.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.023] [PMID: 23920438]
[102]
Bielenicaa, A.; Sannab, G.; Madeddu, S.; Struga, M.; Jóźwiak, M.; Kozioł, A.E.; Sawczenko, A.; Materek, I.B.; Serra, A.; Giliberti, G. New thiourea and 1,3-thiazolidin-4-one derivatives effective on the HIV-1 virus. Org. Biomol. Chem., 2018, 90(5), 883-891.
[103]
Liu, J.Z.; Song, B.A.; Bhadury, P.S.; Hu, D.Y.; Yang, S. Synthesis and bioactivities of α-aminophosphonate derivatives containing benzothiazole and thiourea moieties. Phosphorus Sulfur Silicon Relat. Elem., 2012, 187, 61-70.
[http://dx.doi.org/10.1080/10426507.2011.575422]
[104]
Patel, N.B.; Khan, I.H.; Pannecouque, C.; Clercq, E.D. Anti-HIV, antimycobacterial and antimicrobial studies of newly synthesized 1,2,4-triazole clubbed benzothiazoles. Med. Chem. Res., 2013, 22, 1320-1329.
[http://dx.doi.org/10.1007/s00044-012-0129-4]
[105]
Pitta, E.; Geronikaki, A.; Surmava, S.; Eleftheriou, P.; Mehta, V.P.; Van der Eycken, E.V. Synthesis and HIV-1 RT inhibitory action of novel (4/6-substituted benzo[d]thiazol -2-yl)thiazolidin-4-ones. Divergence from the non-competitive inhibition mechanism. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 113-122.
[http://dx.doi.org/10.3109/14756366.2011.636362] [PMID: 22380777]
[106]
Venugopala, K.N.; Khedr, M.A.; Pillay, M.; Nayak, S.K.; Chandrashekharappa, S.; Aldhubiab, B.E.; Harsha, S.; Attimard, M.; Odhav, B. Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(7), 1830-1842.
[http://dx.doi.org/10.1080/07391102.2018.1470035] [PMID: 29697293]
[107]
Pinheiro, A.C.; de Souza, M.V.N.; Lourenço, M.C.S.; Da Costa, C.F.; Baddeley, T.C.; Low, J.N.; Wardell, S.M.S.V.; Wardell, J.L. Synthesis, potent anti-TB activity against M. tuberculosis ATTC 27294, crystal structures and complex formation of selected 2-arylidenehydrazinylbenzothiazole derivatives. J. Mol. Struct., 2019, 1178, 655-668.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.030]
[108]
Venugopala, K.N.; Chandrashekharappa, S.; Pillay, M.; Bhandary, S.; Kandeel, M.; Mahomoodally, F.M.; Morsy, M.A.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K.; Odhav, B. Synthesis and structural elucidation of novel benzothiazole derivatives as anti-tubercular agents: In silico screening for possible target identification. Med. Chem., 2019, 15(3), 311-326.
[109]
Mallikarjuna, N.M.; Keshavayya, J.; Ravi, B.N. Synthesis, spectroscopic characterization, antimicrobial, antitubercular and DNA cleavage studies of 2-(1H-indol-3-yldiazenyl)-4, 5, 6, 7-tetrahydro-1, 3-benzothiazole and its metal complexes. J. Mol. Struct., 2018.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.007]
[110]
Bhat, M.; Belagali, S.L. Guanidinyl and amide conjugated benzothiazoles as potential anti-tubercular agent and their cytotoxicity study, antiinfect. Agents Med. Chem., 2018, 16(2), 121-128.
[http://dx.doi.org/10.2174/2211352516666180425151720]
[111]
Patel, R.V.; Patel, P.K.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents. Eur. J. Med. Chem., 2012, 53, 41-51.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.033] [PMID: 22516426]
[112]
Telvekar, V.N.; Bairwa, V.K.; Satardekar, K.; Bellubi, A. Novel 2-(2-(4-aryloxybenzylidene) hydrazinyl)benzothiazole derivatives as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 649-652.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.064] [PMID: 22079026]
[113]
Chikhale, R.; Menghani, S.; Babu, R.; Bansode, R.; Bhargavi, G.; Karodia, N.; Rajasekharan, M.V.; Paradkar, A.; Khedekar, P. Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides. Eur. J. Med. Chem., 2015, 96, 30-46.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.011] [PMID: 25874329]
[114]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.017] [PMID: 24589483]
[115]
Netalkar, P.P.; Netalkar, S.P.; Budagumpi, S.; Revankar, V.K. Synthesis, crystal structures and characterization of late first row transition metal complexes derived from benzothiazole core: Anti-tuberculosis activity and special emphasis on DNA binding and cleavage property. Eur. J. Med. Chem., 2014, 79, 47-56.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.083] [PMID: 24721314]
[116]
Patel, R.V.; Kumari, P.; Chikhalia, H.K. New quinolinyl–1,3,4–oxadiazoles: Synthesis, in vitro antibacterial, antifungal and antituberculosis studies. Med. Chem., 2013, 9(4), 596-607.
[117]
Bhoi, M.N.; Borad, M.A.; Pithawala, E.A.; Patel, H.D. Novel benzothiazole containing 4H-pyrimido[2,1-b]benzothiazoles derivatives: One pot, solvent-free microwave assisted synthesis and their biological evaluation. Arab. J. Chem., 2019, 12(8), 3799-3813.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.012]
[118]
Sahu, P.K.; Sahu, P.K.; Gupta, S.K.; Thavaselvam, D.; Agarwal, D.D. Synthesis and evaluation of antimicrobial activity of 4H-pyrimido[2,1-b]benzothiazole, pyrazole and benzylidene derivatives of curcumin. Eur. J. Med. Chem., 2012, 54, 366-378.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.020] [PMID: 22683240]
[119]
Singh, M.K.; Tilak, R.; Nath, G.; Awasthi, S.K.; Agarwal, A. Design, synthesis and antimicrobial activity of novel benzothiazole analogs. Eur. J. Med. Chem., 2013, 63, 635-644.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.027] [PMID: 23567952]
[120]
Stokes, N.R.; Thomaides-Brears, H.B.; Barker, S.; Bennett, J.M.; Berry, J.; Collins, I.; Czaplewski, L.G.; Gamble, V.; Lancett, P.; Logan, A.; Lunniss, C.J.; Peasley, H.; Pommier, S.; Price, D.; Smee, C.; Haydon, D.J. Biological evaluation of benzothiazole ethyl urea inhibitors of bacterial type II topoisomerases. Antimicrob. Agents Chemother., 2013, 57(12), 5977-5986.
[http://dx.doi.org/10.1128/AAC.00719-13] [PMID: 24041906]
[121]
Patel, N.B.; Purohit, A.C.; Rajani, D.P.; Moo-Puc, R.; Rivera, G. New 2-benzylsulfanyl-nicotinic acid based 1,3,4-oxadiazoles: Their synthesis and biological evaluation. Eur. J. Med. Chem., 2013, 62, 677-687.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.055] [PMID: 23434641]
[122]
Gupta, Y.K.; Gupta, V.; Singh, S. Synthesis, characterization and antimicrobial activity of pyrimidine based derivatives. J. Pharm. Res., 2013, 7(6), 491-495.
[http://dx.doi.org/10.1016/j.jopr.2013.05.020]
[123]
Singh, M.; Gangwar, M.; Nath, G.; Singh, S.K. Synthesis, DNA cleavage and antimicrobial activity of 4-thiazolidinones-benzothiazole conjugates. Indian J. Exp. Biol., 2014, 52(11), 1062-1070.
[PMID: 25434101]
[124]
Patel, R.V.; Park, S.W. Access to a new class of biologically active quinoline based 1,2,4-triazoles. Eur. J. Med. Chem., 2014, 71, 24-30.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.059] [PMID: 24269513]
[125]
Rambabu, A.; Pradeep Kumar, M.; Tejaswi, S.; Vamsikrishna, N. Shivaraj. DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy)benzothiazole Schiff base ligands. J. Photochem. Photobiol. B, 2016, 165, 147-156.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.10.027] [PMID: 27794220]
[126]
Obasi, L.N.; Oruma, U.S.; Al-Swaidan, I.A.; Ramasami, P.; Ezeorah, C.J.; Ochonogor, A.E. Synthesis, characterization and antibacterial studies of N-(benzothiazol-2-yl)-4-chlorobenzenesulphonamide and Its neodymium(III) and thallium(III) complexes. Molecules, 2017, 22(2), 153.
[http://dx.doi.org/10.3390/molecules22020153] [PMID: 28241439]
[127]
Zha, G.F.; Leng, J.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Asiri, A.M.; Marwani, H.M.; Rakesh, K.P.; Mallesha, N.; Qin, H.L. Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2017, 27(14), 3148-3155.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.032] [PMID: 28539243]
[128]
Rubino, S.; Busà, R.; Attanzio, A.; Alduina, R.; Di Stefano, V.; Girasolo, M.A.; Orecchio, S.; Tesoriere, L. Synthesis, properties, antitumor and antibacterial activity of new Pt(II) and Pd(II) complexes with 2,2′-dithiobis(benzothiazole) ligand. Bioorg. Med. Chem., 2017, 25(8), 2378-2386.
[http://dx.doi.org/10.1016/j.bmc.2017.02.067] [PMID: 28336408]
[129]
Incerti, M.; Vicini, P.; Geronikaki, A.; Eleftheriou, P.; Tsagkadouras, A.; Zoumpoulakis, P.; Fotakis, C.; Ćirić, A.; Glamočlija, J.; Soković, M. New N-(2-phenyl-4-oxo-1,3-thiazolidin-3-yl)-1,2-benzothiazole-3-carboxamides and acetamides as antimicrobial agents. MedChemComm, 2017, 8(11), 2142-2154.
[http://dx.doi.org/10.1039/C7MD00334J] [PMID: 30108732]
[130]
Maddili, S.K.; Li, Z.Z.; Kannekanti, V.K.; Bheemanaboina, R.R.Y.; Tuniki, B.; Tangadanchu, V.K.R.; Zhou, C.H. Azoalkyl ether imidazo[2,1-b]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg. Med. Chem. Lett., 2018, 28(14), 2426-2431.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.016] [PMID: 29929884]
[131]
Naaz, F.; Srivastava, R.; Singh, A.; Singh, N.; Verma, R.; Singh, V.K.; Singh, R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem., 2018, 26(12), 3414-3428.
[http://dx.doi.org/10.1016/j.bmc.2018.05.015] [PMID: 29778528]
[132]
Haroun, M.; Tratrat, C.; Kositsi, K.; Tsolaki, E.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.; Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija, J.; Ciric, A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. design, synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18(1), 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[133]
Alborz, M.; Jarrahpour, A.; Pournejati, R.; Karbalaei-Heidari, H.R.; Sinou, V.; Latour, C.; Brunel, J.M.; Sharghi, H.; Aberi, M.; Turos, E.; Wojtas, L. Synthesis and biological evaluation of some novel diastereoselective benzothiazole β-lactam conjugates. Eur. J. Med. Chem., 2018, 143, 283-291.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.053] [PMID: 29197733]
[134]
Bhat, M.; Belagali, S.L. Synthesis, characterization and biological screening of pyrazole-conjugated benzothiazole analogs. Future Med. Chem., 2018, 10(1), 71-87.
[http://dx.doi.org/10.4155/fmc-2017-0138] [PMID: 29235357]
[135]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[136]
Zehra, S.; Shavez Khan, M.; Ahmad, I.; Arjmand, F. New tailored substituted benzothiazole Schiff base Cu(II)/Zn(II) antitumor drug entities: effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity. J. Biomol. Struct. Dyn., 2019, 37(7), 1863-1879.
[http://dx.doi.org/10.1080/07391102.2018.1467794] [PMID: 29676660]
[137]
Ongarora, D.S.; Gut, J.; Rosenthal, P.J.; Masimirembwa, C.M.; Chibale, K. Benzoheterocyclic amodiaquine analogues with potent antiplasmodial activity: Synthesis and pharmacological evaluation. Bioorg. Med. Chem. Lett., 2012, 22(15), 5046-5050.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.010] [PMID: 22749280]
[138]
Venugopala, K.N.; Krishnappa, M.; Nayak, S.K.; Subrahmanya, B.K.; Vaderapura, J.P.; Chalannavar, R.K.; Gleiser, R.M.; Odhav, B. Synthesis and antimosquito properties of 2,6-substituted benzo[d]thiazole and 2,4-substituted benzo[d]thiazole analogues against Anopheles arabiensis. Eur. J. Med. Chem., 2013, 65, 295-303.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.061] [PMID: 23727539]
[139]
Sharma, P.C.; Padwal, S.; Bansal, K.K.; Saini, A. Synthesis, characterization and antimicrobial evaluation of benzimidazoleclubbed benzothiazole derivatives. Biol. Lett., 2017, 4(2), 63-68.
[140]
Thakkar, S.S.; Thakor, P.; Ray, A.; Doshi, H.; Thakkar, V.R. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(20), 5396-5406.
[http://dx.doi.org/10.1016/j.bmc.2017.07.057] [PMID: 28789907]
[141]
Sarkar, S.; Siddiqui, A.A.; Saha, S.J.; De, R.; Mazumder, S.; Banerjee, C.; Iqbal, M.S.; Nag, S.; Adhikari, S.; Bandyopadhyay, U. Antimalarial activity of small-molecule benzothiazole hydrazones. Antimicrob. Agents Chemother., 2016, 60(7), 4217-4228.
[http://dx.doi.org/10.1128/AAC.01575-15] [PMID: 27139466]
[142]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Khan, K.M.; Riaz, M. Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies. Bioorg. Chem., 2016, 66, 80-87.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.010] [PMID: 27038849]
[143]
Harrouche, K.; Renard, J.F.; Bouider, N.; de Tullio, P.; Goffin, E.; Lebrun, P.; Faury, G.; Pirotte, B.; Khelili, S. Synthesis, characterization and biological evaluation of benzothiazoles and tetrahydrobenzothiazoles bearing urea or thiourea moieties as vasorelaxants and inhibitors of the insulin releasing process. Eur. J. Med. Chem., 2016, 115, 352-360.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.028] [PMID: 27031211]
[144]
Siddiqui, N.; Rana, A.; Khan, S.A.; Ahsan, W.; Alam, M.S.; Ahmed, S. Analgesic and antidepressant activities of benzothiazole-benzamides. BPJ, 2008, 1(2), 297-300.
[145]
Demir Özkay, Ü.; Kaya, C.; Acar Çevik, U.; Can, O.D. Synthesis and antidepressant activity profile of some novel benzothiazole derivatives. Molecules, 2017, 22(9), 1490.
[http://dx.doi.org/10.3390/molecules22091490] [PMID: 28880242]
[146]
Morales-Garcia, J.A.; Salado, I.G.; Sanz-San Cristobal, M.; Gil, C.; Pérez-Castillo, A.; Martínez, A.; Pérez, D.I. Biological and pharmacological characterization of benzothiazole-based ck-1δ inhibitors in models of Parkinson’s Disease. ACS Omega, 2017, 2(8), 5215-5220.
[http://dx.doi.org/10.1021/acsomega.7b00869] [PMID: 30023743]
[147]
Verma, S.M.; Dadheech, M.; Meena, R.P. Design and synthesis of some benzothiazole analogs as a receptor antagonist 2A. JPST, 2012, 1(2), 30-35.
[148]
Kamal, A.; Syed, M.A.H.; Mohammed, S.M. Therapeutic potential of benzothiazoles: A patent review (2010 - 2014). Expert Opin. Ther. Pat., 2015, 25(3), 335-349.
[http://dx.doi.org/10.1517/13543776.2014.999764] [PMID: 25579497]
[149]
Sámano, C.; Nistri, A. Mechanism of neuroprotection against experimental spinal cord injury by riluzole or methylprednisolone. Neurochem. Res., 2019, 44(1), 200-213.
[http://dx.doi.org/10.1007/s11064-017-2459-6]
[150]
Petrov, D.; Mansfield, C.; Moussy, A.; Hermine, O. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front. Aging Neurosci., 2017, 9, 68.
[http://dx.doi.org/10.3389/fnagi.2017.00068] [PMID: 28382000]
[151]
Singh, M.; Singh, S.K. Benzothiazoles: How relevant in cancer drug design strategy? Anticancer. Agents Med. Chem., 2014, 14(1), 127-146.
[http://dx.doi.org/10.2174/18715206113139990312] [PMID: 23869774]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2021
Published on: 22 December, 2019
Page: [4 - 27]
Pages: 24
DOI: 10.2174/1573407216666191223093550
Price: $65

Article Metrics

PDF: 79
HTML: 2