Development of a Novel Nanocomposite Based on Reduced Graphene Oxide/Chitosan/Au/ZnO and Electrochemical Sensor for Determination of Losartan

Author(s): Khadijeh Ghanbari*, Ashraf Sivandi

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Hypertension is a major risk for morbidity and mortality, while hypertension is associated with cardiovascular disease and organ damage. Recent research efforts have focused on the development of highly selective angiotensin receptor blockers. In which losartan (LOS) is considered as a new generation of an effective oral drug product against arterial hypertension. Therefore, the determination of drugs in biological fluids, pharmaceuticals (tablets), and wastewater is of critical importance for clinical applications, forensics, quality control, and environmental protection that call for the development of analytical methods. Many ranges of methods such as spectroscopic methods and chromatographic techniques have been developed to determine LOS in pharmaceutical formulations and biological fluids. However, there are crucial interference problems in these methods. For these reasons, more sensitive, desirable, portable, low-cost, simple, and selective nanocomposite-based sensors are needed in terms of health safety. Nanomaterials such as reduced graphene oxide, chitosan, and metal nanoparticles are used to improve the sensitivity in the development of electrochemical sensors.

Objective: In this study, a novel reduced graphene oxide (RGO), chitosan (Chit), gold (Au), and zinc oxide (ZnO) nanocomposite (RGO/Chitosan/Au/ZnO) was synthesized and used to develop a sensitive and efficient electrochemical sensor for LOS detection.

Methods: Modification of electrode by RGO/Chit/Au/ZnO nanocomposite was performed in four stages with GO (at -2.0 V for 150 s), Chitosan (at -3.0 V for 300 s), Au nanoparticles (at -0.4 V for 400 s), and Zn nanoflowers like (at -0.7 V for 1200 s). The RGO/Chitosan/Au/ZnO nanocomposite was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR). Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) were used to detect LOS, and the influence of pH value, scan rate, accumulation potential, and time also losartan concentration on the performance of ZnO/Au/Chitosan/RGO/GCE were investigated. In order to investigate the selectivity of the modified electrode for the determination of LOS, the effect of possible interfering species was evaluated and showed that these species are not interferences. Also, the reproducibility of the modified electrode was investigated and implying that the RGO/Chit/Au/ZnO nanocomposite was highly reproducible.

Results: The modified electrode was used as a sensor for the selective and sensitive determination of LOS with a detection limit of 0.073 μM over the dynamic linear range of 0.5μM to 18.0 μM. In addition, electrochemical oxidation of LOS was well recovered in pharmaceutical formulations.

Conclusion: LOS is used to treat high blood pressure, taking into account the oxidation of this compound, the use of electrochemical based sensors, ideally suited to a specific chemical species, can be fully selectable and High-sensitivity answer is very important. In this study, the electrodes with RGO/Chit/Au/ZnO nanocomposite were modified by the electrochemical method. Nanocomposites were characterized by various methods such as FE-SEM, FT-IR, XRD, Raman, and XPS. The electrocatalytic activity of the modified electrode was then investigated for measuring LOS. According to the results of the modified electrode, high sensitivity, reproducibility, and selectivity have been shown to oxidize this composition.

Keywords: Au nanoparticle, chitosan, electrochemical sensor, losartan, reduced graphene oxide, Emission Scanning Electron Microscopy (FE-SEM).

[1]
United States Pharmacopoeia. United States Pharmacopoeial Convention; Rockville, 2009.
[2]
Larsen, R.D.; King, A.O.; Chen, C.Y.; Corley, E.G.; Foster, B.S.; Roberts, F.E.; Yang, C.H.; Lieberman, D.R.; Reamer, R.A.; Tschaen, D.M.; Verhoeven, T.R.; Reider, P.J. Efficient synthesis of losartan, A Nonpeptide Angiotensin II Receptor antagonist. J. Org. Chem., 1994, 59, 6391-6394.
[http://dx.doi.org/10.1021/jo00100a048]
[3]
Salvadori, M.C.; Moreira, R.F.; Borges, B.C.; Andraus, M.H.; Azevedo, C.P.; Moreno, R.A.; Borges, N.C. Simultaneous determination of losartan and hydrochlorothiazide in human plasma by LC/MS/MS with electrospray ionization and its application to pharmacokinetics. Clin. Exp. Hypertens., 2009, 31(5), 415-427.
[http://dx.doi.org/10.1080/10641960802668714] [PMID: 19811351]
[4]
Ansari, M.; Kazemipour, M.; Khosravi, F.; Baradaran, M. A comparative study of first-derivative spectrophotometry and high-performance liquid chromatography applied to the determination of losartan potassium in tablets. Chem. Pharm. Bull. (Tokyo), 2004, 52(10), 1166-1170.
[http://dx.doi.org/10.1248/cpb.52.1166] [PMID: 15467227]
[5]
Williams, R.C.; Alasandro, M.S.; Fasone, V.L.; Boucher, R.J.; Edwards, J.F.J. Comparison of liquid chromatography, capillary electrophoresis and super-critical fluid chromatography in the determination of Losartan Potassium drug substance in Cozaar tablets. J. Pharm. Biomed. Anal., 1996, 14(11), 1539-1546.
[http://dx.doi.org/10.1016/0731-7085(96)01740-2] [PMID: 8877861]
[6]
McCarthy, K.E.; Wang, Q.; Tsai, E.W.; Gilbert, R.E.; Ip, D.P.; Brooks, M.A. Determination of losartan and its degradates in COZAAR tablets by reversed-phase high-performance thin-layer chromatography. J. Pharm. Biomed. Anal., 1998, 17(4-5), 671-677.
[http://dx.doi.org/10.1016/S0731-7085(97)00251-3] [PMID: 9682150]
[7]
Lastra, O.C.; Lemus, I.G.; Sánchez, H.J.; Pérez, R.F. Development and validation of an UV derivative spectrophotometric determination of Losartan potassium in tablets. J. Pharm. Biomed. Anal., 2003, 33(2), 175-180.
[http://dx.doi.org/10.1016/S0731-7085(03)00347-9] [PMID: 12972082]
[8]
Prabhakar, A.H.; Giridhar, R. A rapid colorimetric method for the determination of Losartan potassium in bulk and in synthetic mixture for solid dosage form. J. Pharm. Biomed. Anal., 2002, 27(6), 861-866.
[http://dx.doi.org/10.1016/S0731-7085(01)00536-2] [PMID: 11836049]
[9]
Shah, H.J.; Kundlik, M.L.; Patel, N.K.; Subbaiah, G.; Patel, D.M.; Suhagia, B.N.; Patel, C.N. Rapid determination of losartan and losartan acid in human plasma by multiplexed LC-MS/MS. J. Sep. Sci., 2009, 32(20), 3388-3394.
[http://dx.doi.org/10.1002/jssc.200900287] [PMID: 19750501]
[10]
Kolocouri, F.; Dotsikas, Y.; Apostolou, C.; Kousoulos, C.; Loukas, Y.L. Simultaneous determination of losartan, EXP-3174 and hydrochlorothiazide in plasma via fully automated 96 well format based solid-phase extraction and liquid chromatography-negative electrospray tandem mass spectrometry. Anal. Bioanal. Chem., 2007, 387(2), 593-601.
[http://dx.doi.org/10.1007/s00216-006-0990-4] [PMID: 17119933]
[11]
Cagigal, E.; González, L.; Alonso, R.M.; Jiménez, R.M. Experimental design methodologies to optimise the spectrofluorimetric determination of Losartan and Valsartan in human urine. Talanta, 2001, 54(6), 1121-1133.
[http://dx.doi.org/10.1016/S0039-9140(01)00379-4] [PMID: 18968334]
[12]
Ardila, J.A.; Sartori, E.R.; Rocha-Filho, R.C.; Fatibello-Filho, O. Square-wave voltammetric determination of bezafibrate in pharmaceutical formulations using a cathodically pretreated boron-doped diamond electrode. Talanta, 2013, 103, 201-206.
[http://dx.doi.org/10.1016/j.talanta.2012.10.033] [PMID: 23200378]
[13]
Habib, I.H.I.; Weshahy, S.A.; Toubar, S.; El-Alamin, M.M.A. Cathodic Stripping Voltammetric Determination of losartan in bulk and pharmaceutical products. Port. Electrochem. Acta, 2008, 26, 315-324.
[http://dx.doi.org/10.4152/pea.200804315]
[14]
Gardenal Santos, M.C.; Teixeira Tarley, C.R.; Dall’Antonia, L.H.; Sartori, E.R. Evaluation of boron-doped diamond electrode for simultaneous voltammetric determination of hydrochlorothiazide and losartan in pharmaceutical formulations. Sens. Actuators B Chem., 2013, 88, 263-270.
[http://dx.doi.org/10.1016/j.snb.2013.07.025]
[15]
Bagheri, H.; Shirzadmehr, A.; Rezaei, M. Designing and fabrication of new molecularly imprinted polymer-based potentiometric nano-graphene/ionic liquid/carbon paste electrode for the determination of losartan. J. Mol. Liq., 2015, 212, 96-102.
[http://dx.doi.org/10.1016/j.molliq.2015.09.005]
[16]
Dia, N.; Morales, D.M.; Andronescu, C.; Masoud, M.; Schuhmann, W. A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine. Sens. Actuators B Chem., 2019, 285, 17-23.
[http://dx.doi.org/10.1016/j.snb.2019.01.022]
[17]
Peshori, S.; Narula, A.K. One-pot synthesis of porphyrin@polypyrrole hybrid and its application as an electrochemical sensor. Mater. Sci. Eng. B, 2018, 229, 53-58.
[http://dx.doi.org/10.1016/j.mseb.2017.12.023]
[18]
Hang, N.T.; Zhang, S.; Noh, J-S.; Yang, W. Study on the optimization of graphene sensors using Ag-nanostructures decoration. Thin Solid Films, 2018, 660, 631-636.
[http://dx.doi.org/10.1016/j.tsf.2018.04.037]
[19]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[20]
Bharath, G.; Madhu, R.; Chen, S.M.; Veeramani, V.; Mangalaraj, D.; Ponpandian, N. Solvent-free mechanochemical synthesis of graphene oxide and Fe3O4-reduced graphene oxide nanocomposites for sensitive detection of nitrite. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 15529-15539.
[http://dx.doi.org/10.1039/C5TA03179F]
[21]
Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4), 217-224.
[http://dx.doi.org/10.1038/nnano.2009.58] [PMID: 19350030]
[22]
Bharath, G.; Madhu, R.; Chen, S.M.; Veeramani, V.; Balamurugan, A.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N. Enzymatic electrochemical glucose biosensor by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 1360-1370.
[http://dx.doi.org/10.1039/C4TB01651C]
[23]
Xu, C.; Wang, X.; Zhu, J. Graphene-Metal particle nanocomposites. J. Phys. Chem. C, 2008, 112, 19841-19845.
[http://dx.doi.org/10.1021/jp807989b]
[24]
Ren, J.; Shi, W.; Li, K.; Ma, Z. Ultrasensitive platinum nanocubes enhancedamperometricglucose biosensor based on chitosan and nafion film. Sens. Actuators B Chem., 2012, 163, 115-120.
[http://dx.doi.org/10.1016/j.snb.2012.01.017]
[25]
Khun, K.; Ibupoto, Z.H.; Lu, J.; AlSalhi, M.S.; Atif, M.; Ansari, A.A.; Willander, M. Ptentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode. Sens. Actuators B Chem., 2012, 173, 698-703.
[http://dx.doi.org/10.1016/j.snb.2012.07.074]
[26]
Lim, H.N.; Huang, N.M.; Loo, C.H.J. Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. Non-Cryst. Solids, 2012, 358, 525-530.
[http://dx.doi.org/10.1016/j.jnoncrysol.2011.11.007]
[27]
Niu, X.; Yang, W.; Ren, J.; Guo, H.; Long, S.; Chen, J.; Gao, J. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene-ionic liquid-chitosan composite film modified glassy carbon electrode. Electrochim. Acta, 2012, 80, 346-353.
[http://dx.doi.org/10.1016/j.electacta.2012.07.041]
[28]
Sing, J.; Patil, S.S.; More, M.A.; Joag, D.S.; Tiwari, R.S.; Srivastava, O.N. Formation of aligned ZnO nanorods on self-grown ZnO template and its enhanced field emission characteristics. Appl. Surf. Sci., 2010, 256, 6157-6163.
[http://dx.doi.org/10.1016/j.apsusc.2010.03.130]
[29]
Bharath, G.; Alhseinat, E.; Madhu, R.; Mugo, S.M.; Alwasel, S.; Harrath, A.H. Facile synthesis of Au@α-Fe2O3@RGO ternary nanocomposites for enhanced electrochemical sensing of caffeic acid toward biomedical applications. J. Alloys Compd., 2018, 750, 819-827.
[http://dx.doi.org/10.1016/j.jallcom.2018.04.052]
[30]
Bharath, G.; Naldoni, A.; Ramsati, K.H.; Abdel-Wahab, A.; Madhu, R.; Alsharaeh, E.; Ponpandian, N. Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 6385-6394.
[http://dx.doi.org/10.1039/C6TA01528J]
[31]
Himo, F.; Demko, Z.P.; Noodleman, L. Density functional theory study of the intramolecular [2 + 3] cycloaddition of azide to nitriles. J. Org. Chem., 2003, 68(23), 9076-9080.
[http://dx.doi.org/10.1021/jo030137i] [PMID: 14604383]
[32]
Hummers, W.S., Jr; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80, 1339.
[http://dx.doi.org/10.1021/ja01539a017]
[33]
Ghanbari, K.; Ahmadi, F. NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose. Anal. Biochem., 2017, 518, 143-153.
[http://dx.doi.org/10.1016/j.ab.2016.11.020] [PMID: 27916553]
[34]
Yang, G.; Chang, Y.; Yang, H.; Tan, L.; Wu, Z.; Lu, X.; Yang, Y. The preparation of reagentless electrochemical immunosensor based on a nano-gold and chitosan hybrid film for human chorionic gonadotrophin. Anal. Chim. Acta, 2009, 644(1-2), 72-77.
[http://dx.doi.org/10.1016/j.aca.2009.04.021] [PMID: 19463565]
[35]
Ghanbari, Kh.; Hajheidari, N. ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal. Biochem., 2015, 473, 53-62.
[http://dx.doi.org/10.1016/j.ab.2014.12.013] [PMID: 25576954]
[36]
Wanga, L.; Zhenga, Y.; Lua, X.; Lib, Z.; Sunc, L.; Song, Y. Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing. Sens. Actuators B Chem., 2014, 195, 1-7.
[http://dx.doi.org/10.1016/j.snb.2014.01.007]
[37]
Zhang, K.; Hu, R.; Fan, G.; Li, G. Graphene oxide/chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors. Sens. Actuators B Chem., 2017, 243, 721-730.
[http://dx.doi.org/10.1016/j.snb.2016.12.063]
[38]
Barra, A.; Ferreira, N.M.; Martins, M.A.; Lazar, O.; Pantazic, A.; Jderu, A.A.; Neumayer, S.M.; Rodriguez, B.J.; Enăchescu, M.; Ferreira, P.; Nunesa, C. Eco-friendly preparation of electrically conductive chitosan-reduced graphene oxide flexible bionanocomposites for food packaging and biological applications. Compos. Sci. Technol., 2019, 173, 53-60.
[http://dx.doi.org/10.1016/j.compscitech.2019.01.027]
[39]
Cartier, N.; Domard, A.; Chanzy, H. Single crystals of chitosan. Int. J. Biol. Macromol., 1990, 12(5), 289-294.
[http://dx.doi.org/10.1016/0141-8130(90)90015-3] [PMID: 2085494]
[40]
Mo, M.S.; Lim, S.H.; Mai, Y.W.; Zheng, R.K.; Ringer, S.P. In Situ Self Assembly of Thin ZnO Nanoplatelets into Hierarchical Mesocrystal Microtubules with Surface Grafting of Nanorods: A General Strategy towards Hollow Mesocrystal Structures. Adv. Mater., 2008, 20, 339-342.
[http://dx.doi.org/10.1002/adma.200701137]
[41]
Jain, R. Thakur, A.; Kumar, P.; Pooja, D. Au/ZnO nanocomposites decorated ITO electrodes for voltammetric sensing of selenium in water. Electrochim. Acta, 2018, 290, 291-302.
[http://dx.doi.org/10.1016/j.electacta.2018.09.061]
[42]
Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Zeng, G.; Liu, Y.; Wang, X.; Lin, N.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci., 2013, 279, 432-440.
[http://dx.doi.org/10.1016/j.apsusc.2013.04.133]
[43]
Wang, Y.; Wang, F.; He, J. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale, 2013, 5(22), 11291-11297.
[http://dx.doi.org/10.1039/c3nr03969b] [PMID: 24096940]
[44]
Sahu, D.; Panda, N.R.; Acharya, B.S.; Panda, A.K. Microstructural and optical investigations on sonochemically synthesized Cu doped ZnO nanobricks. Ceram. Int., 2014, 40, 11041-11049.
[http://dx.doi.org/10.1016/j.ceramint.2014.03.119]
[45]
Zhang, Y.; Hana, T.; Wang, Z.; Zhao, C.; Li, J.; Fei, T.; Liu, S.; Lu, G.; Zhang, T. In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine. Sens. Actuators B Chem., 2017, 243, 1231-1239.
[http://dx.doi.org/10.1016/j.snb.2016.12.085]
[46]
Yang, J.; Strickler, J.R.; Gunasekaran, S. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale, 2012, 4(15), 4594-4602.
[http://dx.doi.org/10.1039/c2nr30618b] [PMID: 22706569]
[47]
Wan, Y.; Lin, Z.; Zhang, D.; Wang, Y.; Hou, B. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens. Bioelectron., 2011, 26(5), 1959-1964.
[http://dx.doi.org/10.1016/j.bios.2010.08.008] [PMID: 20888216]
[48]
Han, D.; Han, T.; Shan, C.; Ivaska, A.; Niu, L. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan‐graphene modified electrode. Electroanalysis, 2010, 22, 2001-2008.
[http://dx.doi.org/10.1002/elan.201000094]
[49]
Wei, D.; Qian, W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B Biointerfaces, 2008, 62(1), 136-142.
[http://dx.doi.org/10.1016/j.colsurfb.2007.09.030] [PMID: 17983734]
[50]
Guo, Z.; Wang, Z.Y.; Wang, H.H.; Huang, G.Q.; Li, M.M. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials. Mater. Sci. Eng. C, 2015, 57, 197-204.
[http://dx.doi.org/10.1016/j.msec.2015.07.045] [PMID: 26354255]
[51]
Hsu, S.H.; Chang, Y.B.; Tsai, C.L.; Fu, K.Y.; Wang, S.H.; Tseng, H.J. Characterization and biocompatibility of chitosan nanocomposites. Colloids Surf. B Biointerfaces, 2011, 85(2), 198-206.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.029] [PMID: 21435843]
[52]
Tang, L-G.D.; Hon, N-S. Chelation of chitosan derivatives with zinc ions. II. Association complexes of Zn2+ onto O,N‐carboxymethyl chitosan. J. Appl. Polym. Sci., 2001, 79, 1476-1485.
[http://dx.doi.org/10.1002/1097-4628(20010222)79:8<1476:AID APP150>3.0.CO;2-A]
[53]
Wang, X.; Du, Y.; Liu, H. Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydr. Polym., 2004, 56, 21-26.
[http://dx.doi.org/10.1016/j.carbpol.2003.11.007]
[54]
Park, K-W.; Jung, J.H. Spectroscopic and electrochemical characteristics of a carboxylated graphene-ZnO composites. J. Power Sources, 2012, 199, 379-385.
[http://dx.doi.org/10.1016/j.jpowsour.2011.10.016]
[55]
Akhavan, O.; Azimirad, R.; Safa, S. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater. Chem. Phys., 2011, 130, 598-602.
[http://dx.doi.org/10.1016/j.matchemphys.2011.07.030]
[56]
Österholma. Anna.; Lindforsa, T.; Kauppilab, J.; Damlinb, P.; Kvarnström, C. Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochim. Acta, 2012, 83, 463-470.
[http://dx.doi.org/10.1016/j.electacta.2012.07.121]
[57]
Kim, H.; Seo, D.H.; Kim, S.W.; Kim, J.; Kang, K. Highly reversible Co3O4/graphene hybride anode for lithium rechargeable batteries. Carbon, 2011, 49, 326-332.
[http://dx.doi.org/10.1016/j.carbon.2010.09.033]
[58]
Zając, A.; Hanuza, J.; Wandas, M.; Dymińska, L. Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 114-120.
[http://dx.doi.org/10.1016/j.saa.2014.06.071] [PMID: 25011040]
[59]
Ezeigwea, E.R.; Tana, M.T.T.; Khiewa, P.S.; Siong, C.W. One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors. Ceram. Int., 2015, 141, 715-724.
[http://dx.doi.org/10.1016/j.ceramint.2014.08.128]
[60]
Roy, P.; Periasamy, A.P.; Liang, C.T.; Chang, H.T. Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environ. Sci. Technol., 2013, 47(12), 6688-6695.
[http://dx.doi.org/10.1021/es400422k] [PMID: 23701390]
[61]
Wei, P.; Zhu, Z.; Song, R.; Li, Z.; Chen, C. An ion-imprinted sensor based on chitosan-graphene oxide composite polymer modified glassy carbon electrode for environmental sensing application. Electrochim. Acta, 2019, 317, 93-101.
[http://dx.doi.org/10.1016/j.electacta.2019.05.136]
[62]
Devnani, H.; Ansari, S.; Satsangee, S.P.; Jain, R. ZrO2-Graphene-Chitosan nanocomposite modified carbon paste sensor for sensitive and selective determination of dopamine. Mater. Today Chem., 2017, 4, 17-25.
[http://dx.doi.org/10.1016/j.mtchem.2017.02.004]
[63]
Fang, M.; Long, J.; Zhao, W.; Wang, L.; Chen, G. pH-Responsive chitosan-mediated graphene dispersions. Langmuir, 2010, 26(22), 16771-16774.
[http://dx.doi.org/10.1021/la102703b] [PMID: 20936800]
[64]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nded; Wiley: USA, 2000.
[65]
Vaze, V.D.; Srivastava, A.K. Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry. Electrochim. Acta, 2007, 53, 1713-1721.
[http://dx.doi.org/10.1016/j.electacta.2007.08.017]
[66]
Nikolaou, P.; Vareli, I.; Deskoulidis, E.; Matsoukas, J.; Vassilakopoulou, A.; Koutselas, I.; Topoglidis, E. Graphite/SiO2 film electrode modified with hybrid organic-inorganic perovskites: Synthesis, optical, electrochemical properties and application in electrochemical sensing of losartan. J. Solid State Chem., 2019, 273, 17-24.
[http://dx.doi.org/10.1016/j.jssc.2019.02.018]
[67]
Zareh, M.M.; ElGendy, K.; Wassel, A.A.; Fathy, A.; Alkaren, Y.M. Plastic Sensor for Losartan Potassium Determination based on Ferroin and Ionic Liquid. Int. J. Electrochem. Sci., 2018, 13, 1260-1274.
[http://dx.doi.org/10.20964/2018.02.59 ]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 8
Year: 2020
Published on: 25 October, 2020
Page: [996 - 1009]
Pages: 14
DOI: 10.2174/1573411016666191218161500
Price: $65

Article Metrics

PDF: 22
HTML: 3