Exploring the Protective Potential of Carboxymethyl Terminalia catappa Polysaccharide on Blue Light Light-Emitting Diode Induced Corneal Damage

Author(s): Lalit Chandel, Radhika Sharma, Vikas Rana*

Journal Name: Recent Patents on Drug Delivery & Formulation
Continued as Recent Advances in Drug Delivery and Formulation

Volume 13 , Issue 4 , 2019

Graphical Abstract:


Background: Excessive blue light light-emitting diode (LED) exposure and consequent oxidative stress causes corneal damage and corneal injuries are the major problem arising these days due to excessive use of mobile phone, TV, environment pollution, etc.

Objective: In the present investigation, the protectiveness of carboxymethyl Terminalia catappa (CTC) from blue light LED-induced corneal damage was explored.

Methods: For this purpose, Terminalia catappa (TC) was functionalized by carboxymethylation and its structural modification was confirmed by spectral attributes. Further, the CTC protective eye drop formulations (0.025-1%, w/v) were prepared and evaluated for their capability of protection from blue light LEDinduced corneal damage as compared to CTC protective eye gel (1.25-7%, w/v). The findings pointed towards excellent protection of CTC gel formulations as compared to CTC eye drop formulations. In addition, the prepared optimized CTC gel had thixotropic behavior as evident from percentage structural recovery which was 1.75 fold higher than marketed formulation (I-Comfort, HPMC 2%, w/v). The safety and non-toxicity of CTC protective eye drop and gel were confirmed by HET-CAM test. Further, a rat eye model was implemented that mimic blue light light-emitting diode induced corneal damage in day to day life to assess the protective effect of CTC protective eye drop and gel.

Results: The order of protectiveness of CTC formulations was found to be CTC protective eye gel (4%, w/v) (no corneal damage)>marketed eye gel (12.34% corneal damage)=CTC protective eye drop (0.75%, w/v) (17.48% corneal damage)> marketed eye drop (51% corneal damage). The mechanism behind the protective effect of CTC eye drop and gel was associated with good free radical scavenging activity and corneal adhesive property of CTC. It is established from the present work that, carboxymethyl Terminalia catappa has protective action against blue light light-emitting diode induced corneal damage.

Keywords: Terminalia catappa, carboxymethylation, eye drop, eye gel, blue light, Light Emitting Diode (LED), corneal damage, protective effect.

Barolet, D. ED Light-emitting diodes (LEDs) in dermatology. Seminars in cutaneous medicine and surgery. Semin Cutan Med Surg., 2008, 27(4), 227-238.
Diffey, B.L. What is light? Photodermatol. Photoimmunol. Photomed., 2002, 18(2), 68-74.
[http://dx.doi.org/10.1034/j.1600-0781.2002.180203.x] [PMID: 12147039]
Behar-Cohen, F.; Martinsons, C.; Viénot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog. Retin. Eye Res., 2011, 30(4), 239-257.
[http://dx.doi.org/10.1016/j.preteyeres.2011.04.002] [PMID: 21600300]
Lee, H.S.; Cui, L.; Li, Y.; Choi, J.S.; Choi, J.H.; Li, Z.; Kim, G.E.; Choi, W.; Yoon, K.C. Influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One, 2016, 11(8)e0161041
[http://dx.doi.org/10.1371/journal.pone.0161041] [PMID: 27517861]
Portello, J.K.; Rosenfield, M.; Chu, C.A. Blink rate, incomplete blinks and computer vision syndrome. Optom. Vis. Sci., 2013, 90(5), 482-487.
[http://dx.doi.org/10.1097/OPX.0b013e31828f09a7] [PMID: 23538437]
Singh, R.S.; Kaur, N.; Sharma, R.; Rana, V. Investigating the potential of carboxymethyl pullulan for protecting the rabbit eye from systematically induced precorneal tear film damage. Exp. Eye Res., 2019, 184, 91-100.
[http://dx.doi.org/10.1016/j.exer.2019.04.017] [PMID: 31004572]
Moran, D.J.; Hollows, F.C. Pterygium and ultraviolet radiation: a positive correlation. Br. J. Ophthalmol., 1984, 68(5), 343-346.
[http://dx.doi.org/10.1136/bjo.68.5.343] [PMID: 6712914]
Taylor, H.R.; West, S.K.; Rosenthal, F.S.; Muñoz, B.; Newland, H.S.; Abbey, H.; Emmett, E.A. Effect of ultraviolet radiation on cataract formation. N. Engl. J. Med., 1988, 319(22), 1429-1433.
[http://dx.doi.org/10.1056/NEJM198812013192201] [PMID: 3185661]
Taylor, H.R.; West, S.K.; Rosenthal, F.S.; Munoz, B.; Newland, H.S.; Emmett, E.A. Corneal changes associated with chronic UV irradiation. Arch. Ophthalmol., 1989, 107(10), 1481-1484.
[http://dx.doi.org/10.1001/archopht.1989.01070020555039] [PMID: 2803097]
Cruickshanks, K.J.; Klein, R.; Klein, B.E. Sunlight and age-related macular degeneration. The Beaver Dam Eye Study. Arch. Ophthalmol., 1993, 111(4), 514-518.
[http://dx.doi.org/10.1001/archopht.1993.01090040106042] [PMID: 8470986]
Wolkoff, P.; Nøjgaard, J.K.; Troiano, P.; Piccoli, B. Eye complaints in the office environment: precorneal tear film integrity influenced by eye blinking efficiency. Occup. Environ. Med., 2005, 62(1), 4-12.
[http://dx.doi.org/10.1136/oem.2004.016030] [PMID: 15613602]
Macri, A.; Scanarotti, C.; Bassi, A.M.; Giuffrida, S.; Sangalli, G.; Traverso, C.E.; Iester, M. Evaluation of oxidative stress levels in the conjunctival epithelium of patients with or without dry eye, and dry eye patients treated with preservative-free hyaluronic acid 0.15 % and vitamin B12 eye drops. Graefes Arch. Clin. Exp. Ophthalmol., 2015, 253(3), 425-430.
[http://dx.doi.org/10.1007/s00417-014-2853-6] [PMID: 25398660]
Li, B.; Sheng, M.; Li, J.; Yan, G.; Lin, A.; Li, M.; Wang, W.; Chen, Y. Tear proteomic analysis of Sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci. Rep., 2014, 4, 5772.
[http://dx.doi.org/10.1038/srep05772] [PMID: 25159733]
Uchino, Y.; Kawakita, T.; Miyazawa, M.; Ishii, T.; Onouchi, H.; Yasuda, K.; Ogawa, Y.; Shimmura, S.; Ishii, N.; Tsubota, K. Correction: Oxidative stress induced inflammation initiates functional decline of tear production. PLoS One, 2015, 10(5)e0127720
[http://dx.doi.org/10.1371/journal.pone.0127720] [PMID: 25961710]
Nakamura, S.; Shibuya, M.; Nakashima, H.; Hisamura, R.; Masuda, N.; Imagawa, T.; Uehara, M.; Tsubota, K. Involvement of oxidative stress on corneal epithelial alterations in a blink-suppressed dry eye. Invest. Ophthalmol. Vis. Sci., 2007, 48(4), 1552-1558.
[http://dx.doi.org/10.1167/iovs.06-1027] [PMID: 17389484]
Niwano, Y.; Kanno, T.; Iwasawa, A.; Ayaki, M.; Tsubota, K. Blue light injures corneal epithelial cells in the mitotic phase in vitro. Br. J. Ophthalmol., 2014, 98(7), 990-992.
[http://dx.doi.org/10.1136/bjophthalmol-2014-305205] [PMID: 24682182]
Lee, J-B.; Kim, S-H.; Lee, S-C.; Kim, H.G.; Ahn, H.G.; Li, Z.; Yoon, K.C. Blue light-induced oxidative stress in human corneal epithelial cells: protective effects of ethanol extracts of various medicinal plant mixtures. Invest. Ophthalmol. Vis. Sci., 2014, 55(7), 4119-4127.
[http://dx.doi.org/10.1167/iovs.13-13441] [PMID: 24925877]
Fagerholm, P.; Lagali, N.S.; Ong, J.A.; Merrett, K.; Jackson, W.B.; Polarek, J.W.; Suuronen, E.J.; Liu, Y.; Brunette, I.; Griffith, M. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials, 2014, 35(8), 2420-2427.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.079] [PMID: 24374070]
Mimura, T.; Amano, S.; Yokoo, S.; Uchida, S.; Yamagami, S.; Usui, T.; Kimura, Y.; Tabata, Y. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol. Vis., 2008, 14, 1819-1828.
[PMID: 18852871]
Tsai, I-L.; Hsu, C-C.; Hung, K-H.; Chang, C-W.; Cheng, Y-H. Applications of biomaterials in corneal wound healing. J. Chin. Med. Assoc., 2015, 78(4), 212-217.
[http://dx.doi.org/10.1016/j.jcma.2014.09.011] [PMID: 25455161]
Pawar, S.N.; Edgar, K.J. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials, 2012, 33(11), 3279-3305.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007] [PMID: 22281421]
Chien, Y.; Liao, Y-W.; Liu, D-M.; Lin, H.L.; Chen, S.J.; Chen, H.L.; Peng, C.H.; Liang, C.M.; Mou, C.Y.; Chiou, S.H. Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel. Biomaterials, 2012, 33(32), 8003-8016.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.029] [PMID: 22858046]
Behl, G.; Iqbal, J.; O’Reilly, N.J.; McLoughlin, P.; Fitzhenry, L. Synthesis and characterization of poly (2-hydroxyethylmethacrylate) contact lenses containing chitosan nanoparticles as an ocular delivery system for dexamethasone sodium phosphate. Pharm. Res., 2016, 33(7), 1638-1648.
[http://dx.doi.org/10.1007/s11095-016-1903-7] [PMID: 26964548]
Fitzmaurice, S.D.; Sivamani, R.K.; Isseroff, R.R. Antioxidant therapies for wound healing: a clinical guide to currently commercially available products. Skin Pharmacol. Physiol., 2011, 24(3), 113-126.
[http://dx.doi.org/10.1159/000322643] [PMID: 21242718]
Bouaziz, F.; Koubaa, M.; Neifar, M.; Zouari-Ellouzi, S.; Besbes, S.; Chaari, F. Feasibility of using almond gum as coating agent to improve the quality of fried potato chips: Evaluation of sensorial properties. Lebensm. Wiss. Technol., 2016, 65, 800-807.
Bouaziz, F; Koubaa, M; Ben Jeddou, K Water-soluble polysaccharides and hemicelluloses from almond gum: Functional and prebiotic properties. Int J Biol Macromol 2016; 93(Pt A): 359-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.032] [PMID: 27527693]
Rezaei, A.; Nasirpour, A.; Tavanai, H. Fractionation and some physicochemical properties of almond gum (Amygdalus communis L.) exudates. Food Hydrocoll., 2016, 60, 461-469.
Hussain, I.S.A.; Jaisankar, V. An eco-friendly synthesis, characterization and antibacterial applications of novel almond gum-poly (acrylamide) based hydrogel silver nanocomposite. Polym. Test., 2017, 62, 154-161.
Mylangam, C.K.; Beeravelli, S.; Medikonda, J.; Pidaparthi, J.S.; Kolapalli, V.R.M. Badam gum: a natural polymer in mucoadhesive drug delivery. Design, optimization, and biopharmaceutical evaluation of badam gum-based metoprolol succinate buccoadhesive tablets. Drug Deliv., 2016, 23(1), 195-206.
[http://dx.doi.org/10.3109/10717544.2014.908979] [PMID: 24825493]
Martínez, M.; Vera, A.; Parra, J. Physicochemical parameters of the gum of Terminalia catappa L(almendrón). Ciencia, 2012, 20, 25-31.
Samrot, A.V.; Suvedhaa, B.; Sahithya, C.S.; Madankumar, A. Purification and utilization of gum from Terminalia Catappa L. for synthesis of curcumin loaded nanoparticle and its in vitro bioactivity studies. J. Cluster Sci., 2018, 29(6), 989-1002.
Sharma, R.; Rana, V. Effect of carboxymethylation on rheological and drug release characteristics of Terminalia catappa gum. Carbohydr. Polym., 2017, 175, 728-738.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.047] [PMID: 28917923]
Vibhute, S.; Kawtikwar, P.; Kshirsagar, S.; Sakarkar, D. Formulation and evaluation of tear substitutes. Int. J. Pharm. Sci. Rev. Res., 2010, 2(1), 17-20.
Aldrich, D.; Bach, C.M.; Brown, W. Ophthalmic preparations. US Pharmacopeia, 2013, 39(5), 1-21.
Craig, J.P.; Simmons, P.A.; Patel, S.; Tomlinson, A. Refractive index and osmolality of human tears. Optom. Vis. Sci., 1995, 72(10), 718-724.
[http://dx.doi.org/10.1097/00006324-199510000-00004] [PMID: 8570161]
Hotujac Grgurević, M.; Juretić, M.; Hafner, A.; Lovrić, J.; Pepić, I. Tear fluid-eye drops compatibility assessment using surface tension. Drug Dev. Ind. Pharm., 2017, 43(2), 275-282.
[http://dx.doi.org/10.1080/03639045.2016.1238924] [PMID: 27645109]
Razmkhah, S.; Razavi, S.M.A.; Mohammadifar, M.A. Dilute solution, flow behavior, thixotropy and viscoelastic characterization of cress seed (Lepidium sativum) gum fractions. Food Hydrocoll., 2017, 63, 404-413.
Nagargoje, S.; Phatak, A.; Bhingare, C.; Chaudhari, S. Formulation and evaluation of ophthalmic delivery of fluconazole from ion activated in situ gelling system. Der Pharmacia Lettre, 2012, 4(4), 1228-1235.
Yadav, U.C.; Kalariya, N.M.; Ramana, K.V. Emerging role of antioxidants in the protection of uveitis complications. Curr. Med. Chem., 2011, 18(6), 931-942.
[http://dx.doi.org/10.2174/092986711794927694] [PMID: 21182473]
Nakamura, M.; Kuse, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. The involvement of the oxidative stress in murine blue LED light-induced retinal damage model. Biol. Pharm. Bull., 2017, 40(8), 1219-1225.
[http://dx.doi.org/10.1248/bpb.b16-01008] [PMID: 28769003]
Zagon, I.S.; Campbell, A.M.; Sassani, J.W.; McLaughlin, P.J. Spontaneous episodic decreased tear secretion in rats is related to opioidergic signaling pathways. Invest. Ophthalmol. Vis. Sci., 2012, 53(6), 3234-3240.
[http://dx.doi.org/10.1167/iovs.11-9051] [PMID: 22511629]
Barabino, S.; Chen, W.; Dana, M.R. Tear film and ocular surface tests in animal models of dry eye: uses and limitations. Exp. Eye Res., 2004, 79(5), 613-621.
[http://dx.doi.org/10.1016/j.exer.2004.07.002] [PMID: 15500820]
Masmali, A.M.; Purslow, C.; Murphy, P.J. The tear ferning test: a simple clinical technique to evaluate the ocular tear film. Clin. Exp. Optom., 2014, 97(5), 399-406.
[http://dx.doi.org/10.1111/cxo.12160] [PMID: 25138744]
Burgalassi, S.; Panichi, L.; Chetoni, P.; Saettone, M.F.; Boldrini, E. Development of a simple dry eye model in the albino rabbit and evaluation of some tear substitutes. Ophthalmic Res., 1999, 31(3), 229-235.
[http://dx.doi.org/10.1159/000055537] [PMID: 10224507]
Kamboj, S.; Rana, V. Physicochemical, rheological and antioxidant potential of corn fiber gum. Food Hydrocoll., 2014, 39, 1-9.
Akhter, S.; Anwar, M.; Siddiqui, M.A.; Ahmad, I.; Ahmad, J.; Ahmad, M.Z.; Bhatnagar, A.; Ahmad, F.J. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids Surf. B Biointerfaces, 2016, 148, 19-29.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.048] [PMID: 27591567]
Redkar, M.; Srividya, B.; Ushasree, P. Dextran—HPMC Eye drops as artificial tears. JSIR, 2000, 59(12), 1027-1031.
Belhadji, L.; HadjSadok, A.; Moulai-Mostefa, N. Design and characterization of calcium-free in-situ gel formulation based on sodium alginate and chitosan. Drug Dev. Ind. Pharm., 2018, 44(4), 662-669.
[http://dx.doi.org/10.1080/03639045.2017.1408640] [PMID: 29172753]
Irimia, T.; Dinu-Pîrvu, C-E.; Ghica, M.V.; Lupuleasa, D.; Muntean, D.L.; Udeanu, D.I.; Popa, L. Chitosan-based in situ gels for ocular delivery of therapeutics: A state-of-the-art Review. Mar. Drugs, 2018, 16(10), 373.
[http://dx.doi.org/10.3390/md16100373] [PMID: 30304825]
Tabbara, K.F.; Okumoto, M. Ocular ferning test. A qualitative test for mucus deficiency. Ophthalmology, 1982, 89(6), 712-714.
[http://dx.doi.org/10.1016/S0161-6420(82)34736-3] [PMID: 7122048]
Yang, L.; Zhao, T.; Wei, H.; Zhang, M.; Zou, Y.; Mao, G.; Wu, X. Carboxymethylation of polysaccharides from Auricularia auricula and their antioxidant activities in vitro. Int. J. Biol. Macromol., 2011, 49(5), 1124-1130.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.09.011] [PMID: 21945678]
Samrot, A.V.; Angalene, J.L.A.; Roshini, S.M.; Stefi, S.M.; Preethi, R.; Raji, P.; Kumar, A.M.; Paulraj, P.; Kumar, S.S. Purification, characterization and utilization of polysaccharide of Araucaria heterophylla gum for the synthesis of curcumin loaded nanocarrier. Int. J. Biol. Macromol., 2019, 140, 393-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.121] [PMID: 31425761]
Ludwig, A.; van Haeringen, N.J.; Bodelier, V.M.; Van Ooteghem, M. Relationship between precorneal retention of viscous eye drops and tear fluid composition. Int. Ophthalmol., 1992, 16(1), 23-26.
[http://dx.doi.org/10.1007/BF00917068] [PMID: 1537645]
Yamaguchi, M.; Ueda, K.; Isowaki, A.; Ohtori, A.; Takeuchi, H.; Ohguro, N.; Tojo, K. Mucoadhesive properties of chitosan-coated ophthalmic lipid emulsion containing indomethacin in tear fluid. Biol. Pharm. Bull., 2009, 32(7), 1266-1271.
[http://dx.doi.org/10.1248/bpb.32.1266] [PMID: 19571396]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 29 April, 2020
Page: [310 - 322]
Pages: 13
DOI: 10.2174/1872211314666191218110440
Price: $65

Article Metrics

PDF: 18
PRC: 1