The Significance of Buffer Solutions on Corrosion Processes of Cobalt Ferrite CoFe2O4 Thin Film on Different Substrates

Author(s): Elsayed M. Elsayed, Hazem F. Khalil*, Ibrahim A. Ibrahim, Mostafa R. Hussein, Mohamed M.B. El-Sabbah

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: The spinel ferrite nanoparticles, such as zinc, nickel, and cobalt ferrites have exceptional electronic and magnetic properties. Cobalt ferrite nanomaterial (CoFe2O4) is a hard material that reveals high magnetic, mechanical, and chemical stability.

Aim and Objective: The objective of this research is to predict the corrosion behavior of cobalt ferrite (CoFe2O4) thin films deposited on different substrates (platinum Pt, stainless steel S.S, and copper Cu) in acidic, neutral, and alkaline medium.

Materials and Methods: Cobalt ferrite thin films were deposited on platinum, stainless steel, and copper via electrodeposition-anodization process. After that, corrosion resistance of the prepared nanocrystalline cobalt ferrite on different substrates was investigated in acidic, neutral, and alkaline medium using open circuit potential and potentiodynamic polarization measurements. The crystal structure, crystallite size, microstructure, and magnetic properties of the ferrite films were investigated using a combination of XRD, SEM and VSM.

Results: The results of XRD revealed a cubic spinel for the prepared cobalt ferrite CoFe2O4. The average size of crystallites was found to be about 43, 77, and 102 nm precipitated on platinum, stainless steel, and copper respectively. The magnetic properties of which were enhanced by rising the temperature. The sample annealed at 800oC is suitable for practical application as it showed high magnetization saturation and low coercivity. The corrosion resistance of these films depends on the pH of the medium as well as the presence of oxidizing agent.

Conclusion: Depending on the obtained corrosion rate, we can recommend that, CoFe2O4 thin film can be used safely in aqueous media in neutral and alkaline atmospheres for Pt and Cu substrates, but it can be used in all pH values for S.S. substrate.

Keywords: Ferrites, cobalt ferrites, electrodeposition, anodization, nanoparticles, corrosion, pH, polarization curves.

[1]
El-Sabbah, M.M.B.; Bedair, M.A.; Abbas, M.A.; Fahmy, A.; Hassaballa, S.; Moustafa, A.A. Synergistic effect between natural honey and 0.1 M KI as green corrosion inhibitor for steel in acid medium. Z. Phys. Chem., 2018, 233, 627-649.
[http://dx.doi.org/10.1515/zpch-2018-1208]
[2]
Heakal, F.E-T.; Osman, M.M.; Deyab, M.A.; Elkholy, A.E. Electrochemical and quantum chemical studies on the corrosion inhibition potential of camellia sinensis leaves extract for carbon steel in produced water. Z. Phys. Chem., 2017, 232(1), 13-35.
[http://dx.doi.org/10.1515/zpch-2017-0949]
[3]
Abd El-Rehim, S.S.; Deyab, M.A.; Hassan, H.H.; Shaltot, A.M. Estimation of the inhibition efficiency of polysorbate 80 against the corrosion of 6061 aluminum alloy in di-sodium hydrogen orthophosphate solution. Z. Phys. Chem., 2017, 231(9), 1573-1584.
[http://dx.doi.org/10.1515/zpch-2016-0905]
[4]
Deyab, M.A.; El-Rehim, S.S.A.; Hassan, H.H.; El-Moneim, A.A. Corrosion and corrosion inhibition of aluminum alloys A5052 and A5754 in sulfuric acid solutions by some inorganic inhibitors. Z. Phys. Chem., 2017, 231(6), 1141-1157.
[5]
Nady, H.; El-Rabiei, M.M.; Fathy, M.; Migahed, M.A. Corrosion control of Cu-10Al-10Ni and Cu-10Al-10Zn alloys in seawater environment by some ethoxylated tolyltriazole derivatives. Z. Phys. Chem., 2017, 231(6), 1179-1209.
[http://dx.doi.org/10.1515/zpch-2016-0886]
[6]
Nady, H.; Negem, M. Microstructure and corrosion behavior of electrodeposited NiCo, NiZn and NiCu nanocrystalline coatings in alkaline solution. Z. Phys. Chem., 2017, 231(6), 1159-1178.
[http://dx.doi.org/10.1515/zpch-2016-0893]
[7]
Abd El-Rehim, S.S.; Deyab, M.A.M.; Hassan, H.H.; Ibrahim, A.A.A. Influence of nonoxynol-9 on the corrosion inhibition of carbon steel in 1.0 M hydrochloric acid solution. Z. Phys. Chem., 2016, 230(11), 1641-1653.
[http://dx.doi.org/10.1515/zpch-2016-0754]
[8]
Abdel-Samad, H.S.; Hassan, H.H. Pitting corrosion of Zn peculiarly caused by acetate anions. Z. Phys. Chem., 2016, 230(10), 1531-1549.
[http://dx.doi.org/10.1515/zpch-2016-0766]
[9]
Naseri, M.G.; Saion, E.B. Crystalization in Spinel Ferrite Nanoparticles. In: Advances in Crystallization Processes; Mastai, Y., Ed.; InTech, 2012; pp. 349-380.
[http://dx.doi.org/10.5772/35731]
[10]
Snelling, E.C. Soft Ferrites: Properties and Applications; Butterworths: London, Boston, 1988.
[11]
Maaz, K.; Mumtaz, A.; Hasanain, S.K.; Ceylan, A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater., 2007, 308(2), 289-295.
[http://dx.doi.org/10.1016/j.jmmm.2006.06.003]
[12]
Jung, J-S.; Lim, J-H.; Choi, K-H. Co Fe2O4 nanostructures with high coercivity. J. Appl. Phys., 2005, 97(10), 1-3.
[http://dx.doi.org/10.1063/1.1852851]
[13]
Toksha, B.G.; Shirsath, S.E.; Patange, S.M.; Jadhav, K.M. Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Commun., 2008, 147(11-12), 479-483.
[http://dx.doi.org/10.1016/j.ssc.2008.06.040]
[14]
Winiarska, K.; Szczygieł, I.; Klimkiewicz, R. Manganese−zinc ferrite synthesis by the sol−gel autocombustion method. Effect of the precursor on the ferrite’s catalytic properties. Ind. Eng. Chem. Res., 2013, 52, 353-361.
[15]
Ahn, Y.; Choi, E.J.; Kim, S.; Ok, H.N. Magnetization and Mössbauer study of cobalt ferrite particles from nanophase cobalt iron carbonate. Mater. Lett., 2001, 50(1), 47-52.
[http://dx.doi.org/10.1016/S0167-577X(00)00412-2]
[16]
Yener, D.O.; Giesche, H. Synthesis of pure and manganese-, nickel-, and zinc-doped ferrite particles in water-in-oil microemulsions. J. Am. Ceram. Soc., 2001, 84(9), 1987-1995.
[http://dx.doi.org/10.1111/j.1151-2916.2001.tb00947.x]
[17]
Lee, Y.; Lee, J.; Bae, C.J. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater., 2005, 15, 503-509.
[http://dx.doi.org/10.1002/adfm.200400187]
[18]
Xiao, S.H.; Jiang, W.F.; Li, L.Y.; Li, X.J. Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater. Chem. Phys., 2007, 106(1), 82-87.
[http://dx.doi.org/10.1016/j.matchemphys.2007.05.021]
[19]
Elahi, I.; Zahira, R.; Mehmood, K.; Jamil, A.; Amin, N. Co-precipitation synthesis, physical and magnetic properties of manganese ferrite powder, African. J. Pure Appl. Chem., 2012, 6, 1-5.
[20]
Sophia, D.; Ragam, M.; Arumugam, S. synthesis and characterization of cobalt ferrite nanoparticles. Int. J. Sci. Res. Mod. Educ.: National Conference on Recent Trends in Applied Chemistry (NCRTAC–2016) Easwari Engineering College, Ramapuram, Chennai, Tamilnadu, 65-68.
[21]
Mahboubeh, H.; Fatemeh, Z.; Zahra, J.R.; Ali, A.; Zohreh, A. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater., 2014, 371, 43-48.
[http://dx.doi.org/10.1016/j.jmmm.2014.06.059]
[22]
Jagdeep, S.; Wijayanthaa, K.; Asif, A. The pseudocapacitive nature of CoFe2O4 thin films. Electrochim. Acta, 2017, 246, 870-878.
[http://dx.doi.org/10.1016/j.electacta.2017.06.110]
[23]
Leroy, A.; Harol, P. KLUG, determination of crystallite size with the X-ray spectrometer. J. Appl. Phys., 1950, 21, 137.
[http://dx.doi.org/10.1063/1.1699612]
[24]
Elsayed, E.M.; Rashad, M.M.; Khalil, H.F.Y.; Ibrahim, I.A.; Hussein, M.R.; El-Sabbah, M.M.B. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films. Appl. Nanosci., 2016, 6(4), 485-494.
[http://dx.doi.org/10.1007/s13204-015-0453-3]
[25]
Shinde, A.B. Structural and electrical properties of cobalt ferrite nanoparticles. Int. J. Innovative Technol. Exploring Eng., 2013, 3(4), 2278-3075.
[26]
Ferreira, T.; Waerenborgh, J.; Mendonça, M.; Nunes, M.; Costaa, F. Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Solid State Sci., 2003, 5, 383-392.
[http://dx.doi.org/10.1016/S1293-2558(03)00011-6]
[27]
Raoa, K.; Choudaryb, G.; Raoc, K.; Sujathad, C. Structural and Magnetic properties of Ultrafine CoFe2O4 Nanoparticles. Mater. Sci., 2015, 10, 19-27.
[28]
Abd El-Kader, J.; Shams El-Din, A. Film thickening on Nickel in aqueous solution in relation to anion type and concentration. Br. Corros. J., 1979, 14, 40-45.
[http://dx.doi.org/10.1179/000705979798276022]
[29]
Ai, Z.; Sun, W.; Jiang, J.; Song, D.; Ma, H.; Zhang, J.; Wang, D. Passivation characteristics of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions: combination effects of pH and chloride. Materials (Basel), 2016, 9(9), 749.
[http://dx.doi.org/10.3390/ma9090749] [PMID: 28773867]
[30]
Sagu, J.S.; Wijayantha, K.G.U.; Tahir, A.A. The pseudocapacitive nature of CoFe2O4 thin films. Electrochim. Acta, 2017, 246, 870-878.
[http://dx.doi.org/10.1016/j.electacta.2017.06.110]
[31]
Karthigayan, N.; Manimuthu, P.; Priya, M. Synthesis and characterization of NiFe2O4, CoFe2O4 and CuFe2O4 thin films for anode material in Li-ion batteries. Nanomater. Nanotechnol., 2017, 7, 1-5.
[http://dx.doi.org/10.1177/1847980417711084]
[32]
Prasad, R.; Parashar, S.K.S.S. Structural and electromagnetic properties of nano cobalt ferrite polymeric thin film. J. Mater. Sci. Mater. Electron., 2019, 30, 12023-12030.
[http://dx.doi.org/10.1007/s10854-019-01559-8]
[33]
Martin Cabañas, B.; Leclercq, S.; Barboux, P.; Fédoroff, M.; Lefèvre, G. Sorption of nickel and cobalt ions onto cobalt and nickel ferrites. J. Colloid Interface Sci., 2011, 360(2), 695-700.
[http://dx.doi.org/10.1016/j.jcis.2011.04.082] [PMID: 21575955]
[34]
Cook, R.M.; Saji, V.S. Corrosion Protection and Control Using Nanomaterials, Woodhead Publishing Series in Metals and surface Engineering; Elsevier, 2012, p. 88.
[35]
Rajagopal, K. Engineering Physics, 3rd ed., PHI Learning Pvt. Ltd., 2015, 513.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 7
Year: 2020
Published on: 04 October, 2020
Page: [599 - 610]
Pages: 12
DOI: 10.2174/1386207323666191217130209
Price: $65

Article Metrics

PDF: 18
HTML: 1