Comparison of Vascular Responses to Vasoconstrictors in Human Placenta in Preeclampsia between Preterm and Later Term

Author(s): Xueqin Feng, Yumeng Zhang, Jianying Tao, Likui Lu, Yingying Zhang, Jingliu Liu, Meng Zhao, Jun Guo, Dan Zhu, Jianguo Zhu*, Zhice Xu*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 8 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Placental blood vessels play important roles in maternal-fetal circulation. Although pathologic mechanisms of preeclampsia are unclear, it is known that placental vascular dysfunction could contribute to pregnant hypertension. However, placental micro-vessel function or dysfunction at preterm has not been investigated.

Methods: Human placentas from normal and preeclamptic pregnancies at preterm and term were obtained. Placental micro-vessels were used for determining vascular tension and responses to various vasoconstrictors as well as intracellular calcium store capability. It was the first time to show vascular responses in placental arteries to angiotensin II, endothelin-1, and other vascular drugs at preterm.

Results: Compared to the control, placental vascular contractile responses to angiotensin II and caffeine were significantly decreased, while placental vascular responses to KCl, endothelin-1, and bradykinin were not significantly altered in the later term group in preeclampsia. In comparison of placental micro-vessel tension between the preterm and later term, caffeine- and serotonin-induced vascular contractions were significantly weaker in the preterm than that in the later term. On the contrary, vascular response to angiotensin II was increased in the preterm preeclampsia, while KCl-, endothelin-1, and bradykinin-mediated placental vessel responses in the preterm preeclampsia were similar to that in later term preeclampsia.

Conclusion: New data showed that micro-vessel responses to angiotensin II and serotonin, not endothelin- 1 or bradykinin, were significantly reduced in the human placentas at preterm, and intracellular Ca2+ store capacity was damaged too, providing important information on possible contributions of placental vascular dysfunction to pregnant hypertension.

Keywords: Preeclampsia, placental vessel, vasoconstriction, preterm, serotonin, human umbilical cord.

[1]
Sibai, B.M.; Caritis, S.; Hauth, J. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. What we have learned about preeclampsia. Semin. Perinatol., 2003, 27(3), 239-246.
[http://dx.doi.org/10.1016/S0146-0005(03)00022-3] [PMID: 12889591]
[2]
Amaral, L.M.; Cunningham, M.W., Jr; Cornelius, D.C.; LaMarca, B. Preeclampsia: long-term consequences for vascular health. Vasc. Health Risk Manag., 2015, 11, 403-415.
[PMID: 26203257]
[3]
Redman, C.W.; Sargent, I.L. Latest advances in understanding preeclampsia. Science, 2005, 308(5728), 1592-1594.
[http://dx.doi.org/10.1126/science.1111726] [PMID: 15947178]
[4]
El Shahaway, A.A.; Abd Elhady, R.R.; Abdelrhman, A.A.; Yahia, S. Role of maternal serum interleukin 17 in preeclampsia: diagnosis and prognosis. J. Inflamm. Res., 2019, 12, 175-180.
[http://dx.doi.org/10.2147/JIR.S206800] [PMID: 31372023]
[5]
Bergman, L.; Torres-Vergara, P.; Penny, J.; Wikström, J.; Nelander, M.; Leon, J.; Tolcher, M.; Roberts, J.M.; Wikström, A.K.; Escudero, C. Investigating maternal brain alterations in preeclampsia: The need for a multidisciplinary effort. Curr. Hypertens. Rep., 2019, 21(9), 72.
[http://dx.doi.org/10.1007/s11906-019-0977-0] [PMID: 31375930]
[6]
Khashan, A.S.; Evans, M.; Kublickas, M.; McCarthy, F.P.; Kenny, L.C.; Stenvinkel, P.; Fitzgerald, T.; Kublickiene, K. Preeclampsia and risk of end stage kidney disease: A Swedish nationwide cohort study. PLoS Med., 2019, 16(7)e1002875
[http://dx.doi.org/10.1371/journal.pmed.1002875] [PMID: 31361741]
[7]
Ciloglu, E.; Okcu, N.T.; Dogan, N.C. Optical coherence tomography angiography findings in preeclampsia. Eye (Lond.), 2019, 33(12), 1946-1951.
[http://dx.doi.org/10.1038/s41433-019-0531-y] [PMID: 31316159]
[8]
Kohli, S.; Isermann, B. Placental hemostasis and sterile inflammation: New insights into gestational vascular disease. Thromb. Res., 2017, 151(Suppl. 1), S30-S33.
[http://dx.doi.org/10.1016/S0049-3848(17)30063-4] [PMID: 28262230]
[9]
Kovo, M.; Schreiber, L.; Bar, J. Placental vascular pathology as a mechanism of disease in pregnancy complications. Thromb. Res., 2013, 131(Suppl. 1), S18-S21.
[http://dx.doi.org/10.1016/S0049-3848(13)70013-6] [PMID: 23452733]
[10]
Gude, N.M.; Roberts, C.T.; Kalionis, B.; King, R.G. Growth and function of the normal human placenta. Thromb. Res., 2004, 114(5-6), 397-407.
[http://dx.doi.org/10.1016/j.thromres.2004.06.038] [PMID: 15507270]
[11]
Fox, S.B.; Khong, T.Y. Lack of innervation of human umbilical cord. An immunohistological and histochemical study. Placenta, 1990, 11(1), 59-62.
[http://dx.doi.org/10.1016/S0143-4004(05)80443-6] [PMID: 2326237]
[12]
Hudon Thibeault, A.A.; Sanderson, J.T.; Vaillancourt, C. Serotonin-estrogen interactions: What can we learn from pregnancy? Biochimie, 2019, 161, 88-108.
[http://dx.doi.org/10.1016/j.biochi.2019.03.023] [PMID: 30946949]
[13]
Gao, Q.; Li, H.; Ding, H.; Fan, X.; Xu, T.; Tang, J.; Liu, Y.; Chen, X.; Zhou, X.; Tao, J.; Xu, Z. Hyper-methylation of AVPR1A and PKCΒ gene associated with insensitivity to arginine vasopressin in human pre-eclamptic placental vasculature. EBioMedicine, 2019, 44, 574-581.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.056]] [PMID: 31175056]
[14]
Gao, Q.; Fan, X.; Xu, T.; Li, H.; He, Y.; Yang, Y.; Chen, J.; Ding, H.; Tao, J.; Xu, Z. Promoter methylation changes and vascular dysfunction in pre-eclamptic umbilical vein. Clin. Epigenetics, 2019, 11(1), 84.
[http://dx.doi.org/10.1186/s13148-019-0685-2] [PMID: 31138298]
[15]
Quan, A.; Leung, S.W.; Lao, T.T.; Man, R.Y. 5-hydroxytryptamine and thromboxane A2 as physiologic mediators of human umbilical artery closure. J. Soc. Gynecol. Investig., 2003, 10(8), 490-495.
[http://dx.doi.org/10.1016/S1071-55760300149-7] [PMID: 14662162]
[16]
McCarron, J.G.; Olson, M.L.; Chalmers, S. Mitochondrial regulation of cytosolic Ca2+ signals in smooth muscle. Pflugers Arch., 2012, 464(1), 51-62.
[http://dx.doi.org/10.1007/s00424-012-1108-9] [PMID: 22555917]
[17]
Tang, J.; Li, N.; Chen, X.; Gao, Q.; Zhou, X.; Zhang, Y.; Liu, B.; Sun, M.; Xu, Z. Prenatal hypoxia induced dysfunction in cerebral arteries of offspring rats. J. Am. Heart Assoc., 2017, 6(10)e006630
[http://dx.doi.org/10.1161/JAHA.117.006630] [PMID: 28974495]
[18]
Bauer, J.; Dau, C.; Cavarape, A.; Schaefer, F.; Ehmke, H.; Parekh, N. ANG II- and TxA(2)-induced mesenteric vasoconstriction in rats is mediated by separate cell signaling pathways. Am. J. Physiol., 1999, 277(1), H1-H7.
[PMID: 10409174]
[19]
Correa, R.M.; Lafayette, S.S.; Pereira, G.J.; Hirata, H.; Garcez-do-Carmo, L.; Smaili, S.S. Mitochondrial involvement in carbachol-induced intracellular Ca2+ mobilization and contraction in rat gastric smooth muscle. Life Sci., 2011, 89(21-22), 757-764.
[http://dx.doi.org/10.1016/j.lfs.2011.08.003] [PMID: 21871904]
[20]
Simpson, P.B.; Russell, J.T. Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. J. Biol. Chem., 1996, 271(52), 33493-33501.
[http://dx.doi.org/10.1074/jbc.271.52.33493] [PMID: 8969213]
[21]
Smaili, S.S.; Stellato, K.A.; Burnett, P.; Thomas, A.P.; Gaspers, L.D. Cyclosporin A inhibits inositol 1,4,5-trisphosphate-dependent Ca2+ signals by enhancing Ca2+ uptake into the endoplasmic reticulum and mitochondria. J. Biol. Chem., 2001, 276(26), 23329-23340.
[http://dx.doi.org/10.1074/jbc.M100989200] [PMID: 11323421]
[22]
Phipps, E.; Prasanna, D.; Brima, W.; Jim, B. Preeclampsia: Updates in pathogenesis, definitions, and guidelines. Clin. J. Am. Soc. Nephrol., 2016, 11(6), 1102-1113.
[http://dx.doi.org/10.2215/CJN.12081115] [PMID: 27094609]
[23]
Umans, J.G. Obstetric nephrology: preeclampsia--the nephrologist’s perspective. Clin. J. Am. Soc. Nephrol., 2012, 7(12), 2107-2113.
[http://dx.doi.org/10.2215/CJN.05470512 ] [PMID: 23065496]
[24]
Tufan, H.; Ayan-Polat, B.; Tecder-Unal, M.; Polat, G.; Kayhan, Z.; Oğüş, E. Contractile responses of the human umbilical artery to KCl and serotonin in Ca-free medium and the effects of levcromakalim. Life Sci., 2003, 72(12), 1321-1329.
[http://dx.doi.org/10.1016/S0024-3205(02)02382-2] [PMID: 12527030]
[25]
Feng, X.; Zhou, X.; Zhang, W.; Li, X.; He, A.; Liu, B.; Shi, R.; Wu, L.; Wu, J.; Zhu, D.; Li, N.; Sun, M.; Xu, Z. Maternal high-sucrose diets altered vascular large-conductance Ca2+-activated K+ channels via reactive oxygen species in offspring rats. Biol. Reprod., 2017, 96(5), 1085-1095.
[http://dx.doi.org/10.1093/biolre/iox031] [PMID: 28430866]
[26]
Feng, X.; Li, X.; Yang, C.; Ren, Q.; Zhang, W.; Li, N.; Zhang, M.; Zhang, B.; Zhang, L.; Zhou, X.; Xu, Z. Maternal high-sucrose diet accelerates vascular stiffness in aged offspring via suppressing Cav 1.2 and contractile phenotype of vascular smooth muscle cells. Mol. Nutr. Food Res., 2019.,e1900022.
[http://dx.doi.org/10.1002/mnfr.201900022] [PMID: 31067604]
[27]
Sherman, R.C.; Langley-Evans, S.C. Early administration of angiotensin-converting enzyme inhibitor captopril, prevents the development of hypertension programmed by intrauterine exposure to a maternal low-protein diet in the rat. Clin. Sci. (Lond.), 1998, 94(4), 373-381.
[http://dx.doi.org/10.1042/cs0940373] [PMID: 9640343]
[28]
Guzik, T.J.; Hoch, N.E.; Brown, K.A.; McCann, L.A.; Rahman, A.; Dikalov, S.; Goronzy, J.; Weyand, C.; Harrison, D.G. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med., 2007, 204(10), 2449-2460.
[http://dx.doi.org/10.1084/jem.20070657] [PMID: 17875676]
[29]
Okumura, K.; Cheng, X.W. Characteristics of blood pressure profiles and vascular dysfunction. Hypertens. Res., 2012, 35(1), 23-24.
[http://dx.doi.org/10.1038/hr.2011.147] [PMID: 21881577]
[30]
Gao, Q.; Tang, J.; Li, N.; Zhou, X.; Li, Y.; Liu, Y.; Wu, J.; Yang, Y.; Shi, R.; He, A.; Li, X.; Zhang, Y.; Chen, J.; Zhang, L.; Sun, M.; Xu, Z. A novel mechanism of angiotensin II-regulated placental vascular tone in the development of hypertension in preeclampsia. Oncotarget, 2017, 8(19), 30734-30741.
[http://dx.doi.org/10.18632/oncotarget.15416] [PMID: 28430615]
[31]
Li, X.; Feng, X.; Lu, L.; He, A.; Liu, B.; Zhang, Y.; Shi, R.; Liu, Y.; Chen, X.; Sun, M.; Xu, Z. Prenatal hypoxia plus postnatal highfat diet exacerbated vascular dysfunction via up-regulated vascular Cav1.2 channels in offspring rats. J. Cell. Mol. Med., 2018.
[http://dx.doi.org/10.1111/jcmm.14020] [PMID: 30556291]
[32]
Bodelsson, G.; Stjernquist, M. Characterization of endothelin receptors and localization of 125I-endothelin-1 binding sites in human umbilical artery. Eur. J. Pharmacol., 1993, 249(3), 299-305.
[http://dx.doi.org/10.1016/0014-2999(93)90526-N] [PMID: 8287917]
[33]
Rizzi, A.; Calo, G.; Battistini, B.; Regoli, D. Contractile activity of endothelins and their precursors in human umbilical artery and vein: identification of distinct endothelin-converting enzyme activities. J. Cardiovasc. Pharmacol., 1998, 31(Suppl. 1), S58-S61.
[http://dx.doi.org/10.1097/00005344-199800001-00019] [PMID: 9595400]
[34]
Bogoni, G.; Rizzi, A.; Calo, G.; Campobasso, C.; D’Orleans-Juste, P.; Regoli, D. Characterization of endothelin receptors in the human umbilical artery and vein. Br. J. Pharmacol., 1996, 119(8), 1600-1604.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16078.x] [PMID: 8982507]
[35]
Unic, A.; Derek, L.; Hodak, N.; Marijancevic, D.; Ceprnja, M.; Serdar, T.; Krhac, M.; Romic, Z. Endothelins -- clinical perspectives. Biochem. Med. (Zagreb), 2011, 21(3), 231-242.
[http://dx.doi.org/10.11613/BM.2011.032] [PMID: 22420236]
[36]
Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev., 2016, 68(2), 357-418.
[http://dx.doi.org/10.1124/pr.115.011833] [PMID: 26956245]
[37]
Granger, J.P.; Spradley, F.T.; Bakrania, B.A. The endothelin system: a critical player in the pathophysiology of preeclampsia. Curr. Hypertens. Rep., 2018, 20(4), 32.
[http://dx.doi.org/10.1007/s11906-018-0828-4] [PMID: 29637419]
[38]
George, E.M.; Granger, J.P. Endothelin: key mediator of hypertension in preeclampsia. Am. J. Hypertens., 2011, 24(9), 964-969.
[http://dx.doi.org/10.1038/ajh.2011.99] [PMID: 21677700]
[39]
George, E.M.; Palei, A.C.; Granger, J.P. Endothelin as a final common pathway in the pathophysiology of preeclampsia: therapeutic implications. Curr. Opin. Nephrol. Hypertens., 2012, 21(2), 157-162.
[http://dx.doi.org/10.1097/MNH.0b013e328350094b] [PMID: 22257796]
[40]
Zhou, J.; Xiao, D.; Hu, Y.; Wang, Z.; Paradis, A.; Mata-Greenwood, E.; Zhang, L. Gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 signaling in pregnant rats. Hypertension, 2013, 62(3), 599-607.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01449] [PMID: 23817493]
[41]
Gobeil, F.; Pheng, L.H.; Badini, I.; Nguyen-Le, X.K.; Pizard, A.; Rizzi, A.; Blouin, D.; Regoli, D. Receptors for kinins in the human isolated umbilical vein. Br. J. Pharmacol., 1996, 118(2), 289-294.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15401.x] [PMID: 8735629]
[42]
Abbas, F.; Clayton, J.; Marshall, K.; Senior, J. Investigation into the role of cyclooxygenase products in the bradykinin response on isolated human myometrium and umbilical artery. Immunopharmacology, 1996, 33(1-3), 123-126.
[http://dx.doi.org/10.1016/0162-3109(96)00026-4] [PMID: 8856129]
[43]
Amarnani, S.; Sangrat, B.; Chaudhuri, G. Effects of selected endothelium-dependent vasodilators on fetoplacental vasculature: physiological implications. Am. J. Physiol., 1999, 277(2), H842-H847.
[PMID: 10444513]
[44]
Radenković, M.; Grbović, L.; Radunović, N.; Momcilov, P. Pharmacological evaluation of bradykinin effect on human umbilical artery in normal, hypertensive and diabetic pregnancy. Pharmacol. Rep., 2007, 59(1), 64-73.
[PMID: 17377208]
[45]
White, R.P. Pharmacodynamic study of maturation and closure of human umbilical arteries. Am. J. Obstet. Gynecol., 1989, 160(1), 229-237.
[http://dx.doi.org/10.1016/0002-9378(89)90127-0] [PMID: 2912087]
[46]
Hanthazi, A.; Jespers, P.; Vegh, G.; Degroot, G.N.; Springael, J.Y.; Lybaert, P.; Dewachter, L.; Mc Entee, K. Chemerin influences endothelin- and serotonin-induced pulmonary artery vasoconstriction in rats. Life Sci., 2019, 231116580
[http://dx.doi.org/10.1016/j.lfs.2019.116580] [PMID: 31216440]
[47]
Kim, J.G.; Leem, Y.E.; Kwon, I.; Kang, J.S.; Bae, Y.M.; Cho, H. Estrogen modulates serotonin effects on vasoconstriction through Src inhibition. Exp. Mol. Med., 2018, 50(12), 167.
[http://dx.doi.org/10.1038/s12276-018-0193-z] [PMID: 30559345]
[48]
Bowles, D.K.; Hu, Q.; Laughlin, M.H.; Sturek, M. Heterogeneity of L-type calcium current density in coronary smooth muscle. Am. J. Physiol., 1997, 273(4), H2083-H2089.
[PMID: 9362280]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 8
Year: 2020
Page: [727 - 733]
Pages: 7
DOI: 10.2174/1389201021666191217114111
Price: $65

Article Metrics

PDF: 18
HTML: 1