Drug Delivery Approaches for Doxorubicin in the Management of Cancers

Author(s): Manish Vyas, Daniel A. Simbo, Mohd. Mursalin, Vijay Mishra, Roqia Bashary, Gopal L. Khatik*

Journal Name: Current Cancer Therapy Reviews

Volume 16 , Issue 4 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Aim: We aimed to review the drug delivery approaches including a novel drug delivery system of doxorubicin as an important anticancer drug.

Background: Doxorubicin (DOX) is widely used against breast, uterine, ovarian, lung and cervical cancer. It is listed among the essential medicines by WHO and is thus a very important drug that can be used to fight against cancer. Despite its effectiveness, the use of the drug is limited due to its dose-dependent toxicity. Several studies based on the DOX have suggested the need for novel drug delivery formulations in the treatment of malignant and cancerous diseases due to its cytotoxic nature.

Objective: This review focuses on the different formulations of DOX which is a useful drug in the management of cancers, but associated with toxicity thus these approaches found applicability in the reduction of its toxicity.

Methods: We searched the scientific database using cancer, DOX, and different formulations as the keywords. Here in only peer-reviewed research articles collected which were useful to our current work.

Results: This study is based on an examination of the recent advancements of its novel drug delivery formulations. DOX hydrochloride is the first liposomal anticancer drug, administered via the intravenous route, and also clinically approved for the treatment of lymphomas, leukemias, and solid tumors. DOX is prepared into a liposomal formulation that contains polyethylene glycol (PEG) layer around DOX containing liposome made by pegylation process. DOX also formulated in nano-formulations which is also discussed herein led to reduced toxicity and increased efficacy.

Conclusion: In the review, we described the significance of DOX in the form of different delivery approaches in the management of cancers with a reduction in the associated toxicity.

Keywords: Doxorubicin, cancer, novel formulation, liposomes, nanoparticles, mutation.

A Visual Guide to Understanding Cancer. Available from: https://www.medicinenet.com/cancer_101_pictures_slideshow/article.htm(Accessed on: Jan 17, 2019)
Benign Tumors. MedlinePlus. Available from: www.medlineplus.gov/benigntumors.html (Accessed on Jan 17, 2019)
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 2018; 68(6): 394-424.
Global Cancer Statistics. Available from: https://www.cdc.gov/cancer/dcpc/data/index.htm s(Accessed on September 26, 2016).
Lung Cancer Available from: https://www.britannica.com/science/lung-cancer (Accessed on: Jan 28, 2019)
Indian Pharmacopoeia. 7th ed. Indian Pharmacopoeia Commission: India 2014.
Singh H, Kapoor VK. Medicinal and pharmaceutical chemistry. 2nd ed. Vallabh Prakashan: New Delhi 2005; p. 609.
Tripathi KD. Medical pharmacology. 7th ed. Jaypee Brothers Medical Publishers Ltd.: New Delhi 2013; p. 867.
Hutchinson CR, Colombo AL. Genetic engineering of doxorubicin production in Streptomyces peucetius: A review. J Ind Microbiol Biotechnol 1999; 23(1): 647-52.
[http://dx.doi.org/10.1038/sj.jim.2900673] [PMID: 10455495]
Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 2014; 10(4): 853-8.
[http://dx.doi.org/10.4103/0973-1482.139267] [PMID: 25579518]
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013; 65(2): 157-70.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]
Weiss RB. The anthracyclines: Will we ever find a better doxorubicin? Semin Oncol 1992; 19(6): 670-86.
[PMID: 1462166]
Tan C, Tasaka H, Yu KP, Murphy ML, Karnofsky DA. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer 1967; 20(3): 333-53.
[http://dx.doi.org/10.1002/1097-0142(1967)20:3<333:AID-CNCR2820200302>3.0.CO;2-K] [PMID: 4290058]
Di Marco A, Gaetani M, Scarpinato B. Adriamycin (NSC-123,127): A new antibiotic with antitumor activity. Cancer Chemother Rep 1969; 53(1): 33-7.
[PMID: 5772652]
Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 1994; 45(4): 649-56.
[PMID: 8183243]
Momparler RL, Karon M, Siegel SE, Avila F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 1976; 36(8): 2891-5.
[PMID: 1277199]
Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 2010; 17(5): 421-33.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
Patel AG, Kaufmann SH. How does doxorubicin work? eLife 2012; 2012: 1e00387.
[http://dx.doi.org/10.7554/eLife.00387] [PMID: 23256047]
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012; 52(6): 1213-25.
[http://dx.doi.org/10.1016/j.yjmcc.2012.03.006] [PMID: 22465037]
Kaczmarek A, Brinkman BM, Heyndrickx L, Vandenabeele P, Krysko DV. Severity of doxorubicin-induced small intestinal mucositis is regulated by the TLR-2 and TLR-9 pathways. J Pathol 2012; 226(4): 598-608.
[http://dx.doi.org/10.1002/path.3009] [PMID: 21960132]
Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 2007; 49(5): 330-52.
[http://dx.doi.org/10.1016/j.pcad.2006.10.002] [PMID: 17329180]
Doxorubicin. Available from: www.sciencedirect.com/topics/page/doxorubicin(Accessed on: Jan 29, 2019)
Brayfield A, Ed. Martindale: The complete drug reference. Pharmaceutical Press 2017.
Yamanaka S, Tatsumi T, Shiraishi J, et al. Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat cardiac myocytes. J Am Coll Cardiol 2003; 41(5): 870-8.
[http://dx.doi.org/10.1016/S0735-1097(02)02935-2] [PMID: 12628736]
Khade SW. Gigaspora (GIGASPORACEAE) Da India, Com Notas Morfo-Taxonômicas. Acta Biol Parana 2011; 40(1-4): 685.
Ayen WY, Kumar N. In vivo evaluation of doxorubicin-loaded (PEG)(3)-PLA nanopolymersomes (PolyDoxSome) using DMBA-induced mammary carcinoma rat model and comparison with marketed LipoDox™. Pharm Res 2012; 29(9): 2522-33.
[http://dx.doi.org/10.1007/s11095-012-0783-8] [PMID: 22669705]
FDA Approves Generic Version of Doxil. Expected to Help Resolve Shortage. Oncol Times 2013; 35(6): 25.
Papich MG. Doxorubicin Hydrochloride. In:Saunders Handbook of Veterinary Drugs. USA: Saunders 2016; pp. 272-4.
Brown S, Khan DR. The treatment of breast cancer using liposome technology. J Drug Deliv 2012.2012212965
[http://dx.doi.org/10.1155/2012/212965] [PMID: 22506119]
Terrett N. Combinatorial chemistry. Drug Discov Today 1999; 4(11): 532.
[http://dx.doi.org/10.1016/S1359-6446(99)01409-9] [PMID: 10529771]
Blake EA, Bradley CA, Mostofizadeh S, et al. Efficacy of pegylated liposomal doxorubicin maintenance therapy in platinum-sensitive recurrent epithelial ovarian cancer: A retrospective study. Arch Gynecol Obstet 2019; 299(6): 1641-9.
[http://dx.doi.org/10.1007/s00404-019-05104-0] [PMID: 30824986]
Lotem M, Hubert A, Lyass O, et al. Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol 2000; 136(12): 1475-80.
[http://dx.doi.org/10.1001/archderm.136.12.1475] [PMID: 11115157]
Tardi PG, Boman NL, Cullis PR. Liposomal doxorubicin. J Drug Target 1996; 4(3): 129-40.
[http://dx.doi.org/10.3109/10611869609015970] [PMID: 8959485]
Imperatori L, Lippe P, Trapuzzano C, et al. 5075 POSTER Non-Pegylated Liposomal Doxorubicin (Myocet e) Plus Docetaxel (Taxotere e) (MYTAX), as First-Line Chemotherapy (CHT), in Metastatic Breast Cancer (MBC): Results of a Phase II Study. Eur J Cancer 2011; 1: 47.
Dell’Olio M, Scalzulli RP, Sanpaolo G, et al. Non-pegylated liposomal doxorubicin (Myocet®) in patients with poor-risk aggressive B-cell non-Hodgkin lymphoma. Leuk Lymphoma 2011; 52(7): 1222-9.
[http://dx.doi.org/10.3109/10428194.2011.572321] [PMID: 21612383]
Nogler-Semenitz E. oxorubicin Liposomal (Z.B. Caelyx) Doxorubicin Pegyliert Liposomal (Z.B. Myocet). In Paravasation von Zytostatika In: 2006; pp. 205-9.
Prados J, Melguizo C, Ortiz R, et al. Doxorubicin-loaded nanoparticles: New advances in breast cancer therapy. Anticancer Agents Med Chem 2012; 12(9): 1058-70.
[http://dx.doi.org/10.2174/187152012803529646] [PMID: 22339066]
Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx 2005; 2(1): 99-107.
[http://dx.doi.org/10.1602/neurorx.2.1.99] [PMID: 15717061]
Nanoparticle Exposure and Health Survey Available from: https://www.nanoshel.com/organic-and-inorganic-nanoparticles (Accessed on: Jan 24, 2019)
Nanoparticles of Doxorubicin. Available at: www.biomed.in.th/gold-nanoparticles-use-dna-to-deliver-dox-anti-cancer-drug(Accessed on: Jan 27, 2019)
Ball J. Drug-smuggling nanoparticles deliver targeted cancer drugs. New Sci 2012; 214(2860): 12.
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
Kulve HT. Anticipating market introduction of nanotechnology-enabled drug delivery systems. Appl Nanotechnol Drug Deliv 2014; 72(5): 120.
Shao K, Hou Q, Duan W, Go ML, Wong KP, Li QT. Intracellular drug delivery by sulfatide-mediated liposomes to gliomas. J Control Release 2006; 115(2): 150-7.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.024] [PMID: 16963144]
Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release 2003; 92(1-2): 49-67.
[http://dx.doi.org/10.1016/S0168-3659(03)00295-5] [PMID: 14499185]
Petri B, Bootz A, Khalansky A, et al. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: Revisiting the role of surfactants. J Control Release 2007; 117(1): 51-8.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.015] [PMID: 17150277]
Wong HL, Rauth AM, Bendayan R, Wu XY. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm 2007; 65(3): 300-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.022] [PMID: 17156986]
Dong Y, Feng SS. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005; 26(30): 6068-76.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.021] [PMID: 15894372]
Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomedicine 2011; 6: 2321-6.
[PMID: 22072869]
Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013; 8(3): 290-312.
[http://dx.doi.org/10.1016/j.nantod.2013.04.007] [PMID: 23997809]
Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 2015; 95: 40-9.
[http://dx.doi.org/10.1016/j.addr.2015.09.009] [PMID: 26434537]
Prokopowicz M, Czarnobaj K, Szewczyk A, Sawicki W. Preparation and in vitro characterisation of bioactive mesoporous silica microparticles for drug delivery applications. Mater Sci Eng C 2016; 60: 7-18.
[http://dx.doi.org/10.1016/j.msec.2015.11.017] [PMID: 26706501]
Soo S, Hyun M, Lee Y, Bae J, Kim S, Ha C. Materials & design functionalised mesoporous silica nanoparticles with excellent cytotoxicity against various cancer cells for pH-responsive and controlled drug delivery. Mater Des 2019; 184: 1-10.
Ding J, Yao J, Xue J, et al. Tumor-homing cell-penetrating peptide linked to colloidal mesoporous silica encapsulated (-)-epigallocatechin-3-gallate as drug delivery system for breast cancer therapy in vivo. ACS Appl Mater Interfaces 2015; 7(32): 18145-55.
[http://dx.doi.org/10.1021/acsami.5b05618] [PMID: 26225796]
Jiang S, Hua L, Guo Z, Sun L. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy. Mater Sci Eng C 2018; 90: 257-63.
[http://dx.doi.org/10.1016/j.msec.2018.04.047] [PMID: 29853089]
Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition 2017; 33: 83-90.
[http://dx.doi.org/10.1016/j.nut.2016.05.001] [PMID: 27356860]
Chakraborty D, Chauhan P, Kumar S, et al. Utilizing corona on functionalized selenium nanoparticles for loading and release of doxorubicin payload. J Mol Liq 2019; 296: 1-9.
Yazdi MH, Mahdavi M, Varastehmoradi B, Faramarzi MA, Shahverdi AR. The immunostimulatory effect of biogenic selenium na-noparticles on the 4T1 breast cancer model: An in vivo study. Biol Trace Elem Res 2012; 149(1): 22-8.
[http://dx.doi.org/10.1007/s12011-012-9402-0] [PMID: 22476951]
Nguyen VH, Lee BJ. Protein corona: A new approach for nanomedicine design. Int J Nanomedicine 2017; 12: 3137-51.
[http://dx.doi.org/10.2147/IJN.S129300] [PMID: 28458536]
Kah JC, Chen J, Zubieta A, Hamad-Schifferli K, Hamad-schifferli K. Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 2012; 6(8): 6730-40.
[http://dx.doi.org/10.1021/nn301389c] [PMID: 22804333]
Chaudhary S, Chauhan P, Kumar R, Bhasin KK. Toxicological responses of surfactant functionalized selenium nanoparticles: A quantitative multi-assay approach. Sci Total Environ 2018; 643: 1265-77.
[http://dx.doi.org/10.1016/j.scitotenv.2018.06.296] [PMID: 30189543]
Zhao Q, Lin Y, Han N, et al. Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Deliv 2017; 24((sup1)): 94-107.
[http://dx.doi.org/10.1080/10717544.2017.1399300] [PMID: 29124979]
Chen L, Zhang H, Zheng J, et al. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application. Mater Sci Eng C 2018; 84: 21-31.
[http://dx.doi.org/10.1016/j.msec.2017.11.033] [PMID: 29519431]
Gisbert-Garzarán M, Manzano M, Vallet-Regí M. pH-Responsive Mesoporous Silica and Carbon Nanoparticles for Drug Delivery. Bioengineering (Basel) 2017; 4(1): 1-27.
[http://dx.doi.org/10.3390/bioengineering4010003] [PMID: 28952481]
Chen L, Zheng J, Du J, Yu S, Yang Y, Liu X. Folic acid-conjugated magnetic ordered mesoporous carbon nanospheres for doxorubicin targeting delivery. Mater Sci Eng C 2019.104109939
[http://dx.doi.org/10.1016/j.msec.2019.109939] [PMID: 31500062]
Maleki Dizaj S, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv 2019; 16(4): 331-45.
[http://dx.doi.org/10.1080/17425247.2019.1587408] [PMID: 30807242]
Wei K, Zhang J, Li X, Shi P, Fu P. High density lipoprotein coated calcium carbonate nanoparticle for chemotherapy of breast cancer. J Biomater Appl 2019; 34(2): 178-87.
[http://dx.doi.org/10.1177/0885328219850759] [PMID: 31109259]
Raut S, Mooberry L, Sabnis N, Garud A, Dossou AS, Lacko A. Reconstituted HDL: Drug delivery platform for overcoming biological barriers to cancer therapy. Front Pharmacol 2018; 9: 1154.
[http://dx.doi.org/10.3389/fphar.2018.01154] [PMID: 30374303]
Jeong GW, Jeong YI, Nah JW. Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy. Carbohydr Polym 2019; 209: 161-71.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.018] [PMID: 30732795]
Xu W, Wang H, Dong L, et al. Hyaluronic acid-decorated redox-sensitive chitosan micelles for tumor-specific intracellular delivery of gambogic acid. Int J Nanomedicine 2019; 14: 4649-66.
[http://dx.doi.org/10.2147/IJN.S201110] [PMID: 31303753]
Fu S, Xia J, Wu J. Functional Chitosan Nanoparticles in Cancer Treatment. J Biomed Nanotechnol 2016; 12(8): 1585-603.
[http://dx.doi.org/10.1166/jbn.2016.2228] [PMID: 29341581]
Yoncheva K, Merino M, Shenol A, et al. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int J Pharm 2019; 556: 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.070] [PMID: 30529664]
Bragagni M, Mennini N, Ghelardini C, Mura P. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting. J Pharm Pharm Sci 2012; 15(1): 184-96.
[http://dx.doi.org/10.18433/J3230M] [PMID: 22365096]
Bajelan E, Haeri A, Vali AM, Ostad SN, Dadashzadeh S. Co-delivery of doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient overcoming of multidrug resistance. J Pharm Pharm Sci 2012; 15(4): 568-82.
[http://dx.doi.org/10.18433/J3SC7J] [PMID: 23106959]
Siddharth S, Nayak A, Nayak D, Bindhani BK, Kundu CN. Chitosan-Dextran sulfate coated doxorubicin loaded PLGA-PVA-nanoparticles caused apoptosis in doxorubicin resistance breast cancer cells through induction of DNA damage. Sci Rep 2017; 7(1): 2143.
[http://dx.doi.org/10.1038/s41598-017-02134-z] [PMID: 28526868]
Ye BL, Zheng R, Ruan XJ, Zheng ZH, Cai HJ. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway. Biochem Biophys Res Commun 2018; 495(1): 414-20.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.156] [PMID: 29097204]
Xing S, Zhang X, Luo L, et al. Doxorubicin/gold nanoparticles coated with liposomes for chemo-photothermal synergetic antitumor therapy. Nanotechnology 2018; 29(40): 405101.
[http://dx.doi.org/10.1088/1361-6528/aad358] [PMID: 30004030]
Le TT, Bui TQ, Ha TM, Le MH, Pham HN, Ha PT. Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy. J Mater Sci 2018; 53(19): 13826-42.
Yang L, Gao Y, Liu J, et al. Silver-coated nanoparticles combined with doxorubicin for enhanced anticancer therapy. J Biomed Nanotechnol 2018; 14(2): 312-20.
[http://dx.doi.org/10.1166/jbn.2018.2481] [PMID: 31352927]
Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 2018; 13: 3311-27.
[http://dx.doi.org/10.2147/IJN.S165125] [PMID: 29892194]
Al-Sheddi ES, Farshori NN, Al-Oqail MM, et al. nticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl 2018.(2018: 9390784).
Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-based nanomaterials: multi-functional materials for biomedical engineering. ACS Nano 2013; 3; 7(4): 2891-7.
Mishra V, Patil A, Thakur S, Kesharwani P. Carbon dots: Emerging theranostic nanoarchitectures. Drug Discov Today 2018; 23(6): 1219-32.
[http://dx.doi.org/10.1016/j.drudis.2018.01.006] [PMID: 29366761]
Huang H, Yuan Q, Shah JS, Misra RD. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev 2011; 63(14-15): 1332-9.
[http://dx.doi.org/10.1016/j.addr.2011.04.001] [PMID: 21514336]
Zhou T, Zhou X, Xing D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 2014; 35(13): 4185-94.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.044] [PMID: 24513318]
Hashemi M, Yadegari A, Yazdanpanah G, et al. Normalization of doxorubicin release from graphene oxide: New approach for optimization of effective parameters on drug loading. Biotechnol Appl Biochem 2017; 64(3): 433-42.
[http://dx.doi.org/10.1002/bab.1487] [PMID: 26878983]
Lei H, Xie M, Zhao Y, Zhang F, Xu Y, Xie J. Chitosan/sodium alginate modificated graphene oxide-based nanocomposite as a carrier for drug delivery. Ceram Int 2016; 42: 17798-805.
Yang J, Wu Y, Shen Y, et al. enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes. ACS Appl Mater Interfaces 2016; 8(40): 26578-90.
[http://dx.doi.org/10.1021/acsami.6b09074] [PMID: 27628202]
Rungnim C, Rungrotmongkol T, Poo-Arporn RP. pH-controlled doxorubicin anticancer loading and release from carbon nanotube noncovalently modified by chitosan: MD simulations. J Mol Graph Model 2016; 70: 70-6.
[http://dx.doi.org/10.1016/j.jmgm.2016.09.011] [PMID: 27677150]
Mehra NK, Jain NK. Optimization of a pretargeted strategy for the PET imaging of colorectal carcinoma via the modulation of radioligand pharmacokinetics. Mol Pharm 2015; 12: 630-43.
[http://dx.doi.org/10.1021/mp500720a] [PMID: 25517904]
Pistone A, Iannazzo D, Ansari S, et al. Tunable doxorubicin release from polymer-gated multiwalled carbon nanotubes. Int J Pharm 2016; 515(1-2): 30-6.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.010] [PMID: 27720871]
Tu X, Wang L, Cao Y, et al. Efficient cancer ablation by combined photothermal and enhanced chemotherapy based on carbon nanoparti-cles/doxorubicin@SiO2 nanocomposites. Carbon 2016; 97: 35-44.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 15 December, 2019
Page: [320 - 331]
Pages: 12
DOI: 10.2174/1573394716666191216114950

Article Metrics

PDF: 25