Hierarchical γ-alumina: From Pure Phase to Nanocomposites

Author(s): Natalia Svarovskaya, Elena Glazkova, Olga Bakina*, Sergey Kazantsev, Aleksandr Lozhkomoev, Marat Lerner

Journal Name: Recent Patents on Nanotechnology

Volume 14 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Recent advances in nanotechnology make it possible to create nanomaterials based on γ-alumina with novel hierarchical structure and physicochemical properties. Hierarchical γ-alumina can be synthesized using chemical or physical methods. The nanostructures based on γ-alumina exhibit unique properties, which are utilized in the design of efficient applications. These superior properties are often due to their hierarchical organizations from the nanosize scale to the macroscopic level. The present review is devoted to the contemporary state of the studies on the methods to produce hierarchical γ-alumina. We tried to summarize herein the literature data on the methods of synthesis of hierarchical γ-AlOOH and γ-Al2O3 with controlled morphology and the application of these methods for the synthesis of hierarchical γ-AlOOH and γ-Al2O3 nanocomposites.

Keywords: Nanocomposites, nanoflowers, hierarchical structures, nanostructures, structure-forming agents, γ-AlOOH.

[1]
Gai M, Frueh J, Tao T, et al. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound. Nanoscale 2017; 9(21): 7063-70.
[http://dx.doi.org/10.1039/C7NR01841J PMID: 28513733]
[2]
Wang J, Qiao J, Wang J, Zhu Y, Jiang L. Bioinspired hierarchical alumina-graphene oxide-Poly(vinyl alcohol) artificial nacre with optimized strength and toughness. ACS Appl Mater Interfaces 2015; 7(17): 9281-6.
[http://dx.doi.org/10.1021/acsami.5b02194 PMID: 25867752]
[3]
Li G, Liu Y, Liu D, Liu C. Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant. Mater Res Bull 2010; 45: 1487-91.
[http://dx.doi.org/10.1016/j.materresbull.2010.06.013]
[4]
Xiao J, Ji H, Shen Z, et al. Self-assembly of flower-like γ-AlOOH and γ-Al2O3 with hierarchical nanoarchitectures and enhanced adsorption performance towards methyl orange. RSC Advances 2014; 4: 35077.
[http://dx.doi.org/10.1039/C4RA05343E]
[5]
Zanganeh S, Kajbafvala A, Zanganeh N. Self-assembly of Boehmite nanopetals to form 3D high surface area nanoarchitectures. Appl Phys, A Mater Sci Process 2010; 99: 317-21.
[http://dx.doi.org/10.1007/s00339-009-5534-2]
[6]
Wanga Z, Duc H, Gonga J, Yanga S, Maa J, Xua J. Facile synthesis of hierarchical flower-like -AlOOH films via hydrothermal route on quartz surface. Colloids Surf A Physicochem Eng Asp 2014; 450: 76-82.
[http://dx.doi.org/10.1016/j.colsurfa.2014.03.014]
[7]
Liang Q, Guo X, Quan T, Meng F. P123 assisted synthesis and characterization of urchin‐like γ‐Al2O3 hollow microspheres. Journal of Advanced Ceramics 2016; 5: 225-31.
[http://dx.doi.org/10.1007/s40145-016-0194-0]
[8]
Wu X, Wang D, Hu Z, Gu G. Synthesis of γ -AlOOH (γ-Al2O3) self-encapsulated and hollow architectures. Mater Chem Phys 2008; 109: 560-4.
[http://dx.doi.org/10.1016/j.matchemphys.2008.01.004]
[9]
Lozhkomoev AS, Glazkova EA, Bakina OV, et al. Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water. Nanotechnology 2016; 27(20)205603.
[http://dx.doi.org/10.1088/0957-4484/27/20/205603] [PMID: 27053603]
[10]
Wang C, Huang S, Wang L, et al. Gas leaching as a path to build hierarchical core–corona porous alumina nanostructures with extraordinary pollutant treatment capacity. RSC Adv 2013; 3: 1699.
[http://dx.doi.org/10.1039/C2RA22202G]
[11]
Al-Obaidy A. Iraqi Journal of Chemical and Petroleum Engineering 2016; 17: 117-23.
[12]
Cai W, Hu Y, Yu J, Wang W, Jaroniec M. Template-free synthesis of hierarchical γ-Al2O3 nanostructures and their adsorption affinity toward phenol and CO2. RSC Adv 2015.
[13]
Kang G, Bae K, Nam M, Ko DH, Kim K, Padilla WJ. Broadband and ultrahigh optical haze thin films with self-aggregated alumina nanowire bundles for photovoltaic applications. Energy Environ Sci 2015; 9.
[http://dx.doi.org/10.1039/C5EE01757B]
[14]
Zhang YX, Yu XY, Jin Z, et al. Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH(Boehmite)@ SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb(II) removal. J Mater Chem 2011; 21: 16550.
[http://dx.doi.org/10.1039/c1jm12196k]
[15]
Lebedeva II, Starostin AS, Valtsifer IV, Valtsifer VA. Hydrothermal synthesis of urchin-like alumina for fire-extinguishing powders. J Mater Sci 2018; 53: 3915-26.
[http://dx.doi.org/10.1007/s10853-017-1816-9]
[16]
Xu T, Sun J, Yi S, et al. Hierarchical nanoporous γ-Al2O3 encapsulated quasi solid electrolyte with superior conductivity and high safety for lithium metal batteries. Solid State Ion 2018; 326: 110-5.
[http://dx.doi.org/10.1016/j.ssi.2018.09.020]
[17]
Bakina OV, Glazkova EA, Lozhkomoev AS, Lerner MI, Svarovskaya NV. Cellulose acetate fibres surface modified with AlOOH/Cu particles: synthesis, characterization and antimicrobial activity. Cellulose 2018; 25: 4487-97.
[http://dx.doi.org/10.1007/s10570-018-1895-z]
[18]
Ma MG, Zhu JF. A facile solvothermal route to synthesis of γ-alumina with bundle-like and flower-like morphologies. Mater Lett 2009; 63: 881-3.
[http://dx.doi.org/10.1016/j.matlet.2009.01.022]
[19]
Wang J, Shi J, Xu B. Effect of precursors on the morphology of hydroxyl aluminum prepared by hydrothermal treatment. Adv Mat Res 2011; 308-310: 542-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.308-310.542]
[20]
Abdollahifar M, Zamani MR, Beiygie E, Nekouei H. Synthesis of micro–mesopores flower-like γ-Al2O3 nano-architectures. J Serb Chem Soc 2014; 79: 1007-17.
[http://dx.doi.org/10.2298/JSC130903007A]
[21]
Xua N, Liu Z, Bian S, Dong Y, Li W. Template-free synthesis of mesoporous γ-alumina with tunable structural properties. Ceram Int 2016; 42: 4072-9.
[http://dx.doi.org/10.1016/j.ceramint.2015.11.079]
[22]
Karamia C, Abdollahifara M, Jahania F, Farrokhia A, Taher MA. the preparation and characterization of flower-like boehmite nanoparticlessa: a new and reusable nanocatalyst for the synthesis of 2-aryl-1h-benzimidazoles. inorganic and nano-metal chemistry 2017; 47: 626-31.
[23]
Roy S, Maity A, Mandal P, et al. Effects of various morphologies on the optical and electrical properties of boehmite nanostructures. CrystEngComm 2018; 20: 6338.
[http://dx.doi.org/10.1039/C8CE01171K]
[24]
Li Y, Peng C, Li L, Rao P. Self-Assembled 3D hierarchically structured gamma alumina by hydrothermal method. J Am Ceram Soc 2014; 97: 35-9.
[http://dx.doi.org/10.1111/jace.12652]
[25]
Li Z, Du Y, Zhang S, et al. Synthesis and characterization of hierarchical γ-AlOOH and γ-Al2O3 microspheres with high adsorption performance for organic dyes. RSC Adv 2016; 6: 89699.
[http://dx.doi.org/10.1039/C6RA17606B]
[26]
Dong H, Xie R, Yang L, Li F. A hierarchical flower-like hollow alumina supported bimetallic AuPd nanoparticle catalyst for enhanced solvent-free ethylbenzene oxidation. Dalton Trans 2018; 47(23): 7776-86.
[http://dx.doi.org/10.1039/C8DT01182F PMID: 29845150]
[27]
Dong Y, Xu Y, Zhang Y, et al. Synthesis of hierarchically structured alumina support with adjustable nanocrystalline aggregation towards efficient hydrodesulfurization. Appl Catal A Gen 2018; 559: 30-9.
[http://dx.doi.org/10.1016/j.apcata.2018.04.007]
[28]
Dong Y, Chen Z, Xu Y, Yang L, Fang W, Yi X. Template-free synthesis of hierarchical meso-macroporous γ-Al2O3 support: Superior hydrodemetallization performance. Fuel Process Technol 2017; 168: 65-73.
[http://dx.doi.org/10.1016/j.fuproc.2017.08.034]
[29]
Lebedeva II, Starostin AS, Valtsifer IV, Valtsifer VA. Hydrothermal synthesis of urchin-like alumina for fireextinguishing powders. J Mater Sci 2018; 53: 3915-26.
[http://dx.doi.org/10.1007/s10853-017-1816-9]
[30]
Liang H, Liu L, Yang H, Wei J, Yang Z, Yang Y. Controllable synthesis of γ-AlOOH micro/nanoarchitectures via a one-step solution route. Crystal Engeneering Communication 2011; 13: 2445.
[http://dx.doi.org/10.1039/c0ce00594k]
[31]
Mikhaylov VI, Maslennikova TP, Ugolkov VL, Krivoshapkin PV. Hydrothermal synthesis, characterization and sorption properties of Al/Fe oxide–oxyhydroxide composite powders. Adv Powder Technol 2016; 27: 756-64.
[http://dx.doi.org/10.1016/j.apt.2016.03.001]
[32]
Bing XU, Jing W, Hong-Bo YU, Hong G. template-free synthesis and formation mechanism of urchin-like boehmite superstructure. J Inorg Mater 2010; 25: 1175-9.
[http://dx.doi.org/10.3724/SP.J.1077.2010.01175]
[33]
Wu X, Zhang B, Hu Z. Morphology-controlled hydrothermal synthesis of boehmite via an anions competition method. Powder Technol 2013; 239: 272-6.
[http://dx.doi.org/10.1016/j.powtec.2013.02.023]
[34]
Dubey SP, Dwivedi AD, Sillanpää M, Lee H, Kwon YN, Lee C. Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions. Chemosphere 2017; 169: 99-106.
[http://dx.doi.org/10.1016/j.chemosphere.2016.11.052] [PMID: 27863307]
[35]
Zanganeh N, Zanganeh S, Rajabi A, Allahkarami M. Flower-like boehmite nanostructure formation in two-steps. J Coord Chem 2014; 67: 555-62.
[http://dx.doi.org/10.1080/00958972.2014.892590]
[36]
Cai W, Yu J, Gu S, Jaoniec M. Facile hydrothermal synthesis of hierarchical boehmite: sulfate-mediated transformation from nanoflakes to hollow microspheres. Cryst Growth Des 2010; 10: 3977-82.
[http://dx.doi.org/10.1021/cg100544w]
[37]
Shi Z, Jiao W, Chen L, Wu P, Wang Y, He M. Clean synthesis of hierarchically structured boehmite and γ-alumina with a flower-like morphology. Microporous Mesoporous Mater 2016; 224: 253-61.
[http://dx.doi.org/10.1016/j.micromeso.2015.11.064]
[38]
Zhang YX, Jia Y, Jin Z, et al. Self-assembled, monodispersed, flower-like γ-AlOOH hierarchical superstructures for efficient and fast removal of heavy metal ions from water. CrystEngComm 2012; 14: 3005-7.
[http://dx.doi.org/10.1039/c2ce06545b]
[39]
Wang Z, Gong J, Ma J, Xu J. In situ growth of hierarchical boehmite on 2024 aluminum alloy surface as superhydrophobic materials. RCS Advances 2014; 4: 14708-14.
[http://dx.doi.org/10.1039/C4RA00160E]
[40]
Ji W, Wang Z, Ma J, Gong J. Hydrothermal synthesis of boehmite on alumina membranes for superhydrophobic surfaces. Surf Eng 2016; 32: 102-7.
[http://dx.doi.org/10.1179/1743294414Y.0000000394]
[41]
Li Y, Wu Z, Zhao F, Gong X. Facile template-free fabrication of novel flowerlike γ-Al2O3 nanostructures and their enhanced Pb(II) removal application in water. CrystEngComm 2016; 18: 3850.
[http://dx.doi.org/10.1039/C6CE00446F]
[42]
Tian M, Cui X, Dong C, Dong Z. Palladium nanoparticles dispersed on the hollow aluminosilicate microsphere@hierarchical -AlOOH as an excellent catalyst for the hydrogenation of nitroarenes under ambient conditions. Appl Surf Sci 2016; 390: 100-6.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.073]
[43]
Li Z, Shi T, Zhang T, et al. Hierarchical Al2O3/SiO2 fiber membrane with reversible wettability for on-demand oil/water separation. Korean J Chem Eng 2019; 36: 92-100.
[http://dx.doi.org/10.1007/s11814-018-0183-9]
[44]
Ji G, Li M, Li G, et al. Hydrothermal synthesis of hierarchical micron flower-like γ-AlOOH and γ-Al2O3 superstructures from oil shale ash. Powder Technol 2012; 215-216: 54-8.
[http://dx.doi.org/10.1016/j.powtec.2011.09.005]
[45]
Li J, Xu L, Sun P, et al. Novel application of red mud: Facile hydrothermal-thermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal. Chem Eng J 2017; 321: 622-34.
[http://dx.doi.org/10.1016/j.cej.2017.03.135]
[46]
Lei C, Pi M, Zhou W, Guo Y, Zhana F, Qin J. Synthesis of hierarchical porous flower-like ZnO-AlOOH structures and their applications in adsorption of Congo Red. Chem Phys Lett 2017; 687: 143-51.
[http://dx.doi.org/10.1016/j.cplett.2017.09.018]
[47]
Feng K, Rong D, Ren W, Wen X. Hierarchical flower-like γ-AlOOH and γ-Al2O3 microspheres: Synthesis and adsorption properties. Mater Express 2015; 5: 371-5.
[48]
Zhu X, Yu J, Jiang C, Cheng B. Enhanced room-temperature HCHO decomposition activity of highly-dispersed Pt/Al2O3 hierarchical microspheres with exposed 110 facets. J Ind Eng Chem 2017; 45: 197-205.
[http://dx.doi.org/10.1016/j.jiec.2016.09.023]
[49]
Chen XY, Huh HS, Lee SW. hydrothermal synthesis of boehmite (γ-alooh) nanoplatelets and nanowires: ph-controlled morphologies. nanotechnology 2007. 18285608
[http://dx.doi.org/10.1088/0957-4484/18/28/285608]
[50]
Liu Y, Li X, Xu Z, Hu Z. Preparation of flower-like and rod-like boehmite via a hydrothermal route in a buffer solution. J Phys Chem Solids 2010; 7: 206-9.
[http://dx.doi.org/10.1016/j.jpcs.2009.11.005]
[51]
Zhang T, Zhoun Y, Bu X, Wang Y, Zhang M, Hu J. Fabrication of biomorphic Al2O3 ceramics with hierarchical architectures by templating of cotton fibers. Ceram Int 2014; 40: 13703-7.
[http://dx.doi.org/10.1016/j.ceramint.2014.05.005]
[52]
Tian J, Tian P, Pang H, et al. Fabrication synthesis of porous Al2O3 hollow microspheres and its superior adsorption performance for organic dye. Microporous Mesoporous Mater 2016; 223: 27-34.
[http://dx.doi.org/10.1016/j.micromeso.2015.09.055]
[53]
Jiang ZQ, Yang J, Ma HW, Ma AX. Effects of urea/Al3+ ratios and hydrothermal treated time on the formation of self-assembled boehmite hollow sphere. Ferroelectrics 2014; 471: 128-38.
[http://dx.doi.org/10.1080/00150193.2014.963463]
[54]
Fang W. nanosheet self-assembly hierarchical structure gamma- alooh hollow microsphere as well as preparation method and application thereof. cn patent 108726544 2018.
[55]
Fancheng M, Weijiu H, Haishen R, Cheng L, Xiaolei Z. boehmite adsorbing material in 3d structure, preparation method and use thereof. cn patent 103613109 2014.
[56]
Nie L. high-specific-surface-area hierarchical porous gamma- alooh hollow microspheres and preparation method and application of hollow microspheres. cn patent 103588234 2014.
[57]
Fang H, Wu X. method for preparing hierarchical structure boehmite powder with microwave hydrothermal method. cn patent 106830032 2017.
[58]
Song C, Wang D, Pang L. preparation method of hollow microspheres with hierarchical structure. cn103111254 (a), 2013.
[59]
Zhu W, Li J, Zhai P, Chen X, Zhang H, Zhang Z. hydrothermalthermal conversion method for preparing active boehmite and alumina porous microsphere with red mud as raw material. cn patent 106830024 2017.
[60]
Liu G, Li Z, Li X, Peng Z, Zhou Q, Qi T. method for preparing ultrafine alumina powder with vertical faces. cn patent 106517278 2017.
[61]
Song C, Wang D, Zhu Q, Cao C. preparation method of ceo2/ gamma-al2o3 multi-level structure composite microspheres. cn patent 103433018, 2013.
[62]
Bakina OV, Svarovskaya NV, Glazkova EA, Lozhkomoev AS, Khorobraya EG, Lerner MI. Flower-shaped AlOOH nanostructures synthesized by the reaction of an AlN/Al composite nanopowder in water. Adv Powder Technol 2015; 26: 1512-9.
[http://dx.doi.org/10.1016/j.apt.2015.08.007]
[63]
Meng F, Rong G, Zhang X, Huang W. Facile hydrothermal synthesis of hierarchically structured γ-AlOOH for fast Congo red removal. Mater Lett 2014; 129: 114-7.
[http://dx.doi.org/10.1016/j.matlet.2014.05.005]
[64]
Song C, Wang D. preparation method of alpha-al2o3 cagestructure hollow microspheres. cn patent 103232049 2015.
[65]
Fang B, Bao Z, Lu L, Zhao L, Wang H. Preparation of a hierarchical flower-like γ-Al2O3@C composite exhibiting enhanced adsorption performance for congo red by high temperature transformation of γ-AlOOH@C precursors. RSC Adv 2016; 6: 61.
[http://dx.doi.org/10.1039/C5RA18339A]
[66]
Lerner MI, Glazkova EA, Psakhie SG, Bakina OV, Timofeev SS. antiseptic sorption material: method for its production and wound dressing. ru patent 2546014, 2015.
[67]
Tepper F, Kaledin L. sub-micron filter. us patent 76012621310, 2009.
[68]
Psakhie SG, Lozhkomoev AS, Kazantsv SO, Bakina OV. the method of preparation of micro-mesoporous nanomaterials based on crumpled nanosheets of aluminum oxyhydroxide and the material obtained by this method. ru patent 2674952, 2018.
[69]
Lin Y, Cai W, He H, Wang X, Wan G. Three-dimensional hierarchically structured PAN@c–AlOOH fiber films based on a fiber templated hydrothermal route and their recyclable strong Cr(VI)-removal performance. RSC Advances 2012; 2: 1769-73.
[http://dx.doi.org/10.1039/c2ra00945e]
[70]
Lerner MI, Rudenskiy GE, Psakhie SG, Svarovskaya NV, Repin VE, Pugachev VG. Non-woven polymeric fabric including agglomerates of aluminum hydroxide nano-fibers for filtering water. Pat USA 2011; 033(8): 400.
[71]
Grigorievich S, Israevich P, Alekseevna L, Vladimirovna G, Vasiliev B, Mikhailov GA, et al. low-dimensional structures of organic and/or inorganic substances and use thereof. us patent 10105318, 2016.
[72]
Lai F, Zhang X, Wang H, et al. Three-dimension hierarchical Al2O3 nanosheets wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries. ACS Appl Mater Interfaces 2016; 8(33): 21656-65.
[http://dx.doi.org/10.1021/acsami.6b05640] [PMID: 27490281]
[73]
Zhang W, Tian Z, Chen L. Humic acid-induced synthesis of hierarchical basic copper carbonate/AlOOH microspheres and its enhanced catalytic activity for 4-nitrophenol reduction. Indian J Chem 2016; 55: 153-9.
[74]
Psakhie SG, Lerner MI, Glazkova EA, et al. agglomerates of metal oxyhydroxides and their use patent ru 2560432.
[75]
Lerner MI, Rodkevich NG, Svarovskaya NV, Psakhie SG, Rudenskii GE. composite sorbent material and method for production thereof. ru patent 2313387 2007.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2020
Published on: 16 September, 2020
Page: [92 - 101]
Pages: 10
DOI: 10.2174/1872210514666191213150838
Price: $65

Article Metrics

PDF: 14
HTML: 1