Organocatalytic Combinatorial Synthesis of Quinazoline, Quinoxaline and Bis(indolyl)methanes

Author(s): Fatemeh Malamiri, Samad Khaksar*, Rashid Badri, Elham Tahanpesar.

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 1 , 2020

Become EABM
Become Reviewer

Abstract:

Aims and Objective: An efficient and practical procedure for the synthesis of heterocyclic compounds such as quinazolines, quinoxalines and bis(indolyl)methanes was developed using 3,5-bis(trifluoromethyl) phenyl ammonium hexafluorophosphate (BFPHP) as a novel organocatalyst.

Materials and Methods: All of the obtained products are known compounds and identified by IR, 1HNMR, 13CNMR and melting points.

Result: Various products were obtained in good to excellent yields under reaction conditions.

Conclusion: The BFPHP organocatalyst demonstrates a novel class of non-asymmetric organocatalysts, which has gained much attention in green chemistry.

Keywords: Organocatalyst, green chemistry, quinazoline, multicomponent, heterocyclic, anticancer.

[1]
Drews, J. Drug discovery: a historical perspective. Science, 2000, 287(5460), 1960-1964.
[http://dx.doi.org/10.1126/science.287.5460.1960] [PMID: 10720314]
[2]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[3]
Kennedy, J.P.; Williams, L.; Bridges, T.M.; Daniels, R.N.; Weaver, D.; Lindsley, C.W. Application of combinatorial chemistry science on modern drug discovery. J. Comb. Chem., 2008, 10(3), 345-354.
[http://dx.doi.org/10.1021/cc700187t] [PMID: 18220367]
[4]
Jorgensen, W.L. Efficient drug lead discovery and optimization. Acc. Chem. Res., 2009, 42(6), 724-733.
[http://dx.doi.org/10.1021/ar800236t] [PMID: 19317443]
[5]
Maier, W.F.; Stöwe, K.; Sieg, S. Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. Engl., 2007, 46(32), 6016-6067.
[http://dx.doi.org/10.1002/anie.200603675] [PMID: 17640024]
[6]
Thompson, L.A.; Ellman, J.A. Synthesis and Applications of Small Molecule Libraries. Chem. Rev., 1996, 96(1), 555-600.
[http://dx.doi.org/10.1021/cr9402081] [PMID: 11848765]
[7]
Hour, M-J.; Huang, L-J.; Kuo, S-C.; Xia, Y.; Bastow, K.; Nakanishi, Y.; Hamel, E.; Lee, K-H. 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J. Med. Chem., 2000, 43(23), 4479-4487.
[http://dx.doi.org/10.1021/jm000151c] [PMID: 11087572]
[8]
Birch, H.L.; Buckley, G.M.; Davies, N.; Dyke, H.J.; Frost, E.J.; Gilbert, P.J.; Hannah, D.R.; Haughan, A.F.; Madigan, M.J.; Morgan, T.; Pitt, W.R.; Ratcliffe, A.J.; Ray, N.C.; Richard, M.D.; Sharpe, A.; Taylor, A.J.; Whitworth, J.M.; Williams, S.C. Novel 7-methoxy-6-oxazol-5-yl-2,3-dihydro-1H-quinazolin-4-ones as IMPDH inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(23), 5335-5339.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.108] [PMID: 16202581]
[9]
Cohen, E.; Klarberg, B.; Vaughan, J.R., Jr Quinazolinone sulfonamides as diuretic agents. J. Am. Chem. Soc., 1959, 81, 5508-5509.
[http://dx.doi.org/10.1021/ja01529a062]
[10]
Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methane and synthetic analogs. Cancer Lett., 2008, 269(2), 326-338.
[http://dx.doi.org/10.1016/j.canlet.2008.04.021] [PMID: 18501502]
[11]
Bonnesen, C.; Eggleston, I.M.; Hayes, J.D. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res., 2001, 61(16), 6120-6130.
[PMID: 11507062]
[12]
Bell, R.; Carmeli, S.; Sar, N. Vibrindole, A a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. J. Nat. Prod., 1994, 57, 1587-1590.
[13]
Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 2002, 45(25), 5604-5606.
[http://dx.doi.org/10.1021/jm020310n] [PMID: 12459027]
[14]
Loriga, M.; Piras, S.; Sanna, P.; Paglietti, G. Quinoxaline chemistry. Part 7. 2-[aminobenzoates]-and 2- [aminobenzoylglutamate]-quinoxalines as classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity. Farmaco (Societa chimica italiana: 1989), 1997, 52, 157-166.
[15]
Broughton, H.; Bryant, H.; Chambers, M.; Curtis, N. In WO 9962, 899, 1999. Chem. Abstr., 1999.12259y
[16]
Kim, Y.B.; Kim, Y.H.; Park, J.Y.; Kim, S.K. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg. Med. Chem. Lett., 2004, 14(2), 541-544.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.086] [PMID: 14698199]
[17]
Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P.M.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines. Bioorg. Med. Chem. Lett., 2006, 16(4), 815-820.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.025] [PMID: 16309903]
[18]
Chauhan, P.M.; Srivastava, S.K. Present trends and future strategy in chemotherapy of malaria. Curr. Med. Chem., 2001, 8(13), 1535-1542.
[http://dx.doi.org/10.2174/0929867013371851] [PMID: 11562283]
[19]
Roma, G.; Di Braccio, M.; Grossi, G.; Mattioli, F.; Ghia, M. 1,8-Naphthyridines IV. 9-substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1, 8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem., 2000, 35(11), 1021-1035.
[http://dx.doi.org/10.1016/S0223-5234(00)01175-2] [PMID: 11137230]
[20]
Henderson, E.A.; Bavetsias, V.; Theti, D.S.; Wilson, S.C.; Clauss, R.; Jackman, A.L. Targeting the α-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg. Med. Chem., 2006, 14(14), 5020-5042.
[http://dx.doi.org/10.1016/j.bmc.2006.03.001] [PMID: 16554160]
[21]
Dailey, S.; Feast, W.J.; Peace, R.J.; Sage, I.C.; Till, S.; Wood, E.L. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications. J. Mater. Chem., 2001, 11, 2238-2243.
[http://dx.doi.org/10.1039/b104674h]
[22]
Sessler, J.L.; Maeda, H.; Mizuno, T.; Lynch, V.M.; Furuta, H. Quinoxaline-bridged porphyrinoids. J. Am. Chem. Soc., 2002, 124(45), 13474-13479.
[http://dx.doi.org/10.1021/ja0273750] [PMID: 12418900]
[23]
He, X.; Hu, S.; Liu, K.; Guo, Y.; Xu, J.; Shao, S. Oxidized bis(indolyl)methane: a simple and efficient chromogenic-sensing molecule based on the proton transfer signaling mode. Org. Lett., 2006, 8(2), 333-336.
[http://dx.doi.org/10.1021/ol052770r] [PMID: 16408908]
[24]
Connolly, D.J.; Lacey, P.M.; McCarthy, M.; Saunders, C.P.; Carroll, A-M.; Goddard, R.; Guiry, P.J. Preparation and resolution of a modular class of axially chiral quinazoline-containing ligands and their application in asymmetric rhodium-catalyzed olefin hydroboration. J. Org. Chem., 2004, 69(20), 6572-6589.
[http://dx.doi.org/10.1021/jo049195+] [PMID: 15387579]
[25]
Chen, J.; Wu, D.; He, F.; Liu, M.; Wu, H.; Ding, J.; Su, W. Gallium (III) triflate-catalyzed one-pot selective synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones. Tetrahedron Lett., 2008, 49, 3814-3818.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.127]
[26]
Saffar-Teluri, A.; Bolouk, S. One-pot, three-component synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones using p-toluenesulfonic acid–paraformaldehyde copolymer as an efficient and reusable catalyst. Monatsh. für Chem., 2010, 141, 1113-1115.
[http://dx.doi.org/10.1007/s00706-010-0376-3]
[27]
Zeng, L.Y.; Cai, C. Iodine: Selectively promote the synthesis of mono substituted quinazolin‐4(3H)‐ones and 2,3‐dihydroquinazolin‐4(1H)‐ones in one‐pot. J. Heterocycl. Chem., 2010, 47, 1035-1039.
[http://dx.doi.org/10.1002/jhet.414]
[28]
Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Bio-compatible eutectic mixture for multi-component synthesis: A valuable acidic catalyst for synthesis of novel 2, 3-dihydroquinazolin-4 (1H)-one derivatives. Catal. Commun., 2012, 27, 179-183.
[http://dx.doi.org/10.1016/j.catcom.2012.07.020]
[29]
Bharathi, A.; Roopan, S.M.; Kajbafvala, A.; Padmaja, R.; Darsana, M.; Kumari, G.N. Catalytic activity of TiO2 nanoparticles in the synthesis of some 2, 3-disubstituted dihydroquinazolin-4 (1H)-ones. Chin. Chem. Lett., 2014, 25, 324-326.
[http://dx.doi.org/10.1016/j.cclet.2013.11.040]
[30]
Rostami, A.; Tavakoli, A. Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2, 3-dihydroquinazolin-4 (1H)-ones in water or methanol. Chin. Chem. Lett., 2011, 22, 1317-1320.
[http://dx.doi.org/10.1016/j.cclet.2011.06.008]
[31]
Labade, V.B.; Shinde, P.V.; Shingare, M.S. A facile and rapid access towards the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Tetrahedron Lett., 2013, 54, 5778-5780.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.037]
[32]
Chen, Y.; Shan, W.; Lei, M.; Hu, L. Thiamine hydrochloride (VB1) as an efficient promoter for the one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Tetrahedron Lett., 2012, 53, 5923-5925.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.090]
[33]
Wang, M.; Zhang, T.T.; Liang, Y.; Gao, J.J. Strontium chloride-catalyzed one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones in protic media. Chin. Chem. Lett., 2011, 22, 1423-1426.
[http://dx.doi.org/10.1016/j.cclet.2011.06.002]
[34]
Praveen, C. DheenKumar, P.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20(24), 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075] [PMID: 21071222]
[35]
Zolfigol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Zare, A. Ionic liquid 3-methyl-1-sulfonic acid imidazolium chloride as a novel and highly efficient catalyst for the very rapid synthesis of bis (indolyl) methanes under solvent-free conditions. Org. Prep. Proced. Int., 2010, 42, 95-102.
[http://dx.doi.org/10.1080/00304940903585495]
[36]
Naik, M.A.; Sachdev, D.; Dubey, A. Sulfonic acid functionalized mesoporous SBA-15 for one-pot synthesis of substituted aryl-14H-dibenzo xanthenes and bis (indolyl) methanes. Catal. Commun., 2010, 11, 1148-1153.
[http://dx.doi.org/10.1016/j.catcom.2010.06.004]
[37]
Hasaninejad, A.; Shekouhy, M.; Zare, A.; Ghattali, S.H.; Golzar, N. PEG-SO3H as a new, highly efficient and homogeneous polymeric catalyst for the synthesis of bis (indolyl) methanes and 4, 4′-(Arylmethylene)-bis (3-methyl-1-phenyl-1hpyrazol-5-ol) s in water. J. Iran. Chem. Soc., 2011, 8, 411-423.
[http://dx.doi.org/10.1007/BF03249075]
[38]
Azizi, N.; Manocheri, Z. Eutectic salts promote green synthesis of bis (indolyl) methanes. Res. Chem. Int., 2012, 38, 1495-1500.
[http://dx.doi.org/10.1007/s11164-011-0479-4]
[39]
Mulla, S.A.; Sudalai, A.; Pathan, M.Y.; Siddique, S.A.; Inamdar, S.M.; Chavan, S.S.; Reddy, R.S. Efficient, rapid synthesis of bis (indolyl) methane using ethyl ammonium nitrate as an ionic liquid. RSC Advances, 2012, 2, 3525-3529.
[http://dx.doi.org/10.1039/c2ra00849a]
[40]
Qu, H-E.; Xiao, C.; Wang, N.; Yu, K-H.; Hu, Q-S.; Liu, L-X. RuClO catalyzed reactions: facile synthesis of bis(indolyl)methanes under mild conditions. Molecules, 2011, 16(5), 3855-3868.
[http://dx.doi.org/10.3390/molecules16053855] [PMID: 21555975]
[41]
Mendes, S.R.; Thurow, S.; Fortes, M.P.; Penteado, F.; Lenardão, E.J.; Alves, D.; Perin, G.; Jacob, R.G. Synthesis of bis (indolyl) methanes using silica gel as an efficient and recyclable surface. Tetrahedron Lett., 2012, 53, 5402-5406.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.118]
[42]
Khaksar, S.; Ostad, S.M. Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives. J. Fluor. Chem., 2011, 132, 937-939.
[http://dx.doi.org/10.1016/j.jfluchem.2011.07.011]
[43]
Khaksar, S.; Talesh, S.M. A simple, efficient and green procedure for the synthesis of bis-indolyl methanes in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol. J. Fluor. Chem., 2012, 135, 87-90.
[http://dx.doi.org/10.1016/j.jfluchem.2011.09.001]
[44]
Mahesh, R.; Dhar, A.K. TVNV, T. S.; Thirunavukkarasu, S.; Devadoss, T., Citric acid: An efficient and green catalyst for rapid one pot synthesis of quinoxaline derivatives at room temperature. Chin. Chem. Lett., 2011, 22, 389-392.
[http://dx.doi.org/10.1016/j.cclet.2010.11.002]
[45]
Martin, L.J.; Marzinzik, A.L.; Ley, S.V.; Baxendale, I.R. Safe and reliable synthesis of diazoketones and quinoxalines in a continuous flow reactor. Org. Lett., 2011, 13(2), 320-323.
[http://dx.doi.org/10.1021/ol1027927] [PMID: 21162548]
[46]
Kumar, K.; Mudshinge, S.R.; Goyal, S.; Gangar, M.; Nair, V.A. A catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisation of 1, 2-diamines and phenacyl bromides. Tetrahedron Lett., 2015, 56, 1266-1271.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.138]
[47]
Shi, S.; Wang, T.; Yang, W.; Rudolph, M.; Hashmi, A.S.K. Gold-catalyzed synthesis of glyoxals by oxidation of terminal alkynes: one-pot synthesis of quinoxalines. Chemistry, 2013, 19(21), 6576-6580.
[http://dx.doi.org/10.1002/chem.201300518] [PMID: 23576273]
[48]
Jeena, V.; Robinson, R.S. An environmentally friendly, cost effective synthesis of quinoxalines: the influence of microwave reaction conditions. Tetrahedron Lett., 2014, 55, 642-645.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.100]
[49]
Khaksar, S.; Rostamnezhad, F. A novel one-pot synthesis of quinoxaline derivatives in fluorinated alcohols. Bull. Korean Chem. Soc., 2012, 33, 2581-2584.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2581]
[50]
Renzi, P.; Bella, M. Non-asymmetric organocatalysis. Chem. Commun. (Camb.), 2012, 48(55), 6881-6896.
[http://dx.doi.org/10.1039/c2cc31599h] [PMID: 22662324]
[51]
Wende, R.C.; Schreiner, P.R. Evolution of asymmetric organocatalysis: multi-and retrocatalysis. Green Chem., 2012, 14, 1821-1849.
[http://dx.doi.org/10.1039/c2gc35160a]
[52]
Ren, Q.; Wang, J. Recent Developments in Amine‐catalyzed Non‐asymmetric Transformations. Asian J. Org. Chem., 2013, 2, 542-557.
[http://dx.doi.org/10.1002/ajoc.201200191]
[53]
Atodiresei, I.; Vila, C.; Rueping, M. Asymmetric organocatalysis in continuous flow: Opportunities for impacting industrial catalysis. ACS Catal., 2015, 5, 1972-1985.
[http://dx.doi.org/10.1021/acscatal.5b00002]
[54]
Madarász, Á.; Dósa, Z.; Varga, S.; Soós, T.; Csámpai, A.; Pápai, I. Thiourea derivatives as Bronsted acid organocatalysts. ACS Catal., 2016, 6, 4379-4387.
[http://dx.doi.org/10.1021/acscatal.6b00618]
[55]
Kampen, D.; Reisinger, C.M.; List, B. Chiral Bronsted acids for asymmetric organocatalysis. Asymmetric organocatalysis., 2010, 1-37.
[http://dx.doi.org/10.1007/978-3-642-02815-1_1]
[56]
Khaksar, S.; Fattahi, E.; Fattahi, E. Organocatalytic synthesis of amides from nitriles via the Ritter reaction. Tetrahedron Lett., 2011, 52, 5943-5946.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.121]
[57]
Khaksar, S.; Vahdat, S.M.; Tajbakhsh, M.; Jahani, F.; Heydari, A. Thioglycoluril as a highly efficient, recyclable and novel organocatalyst for N-Boc protection of amines. Tetrahedron Lett., 2010, 51, 6388-6391.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.096]
[58]
Khaksar, S.; Zakeri, H. Pentafluorophenylammonium triflate as a mild and new organocatalyst for acylation of alcohols, phenols, and amines under solvent-free condition. Comb. Chem. High Throughput Screen., 2012, 15(7), 576-579.
[http://dx.doi.org/10.2174/138620712801619203] [PMID: 22364551]
[59]
Malamiri, F.; Khaksar, S. Pentafluorophenylammonium triflate (PFPAT): A new organocatalyst for the one-pot three-component synthesis of α-aminophosphonates. J. Chem. Sci. (Camb.), 2014, 126, 807-811.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 1
Year: 2020
Page: [83 - 88]
Pages: 6
DOI: 10.2174/1386207323666191213123026
Price: $65

Article Metrics

PDF: 13
HTML: 2
EPUB: 1
PRC: 1