Microbiome in Chronic Obstructive Pulmonary Disease: Role of Natural Products Against Microbial Pathogens

Author(s): Alessia Santoro, Carlo Tomino, Giulia Prinzi*, Vittorio Cardaci, Massimo Fini, Lisa Macera, Patrizia Russo, Fabrizio Maggi

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 18 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

The “microbiome” is the operative term to refer to a collection of all taxa constituting microbial communities, such as bacteria, archaea, fungi and protists (originally microbiota). The microbiome consists of the indigenous microbial communities and of the host environment that they inhabit. Actually, it has been shown that there is a close relationship between the microbiome and human health and disease condition. Although, initially, the lung was considered sterile, actually, the existence of a healthy lung microbiome is usually accepted. Lung microbiome changes are reported in Chronic Obstructive Pulmonary Disease (COPD) and in its exacerbation. Viral and bacterial infections of the respiratory system are a major cause of COPD exacerbations (AECOPD) leading to increased local and systemic inflammation. Detection rates of virus in AECOPD are variable between 25-62% according to the detection method. The study of human airway and lung disease virome is quite recent and still very limited. The purpose of this review is to summarize recent findings on the lung microbiome composition with a special emphasis on virome in COPD and in AECOPD. Some drugs of natural origins active against resistant bacteria and virus are described.

Keywords: Bacteriome, COPD, microbiome, mycobiome, respiratory airway, virome.

[1]
Knight, R.; Callewaert, C.; Marotz, C.; Hyde, E.R.; Debelius, J.W.; McDonald, D.; Sogin, M.L. The microbiome and human biology. Annu. Rev. Genomics Hum. Genet., 2017, 18, 65-86.
[http://dx.doi.org/10.1146/annurev-genom-083115-022438] [PMID: 28375652]
[2]
Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59(1), 143-169.
[http://dx.doi.org/10.1128/MMBR.59.1.143-169.1995] [PMID: 7535888]
[3]
Franzosa, E.A.; Hsu, T.; Sirota-Madi, A.; Shafquat, A.; Abu-Ali, G.; Morgan, X.C.; Huttenhower, C. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol., 2015, 13(6), 360-372.
[http://dx.doi.org/10.1038/nrmicro3451] [PMID: 25915636]
[4]
Young, V.B. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ, 2017, 356, j831.
[http://dx.doi.org/10.1136/bmj.j831] [PMID: 28298355]
[5]
Thaiss, C.A.; Zeevi, D.; Levy, M.; Zilberman-Schapira, G.; Suez, J.; Tengeler, A.C.; Abramson, L.; Katz, M.N.; Korem, T.; Zmora, N.; Kuperman, Y.; Biton, I.; Gilad, S.; Harmelin, A.; Shapiro, H.; Halpern, Z.; Segal, E.; Elinav, E. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 2014, 159(3), 514-529.
[http://dx.doi.org/10.1016/j.cell.2014.09.048] [PMID: 25417104]
[6]
Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 2017, 7, 124-136.
[http://dx.doi.org/10.1016/j.ynstr.2017.03.001] [PMID: 29276734]
[7]
Goodrich, J.K.; Davenport, E.R.; Clark, A.G.; Ley, R.E. The relationship between the human genome and microbiome comes into view. Annu. Rev. Genet., 2017, 51, 413-433.
[http://dx.doi.org/10.1146/annurev-genet-110711-155532] [PMID: 28934590]
[8]
Kolde, R.; Franzosa, E.A.; Rahnavard, G.; Hall, A.B.; Vlamakis, H.; Stevens, C.; Daly, M.J.; Xavier, R.J.; Huttenhower, C. Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Med., 2018, 10(1), 6.
[http://dx.doi.org/10.1186/s13073-018-0515-8] [PMID: 29378630]
[9]
Zmora, N.; Suez, J.; Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(1), 35-56.
[http://dx.doi.org/10.1038/s41575-018-0061-2] [PMID: 30262901]
[10]
Lau, A.S.Y.; Mitsuyama, E.; Odamaki, T.; Xiao, J.Z.; Liong, M.T. El Niño altered gut microbiota of children: a new insight on weather-gut interactions and protective effects of probiotic. J. Med. Food, 2019, 22(3), 230-240.
[http://dx.doi.org/10.1089/jmf.2018.4276] [PMID: 30183458]
[11]
Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med., 2016, 8(1), 39.
[http://dx.doi.org/10.1186/s13073-016-0294-z] [PMID: 27074706]
[12]
Savin, Z.; Kivity, S.; Yonath, H.; Yehuda, S. Smoking and the intestinal microbiome. Arch. Microbiol., 2018, 200(5), 677-684.
[http://dx.doi.org/10.1007/s00203-018-1506-2] [PMID: 29626219]
[13]
Ma, W.; Zhang, L.; Zeng, P.; Huang, C.; Li, J.; Geng, B.; Yang, J.; Kong, W.; Zhou, X.; Cui, Q. An analysis of human microbe-disease associations. Brief. Bioinform., 2017, 18(1), 85-97.
[http://dx.doi.org/10.1093/bib/bbw005] [PMID: 26883326]
[14]
Human microbiome project - home NIH common fund. Available at: commonfund.nih.gov (Accessed Date: January 16, 2019).
[15]
Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[16]
NIH integrative human microbiome project. Available at: https://hmpdacc.org/ihmp/ (Accessed Date: January 16,2019).
[17]
Metagenomics of the human intestinal tract. Available at: http://www.metahit.eu/index.php?id=234 (Accessed Date:January 16, 2019).
[18]
Man, W.H.; de Steenhuijsen Piters, W.A.; Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol., 2017, 15(5), 259-270.
[http://dx.doi.org/10.1038/nrmicro.2017.14] [PMID: 28316330]
[19]
Moffatt, M.F.; Cookson, W.O. The lung microbiome in health and disease. Clin. Med. (Lond.), 2017, 17(6), 525-529.
[http://dx.doi.org/10.7861/clinmedicine.17-6-525] [PMID: 29196353]
[20]
Dickson, R.P.; Erb-Downward, J.R.; Freeman, C.M.; McCloskey, L.; Beck, J.M.; Huffnagle, G.B.; Curtis, J.L. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann. Am. Thorac. Soc., 2015, 12(6), 821-830.
[http://dx.doi.org/10.1513/AnnalsATS.201501-029OC] [PMID: 25803243]
[21]
Whelan, F.J.; Verschoor, C.P.; Stearns, J.C.; Rossi, L.; Luinstra, K.; Loeb, M.; Smieja, M.; Johnstone, J.; Surette, M.G.; Bowdish, D.M. The loss of topography in the microbial communities of the upper respiratory tract in the elderly. Ann. Am. Thorac. Soc., 2014, 11(4), 513-521.
[http://dx.doi.org/10.1513/AnnalsATS.201310-351OC] [PMID: 24601676]
[22]
Winer, R.A.; Qin, X.; Harrington, T.; Moorman, J.; Zahran, H. Asthma incidence among children and adults: findings from the Behavioral Risk Factor Surveillance system asthma call-back survey--United States, 2006-2008. J. Asthma, 2012, 49(1), 16-22.
[http://dx.doi.org/10.3109/02770903.2011.637594] [PMID: 22236442]
[23]
Cortopassi, F.; Gurung, P.; Pinto-Plata, V. Chronic obstructive pulmonary disease in elderly patients. Clin. Geriatr. Med., 2017, 33(4), 539-552.
[http://dx.doi.org/10.1016/j.cger.2017.06.006] [PMID: 28991649]
[24]
WHO-Europe. Tobacco. Available at: http://www.euro. who.int/en/health-topics/diseaseprevention/tobacco (Accessed Date: January 16, 2019).
[25]
Taking stock: tobacco control in the WHO European Region in 2017.Available at:. http://www.euro.who.int/en/health-topics/diseaseprevention/tobacco/publications/2017/taking-stock-tobaccocontrol-in-the-who-european-region-in-2017 (Accessed Date: January 16, 2019).
[26]
WHO global report on trends in tobacco smoking 2000-2025, 2nd ed; World Health Organization: Geneva, 2015.
[27]
WHO global report on trends in tobacco smoking 2000-2025. Available at: http://www.who.int/tobacco/publica-tions/ surveillance/report ontrendstobaccosmoking/en/in dex4.html (Accessed Date: January 16, 2019)
[28]
Jayes, L.; Haslam, P.L.; Gratziou, C.G.; Powell, P.; Britton, J.; Vardavas, C.; Jimenez-Ruiz, C.; Leonardi-Bee, J. Tobacco control committee of the european respiratory society. smokehaz: systematic reviews and meta-analyses of the effects of smoking on respiratory health. Chest, 2016, 150(1), 164-179.
[http://dx.doi.org/10.1016/j.chest.2016.03.060] [PMID: 27102185]
[29]
Morris, A.; Sciurba, F.C.; Lebedeva, I.P.; Githaiga, A.; Elliott, W.M.; Hogg, J.C.; Huang, L.; Norris, K.A. Association of chronic obstructive pulmonary disease severity and Pneumocystis colonization. Am. J. Respir. Crit. Care Med., 2004, 170(4), 408-413.
[http://dx.doi.org/10.1164/rccm.200401-094OC] [PMID: 15117741]
[30]
Gregory, A.C.; Sullivan, M.B.; Segal, L.N.; Keller, B.C. Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. Respir. Res., 2018, 19(1), 174.
[http://dx.doi.org/10.1186/s12931-018-0878-9] [PMID: 30208886]
[31]
Virgin, H.W. The virome in mammalian physiology and disease. Cell, 2014, 157(1), 142-150.
[http://dx.doi.org/10.1016/j.cell.2014.02.032] [PMID: 24679532]
[32]
Mannino, D.M.; Buist, A.S. Global burden of COPD: risk factors, prevalence, and future trends. Lancet, 2007, 370(9589), 765-773.
[http://dx.doi.org/10.1016/S0140-6736(07)61380-4] [PMID: 17765526]
[33]
Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; Brown, J.C.; Friedman, J.; He, J.; Heuton, K.R.; Holmberg, M.; Patel, D.J.; Reidy, P.; Carter, A.; Cercy, K.; Chapin, A.; Douwes-Schultz, D.; Frank, T.; Goettsch, F.; Liu, P.Y.; Nandakumar, V.; Reitsma, M.B.; Reuter, V.; Sadat, N.; Sorensen, R.J.D.; Srinivasan, V.; Updike, R.L.; York, H.; Lopez, A.D.; Lozano, R.; Lim, S.S.; Mokdad, A.H.; Vollset, S.E.; Murray, C.J.L. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet, 2018, 392(10159), 2052-2090.
[http://dx.doi.org/10.1016/S0140-6736(18)31694-5] [PMID: 30340847]
[34]
Global strategy for prevention. Diagnosis and Management of COPD, 2020. Available at: https://goldcopd.org/wpcon-tent/uploads/2019/11/GOLD-2020-REPORTver1.0wms.pdf (Accessed Date: 5 January, 2019)
[35]
Celli, B.R.; MacNee, W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur. Respir. J., 2004, 23(6), 932-946.
[http://dx.doi.org/10.1183/09031936.04.00014304] [PMID: 15219010]
[36]
Ren, L.; Zhang, R.; Rao, J.; Xiao, Y.; Zhang, Z.; Yang, B.; Cao, D.; Zhong, H.; Ning, P.; Shang, Y.; Li, M.; Gao, Z.; Wang, J. Transcriptionally active lung microbiome and its association with bacterial biomass and host inflammatory status. mSystems, 2018, 3(5), e00199-e18.
[http://dx.doi.org/10.1128/mSystems.00199-18] [PMID: 30417108]
[37]
Mika, M.; Nita, I.; Morf, L.; Qi, W.; Beyeler, S.; Bernasconi, E.; Marsland, B.J.; Ott, S.R.; von Garnier, C.; Hilty, M. Microbial and host immune factors as drivers of COPD. ERJ Open Res., 2018, 4(3), 00015-02018.
[http://dx.doi.org/10.1183/23120541.00015-2018] [PMID: 29992131]
[38]
Einarsson, G.G.; Comer, D.M.; McIlreavey, L.; Parkhill, J.; Ennis, M.; Tunney, M.M.; Elborn, J.S. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax, 2016, 71(9), 795-803.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207235] [PMID: 27146202]
[39]
Diao, W.; Shen, N.; Du, Y.; Erb-Downward, J.R.; Sun, X.; Guo, C.; Ke, Q.; Huffnagle, G.B.; Gyetko, M.R.; He, B. Symptom-related sputum microbiota in stable chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 2289-2299.
[http://dx.doi.org/10.2147/COPD.S167618] [PMID: 30104869]
[40]
Sinha, R.; Weissenburger-Moser, L.A.; Clarke, J.L.; Smith, L.M.; Heires, A.J.; Romberger, D.J.; LeVan, T.D. Short term dynamics of the sputum microbiome among COPD patients. PLoS One, 2018, 13(3)e0191499
[http://dx.doi.org/10.1371/journal.pone.0191499]
[41]
Tangedal, S.; Aanerud, M.; Grønseth, R.; Drengenes, C.; Wiker, H.G.; Bakke, P.S.; Eagan, T.M. Comparing microbiota profiles in induced and spontaneous sputum samples in COPD patients. Respir. Res., 2017, 18(1), 164.
[http://dx.doi.org/10.1186/s12931-017-0645-3] [PMID: 28851370]
[42]
Garcia-Nuñez, M.; Marti, S.; Puig, C.; Perez-Brocal, V.; Millares, L.; Santos, S.; Ardanuy, C.; Moya, A.; Liñares, J.; Monsó, E. Bronchial microbiome, PA biofilm-forming capacity and exacerbation in severe COPD patients colonized by P. aeruginosa. Future Microbiol., 2017, 12, 379-392.
[http://dx.doi.org/10.2217/fmb-2016-0127] [PMID: 28339291]
[43]
Cameron, S.J.; Lewis, K.E.; Huws, S.A.; Lin, W.; Hegarty, M.J.; Lewis, P.D.; Mur, L.A.; Pachebat, J.A. Metagenomic sequencing of the chronic obstructive pulmonary disease upper bronchial tract microbiome reveals functional changes associated with disease severity. PLoS One, 2016, 11(2)e0149095
[http://dx.doi.org/10.1371/journal.pone.0149095] [PMID: 26872143]
[44]
Pragman, A.A.; Lyu, T.; Baller, J.A.; Gould, T.J.; Kelly, R.F.; Reilly, C.S.; Isaacson, R.E.; Wendt, C.H. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease. Microbiome, 2018, 6(1), 7.
[http://dx.doi.org/10.1186/s40168-017-0381-4] [PMID: 29316977]
[45]
Engel, M.; Endesfelder, D.; Schloter-Hai, B.; Kublik, S.; Granitsiotis, M.S.; Boschetto, P.; Stendardo, M.; Barta, I.; Dome, B.; Deleuze, J.F.; Boland, A.; Müller-Quernheim, J.; Prasse, A.; Welte, T.; Hohlfeld, J.; Subramanian, D.; Parr, D.; Gut, I.G.; Greulich, T.; Koczulla, A.R.; Nowinski, A.; Gorecka, D.; Singh, D.; Gupta, S.; Brightling, C.E.; Hoffmann, H.; Frankenberger, M.; Hofer, T.P.; Burggraf, D.; Heiss-Neumann, M.; Ziegler-Heitbrock, L.; Schloter, M.; Zu Castell, W. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS One, 2017, 12(7)e0180859
[http://dx.doi.org/10.1371/journal.pone.0180859] [PMID: 28704452]
[46]
Viniol, C.; Vogelmeier, C.F. Exacerbations of COPD. Eur. Respir. Rev., 2018, 27(147)170103
[http://dx.doi.org/10.1183/16000617.0103-2017] [PMID: 29540496]
[47]
Leitao Filho, F.S.; Alotaibi, N.M.; Ngan, D.; Tam, S.; Yang, J.; Hollander, Z.; Chen, V.; FitzGerald, J.M.; Nislow, C.; Leung, J.M.; Man, S.F.P.; Sin, D.D. Sputum microbiome is associated with 1-year mortality following COPD hospitalizations. Am. J. Respir. Crit. Care Med., 2019, 199(10), 1205-1213.
[http://dx.doi.org/10.1164/rccm.201806-1135OC] [PMID: 30376356]
[48]
Jubinville, E.; Veillette, M.; Milot, J.; Maltais, F.; Comeau, A.M.; Levesque, R.C.; Duchaine, C. Exacerbation induces a microbiota shift in sputa of COPD patients. PLoS One, 2018, 13(3)e0194355
[http://dx.doi.org/10.1371/journal.pone.0194355] [PMID: 29579057]
[49]
Wang, Z.; Bafadhel, M.; Haldar, K.; Spivak, A.; Mayhew, D.; Miller, B.E.; Tal-Singer, R.; Johnston, S.L.; Ramsheh, M.Y.; Barer, M.R.; Brightling, C.E.; Brown, J.R. Lung microbiome dynamics in COPD exacerbations. Eur. Respir. J., 2016, 47(4), 1082-1092.
[http://dx.doi.org/10.1183/13993003.01406-2015] [PMID: 26917613]
[50]
Millares, L.; Pérez-Brocal, V.; Ferrari, R.; Gallego, M.; Pomares, X.; García-Núñez, M.; Montón, C.; Capilla, S.; Monsó, E.; Moya, A. Functional metagenomics of the bronchial microbiome in COPD. PLoS One, 2015, 10(12)e0144448
[http://dx.doi.org/10.1371/journal.pone.0144448] [PMID: 26632844]
[51]
Ghebre, M.A.; Pang, P.H.; Diver, S.; Desai, D.; Bafadhel, M.; Haldar, K.; Kebadze, T.; Cohen, S.; Newbold, P.; Rapley, L.; Woods, J.; Rugman, P.; Pavord, I.D.; Johnston, S.L.; Barer, M.; May, R.D.; Brightling, C.E. Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles. J. Allergy Clin. Immunol., 2018, 141(6), 2027-2036.e12.
[http://dx.doi.org/10.1016/j.jaci.2018.04.013] [PMID: 29709671]
[52]
Haldar, K.; Bafadhel, M.; Lau, K.; Berg, A.; Kwambana, B.; Kebadze, T.; Ramsheh, M.Y.; Barker, B.; Haldar, P.; Johnston, S.; Ketley, J.M.; Brightling, C.E.; Barer, M.R. Microbiome balance in sputum determined by PCR stratifies COPD exacerbations and shows potential for selective use of antibiotics. PLoS One, 2017, 12(8)e0182833
[http://dx.doi.org/10.1371/journal.pone.0182833] [PMID: 28841671]
[53]
Mayhew, D.; Devos, N.; Lambert, C.; Brown, J.R.; Clarke, S.C.; Kim, V.L.; Magid-Slav, M.; Miller, B.E.; Ostridge, K.K.; Patel, R.; Sathe, G.; Simola, D.F.; Staples, K.J.; Sung, R.; Tal-Singer, R.; Tuck, A.C.; Van Horn, S.; Weynants, V.; Williams, N.P.; Devaster, J.M.; Wilkinson, T.M.A. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73(5), 422-430.
[http://dx.doi.org/10.1136/thoraxjnl-2017-210408] [PMID: 29386298]
[54]
Wylie, T.N.; Wylie, K.M.; Herter, B.N.; Storch, G.A.; Author, C.; Louis, S. Enhanced virome sequencing using targeted sequence capture. Genome Res., 2015, 25(12), 1910-1920.
[http://dx.doi.org/10.1101/gr.191049.115] [PMID: 26395152]
[55]
Jankauskaitė, L.; Misevičienė, V.; Vaidelienė, L.; Kėvalas, R. Lower airway virology in health and disease-from invaders to symbionts. Medicina (Kaunas), 2018, 54(5)E72
[http://dx.doi.org/10.3390/medicina54050072] [PMID: 30344303]
[56]
Penadés, J.R.; Chen, J.; Quiles-Puchalt, N.; Carpena, N.; Novick, R.P. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol., 2015, 23, 171-178.
[http://dx.doi.org/10.1016/j.mib.2014.11.019] [PMID: 25528295]
[57]
Miedzybrodzki, R.; Switala-Jelen, K.; Fortuna, W.; Weber-Dabrowska, B.; Przerwa, A.; Lusiak-Szelachowska, M.; Dabrowska, K.; Kurzepa, A.; Boratynski, J.; Syper, D.; Pozniak, G.; Lugowski, C.; Gorski, A. Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Res., 2008, 131(2), 233-242.
[http://dx.doi.org/10.1016/j.virusres.2007.09.013] [PMID: 17996972]
[58]
Selva, L.; Viana, D.; Regev-Yochay, G.; Trzcinski, K.; Corpa, J.M.; Lasa, I.; Novick, R.P.; Penadés, J.R. Killing niche competitors by remote-control bacteriophage induction. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1234-1238.
[http://dx.doi.org/10.1073/pnas.0809600106] [PMID: 19141630]
[59]
Goerke, C.; Köller, J.; Wolz, C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(1), 171-177.
[http://dx.doi.org/10.1128/AAC.50.1.171-177.2006] [PMID: 16377683]
[60]
Wylie, K.M.; Weinstock, G.M.; Storch, G.A. Emerging view of the human virome. Transl. Res., 2012, 160(4), 283-290.
[http://dx.doi.org/10.1016/j.trsl.2012.03.006] [PMID: 22683423]
[61]
Elbehery, A.H.A.; Feichtmayer, J.; Singh, D.; Griebler, C.; Deng, L. The human virome protein cluster database (HVPC): a human viral metagenomic database for diversity and function annotation. Front. Microbiol., 2018, 9, 1110.
[http://dx.doi.org/10.3389/fmicb.2018.01110] [PMID: 29896176]
[62]
Borg, I.; Rohde, G.; Löseke, S.; Bittscheidt, J.; Schultze-Werninghaus, G.; Stephan, V.; Bufe, A. Evaluation of a quantitative real-time PCR for the detection of respiratory syncytial virus in pulmonary diseases. Eur. Respir. J., 2003, 21(6), 944-951.
[http://dx.doi.org/10.1183/09031936.03.00088102] [PMID: 12797486]
[63]
Kwak, H.J.; Park, D.W.; Kim, J.E.; Park, M.K.; Koo, G.W.; Park, T.S.; Moon, J.Y.; Kim, T.H.; Sohn, J.W.; Yoon, H.J.; Shin, D.H.; Kim, S.H. Prevalence and risk factors of respiratory viral infections in exacerbations of chronic obstructive pulmonary disease. Tohoku J. Exp. Med., 2016, 240(2), 131-139.
[http://dx.doi.org/10.1620/tjem.240.131] [PMID: 27725531]
[64]
Hutchinson, A.F.; Ghimire, A.K.; Thompson, M.A.; Black, J.F.; Brand, C.A.; Lowe, A.J.; Smallwood, D.M.; Vlahos, R.; Bozinovski, S.; Brown, G.V.; Anderson, G.P.; Irving, L.B. A community-based, time-matched, case-control study of respiratory viruses and exacerbations of COPD. Respir. Med., 2007, 101(12), 2472-2481.
[http://dx.doi.org/10.1016/j.rmed.2007.07.015] [PMID: 17822891]
[65]
Wark, P.A.; Tooze, M.; Powell, H.; Parsons, K. Viral and bacterial infection in acute asthma and chronic obstructive pulmonary disease increases the risk of readmission. Respirology, 2013, 18(6), 996-1002.
[http://dx.doi.org/10.1111/resp.12099] [PMID: 23600594]
[66]
Seemungal, T.; Harper-Owen, R.; Bhowmik, A.; Moric, I.; Sanderson, G.; Message, S.; Maccallum, P.; Meade, T.W.; Jeffries, D.J.; Johnston, S.L.; Wedzicha, J.A. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2001, 164(9), 1618-1623.
[http://dx.doi.org/10.1164/ajrccm.164.9.2105011] [PMID: 11719299]
[67]
Djamin, R.S.; Uzun, S.; Snelders, E.; Kluytmans, J.J.; Hoogsteden, H.C.; Aerts, J.G.; Van Der Eerden, M.M. Occurrence of virus-induced COPD exacerbations during four seasons. Infect. Dis. (Lond.), 2015, 47(2), 96-100.
[http://dx.doi.org/10.3109/00365548.2014.968866] [PMID: 25426994]
[68]
Hosseini, S.S.; Ghasemian, E.; Jamaati, H.; Tabaraie, B.; Amini, Z.; Cox, K. Association between respiratory viruses and exacerbation of COPD: a case-control study. Infect. Dis. (Lond.), 2015, 47(8), 523-529.
[http://dx.doi.org/10.3109/23744235.2015.1022873] [PMID: 25800059]
[69]
Wilkinson, T.M.A.; Aris, E.; Bourne, S.; Clarke, S.C.; Peeters, M.; Pascal, T.G.; Schoonbroodt, S.; Tuck, A.C.; Kim, V.; Ostridge, K.; Staples, K.J.; Williams, N.; Williams, A.; Wootton, S.; Devaster, J.M. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax, 2017, 72(10), 919-927.
[http://dx.doi.org/10.1136/thoraxjnl-2016-209023] [PMID: 28432209]
[70]
Jafarinejad, H.; Moghoofei, M.; Mostafaei, S.; Salimian, J.; Azimzadeh Jamalkandi, S.; Ahmadi, A. Worldwide prevalence of viral infection in AECOPD patients: A meta-analysis. Microb. Pathog., 2017, 113, 190-196.
[http://dx.doi.org/10.1016/j.micpath.2017.10.021] [PMID: 29038056]
[71]
Wang, H.; Anthony, D.; Selemidis, S.; Vlahos, R.; Bozinovski, S. Resolving viral-induced secondary bacterial infection in COPD: a concise review. Front. Immunol., 2018, 9, 2345.
[http://dx.doi.org/10.3389/fimmu.2018.02345] [PMID: 30459754]
[72]
Linden, D.; Guo-Parke, H.; Coyle, P.V.; Fairley, D.; McAuley, D.F.; Taggart, C.C.; Kidney, J. Respiratory viral infection: a potential “missing link” in the pathogenesis of COPD. Eur. Respir. Rev., 2019, 28(151)180063
[http://dx.doi.org/10.1183/16000617.0063-2018] [PMID: 30872396]
[73]
Weltevrede, M.; Eilers, R.; de Melker, H.E.; van Baarle, D. Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: A systematic review. Exp. Gerontol., 2016, 77, 87-95.
[http://dx.doi.org/10.1016/j.exger.2016.02.005] [PMID: 26883338]
[74]
Barnes, P.J. Senescence in COPD and its comorbidities. Annu. Rev. Physiol., 2017, 79, 517-539.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034314] [PMID: 27959617]
[75]
Tan, D.B.; Amran, F.S.; Teo, T.H.; Price, P.; Moodley, Y.P. Levels of CMV-reactive antibodies correlate with the induction of CD28(null) T cells and systemic inflammation in chronic obstructive pulmonary disease (COPD). Cell. Mol. Immunol., 2016, 13(4), 551-553.
[http://dx.doi.org/10.1038/cmi.2015.4] [PMID: 27402584]
[76]
Goh, L.Y.; Card, T.; Fogarty, A.W.; McKeever, T.M. The association of exposure to hepatitis B and C viruses with lung function and respiratory disease: a population based study from the NHANES III database. Respir. Med., 2014, 108(12), 1733-1740.
[http://dx.doi.org/10.1016/j.rmed.2014.10.006] [PMID: 25456709]
[77]
Kim, T.W.; Kim, M.N.; Kwon, J.W.; Kim, K.M.; Kim, S.H.; Kim, W.; Park, H.W.; Chang, Y.S.; Cho, S.H.; Min, K.U.; Kim, Y.Y. Risk of hepatitis B virus reactivation in patients with asthma or chronic obstructive pulmonary disease treated with corticosteroids. Respirology, 2010, 15(7), 1092-1097.
[http://dx.doi.org/10.1111/j.1440-1843.2010.01798.x] [PMID: 20630033]
[78]
Freer, G.; Maggi, F.; Pifferi, M.; Di Cicco, M.E.; Peroni, D.G.; Pistello, M. The Virome and its major component, anellovirus, a convoluted system molding human immune defenses and possibly affecting the development of asthma and respiratory diseases in childhood. Front. Microbiol., 2018, 9, 686.
[http://dx.doi.org/10.3389/fmicb.2018.00686] [PMID: 29692764]
[79]
Focosi, D.; Antonelli, G.; Pistello, M.; Maggi, F. Torquetenovirus: the human virome from bench to bedside. Clin. Microbiol. Infect., 2016, 22(7), 589-593.
[http://dx.doi.org/10.1016/j.cmi.2016.04.007] [PMID: 27093875]
[80]
Maggi, F.; Bendinelli, M. Immunobiology of the Torque teno viruses and other anelloviruses. Curr. Top. Microbiol. Immunol., 2009, 331, 65-90.
[http://dx.doi.org/10.1007/978-3-540-70972-5_5] [PMID: 19230558]
[81]
Thomas, J.; Pociute, A.; Kevalas, R.; Malinauskas, M.; Jankauskaite, L. Blood biomarkers differentiating viral versus bacterial pneumonia aetiology: a literature review. Ital. J. Pediatr., 2020, 46(1), 4.
[http://dx.doi.org/10.1186/s13052-020-0770-3] [PMID: 31918745]
[82]
Maggi, F.; Pifferi, M.; Fornai, C.; Andreoli, E.; Tempestini, E.; Vatteroni, M.; Presciuttini, S.; Marchi, S.; Pietrobelli, A.; Boner, A.; Pistello, M.; Bendinelli, M. TT virus in the nasal secretions of children with acute respiratory diseases: relations to viremia and disease severity. J. Virol., 2003, 77(4), 2418-2425.
[http://dx.doi.org/10.1128/JVI.77.4.2418-2425.2003] [PMID: 12551979]
[83]
Pifferi, M.; Maggi, F.; Di Cristofano, C.; Cangiotti, A.M.; Nelli, L.C.; Bevilacqua, G.; Macchia, P.; Bendinelli, M.; Boner, A.L. Torquetenovirus infection and ciliary dysmotility in children with recurrent pneumonia. Pediatr. Infect. Dis. J., 2008, 27(5), 413-418.
[http://dx.doi.org/10.1097/INF.0b013e318162a14f] [PMID: 18360304]
[84]
Pifferi, M.; Maggi, F.; Andreoli, E.; Lanini, L.; Marco, E.D.; Fornai, C.; Vatteroni, M.L.; Pistello, M.; Ragazzo, V.; Macchia, P.; Boner, A.; Bendinelli, M. Associations between nasal torquetenovirus load and spirometric indices in children with asthma. J. Infect. Dis., 2005, 192(7), 1141-1148.
[http://dx.doi.org/10.1086/444389] [PMID: 16136454]
[85]
Pifferi, M.; Maggi, F.; Caramella, D.; De Marco, E.; Andreoli, E.; Meschi, S.; Macchia, P.; Bendinelli, M.; Boner, A.L. High torquetenovirus loads are correlated with bronchiectasis and peripheral airflow limitation in children. Pediatr. Infect. Dis. J., 2006, 25(9), 804-808.
[http://dx.doi.org/10.1097/01.inf.0000232723.58355.f4] [PMID: 16940838]
[86]
Abbas, A.A.; Diamond, J.M.; Chehoud, C.; Chang, B.; Kotzin, J.J.; Young, J.C.; Imai, I.; Haas, A.R.; Cantu, E.; Lederer, D.J.; Meyer, K.C.; Milewski, R.K.; Olthoff, K.M.; Shaked, A.; Christie, J.D.; Bushman, F.D.; Collman, R.G. The perioperative lung transplant virome: torquetenoviruses are elevated in donor lungs and show divergent dynamics in primary graft dysfuntion. Am. J. Transplant., 2017, 17(5), 1313-1324.
[http://dx.doi.org/10.1111/ajt.14076] [PMID: 27731934]
[87]
Garcia-Nunez, M.; Gallego, M.; Monton, C.; Capilla, S.; Millares, L.; Pomares, X.; Espasa, M.; Ferrari, R.; Moya, A.; Monso, E.; Perz-Brocal, V. The respiratory virome in chronic obstructive pulmonary disease. Future Virol., 2018, 13(7)
[http://dx.doi.org/10.2217/fvl-2018-0027]
[88]
Hofer, U. Microbiome: anelloviridae go viral. Nat. Rev. Microbiol., 2014, 12(1), 4-5.
[http://dx.doi.org/10.1038/nrmicro3192] [PMID: 24336177]
[89]
Feyzioğlu, B.; Teke, T.; Ozdemir, M.; Karaibrahimoğlu, A.; Doğan, M.; Yavşan, M. The presence of Torque teno virus in chronic obstructive pulmonary disease. Int. J. Clin. Exp. Med., 2014, 7(10), 3461-3466.
[PMID: 25419383]
[90]
Huffnagle, G.B.; Noverr, M.C. The emerging world of the fungal microbiome. Trends Microbiol., 2013, 21(7), 334-341.
[http://dx.doi.org/10.1016/j.tim.2013.04.002] [PMID: 23685069]
[91]
Tipton, L.; Ghedin, E.; Morris, A. The lung mycobiome in the next-generation sequencing era. Virulence, 2017, 8(3), 334-341.
[http://dx.doi.org/10.1080/21505594.2016.1235671] [PMID: 27687858]
[92]
Morris, A.; Beck, J.M.; Schloss, P.D.; Campbell, T.B.; Crothers, K.; Curtis, J.L.; Flores, S.C.; Fontenot, A.P.; Ghedin, E.; Huang, L.; Jablonski, K.; Kleerup, E.; Lynch, S.V.; Sodergren, E.; Twigg, H.; Young, V.B.; Bassis, C.M.; Venkataraman, A.; Schmidt, T.M.; Weinstock, G.M. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med., 2013, 187(10), 1067-1075.
[http://dx.doi.org/10.1164/rccm.201210-1913OC] [PMID: 23491408]
[93]
Cui, L.; Lucht, L.; Tipton, L.; Rogers, M.B.; Fitch, A.; Kessinger, C.; Camp, D.; Kingsley, L.; Leo, N.; Greenblatt, R.M.; Fong, S.; Stone, S.; Dermand, J.C.; Kleerup, E.C.; Huang, L.; Morris, A.; Ghedin, E. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am. J. Respir. Crit. Care Med., 2015, 191(8), 932-942.
[http://dx.doi.org/10.1164/rccm.201409-1583OC] [PMID: 25603113]
[94]
Khodavaisy, S.; Mortaz, E.; Mohammadi, F.; Aliyali, M.; Fakhim, H.; Badali, H. Pneumocystis jirovecii colonization in Chronic Obstructive Pulmonary Disease (COPD). Curr Med Mycol, 2015, 1(1), 42-48.
[http://dx.doi.org/10.18869/acadpub.cmm.1.1.42] [PMID: 28680980]
[95]
Taccone, F.S.; Van den Abeele, A.M.; Bulpa, P.; Misset, B.; Meersseman, W.; Cardoso, T.; Paiva, J.A.; Blasco-Navalpotro, M.; De Laere, E.; Dimopoulos, G.; Rello, J.; Vogelaers, D.; Blot, S.I. Epidemiology of invasive aspergillosis in critically ill patients: clinical presentation, underlying conditions, and outcomes. Crit. Care, 2015, 19(1), 7.
[http://dx.doi.org/10.1186/s13054-014-0722-7] [PMID: 25928694]
[96]
Huerta, A.; Soler, N.; Esperatti, M.; Guerrero, M.; Menendez, R.; Gimeno, A.; Zalacaín, R.; Mir, N.; Aguado, J.M.; Torres, A. Importance of Aspergillus spp. isolation in Acute exacerbations of severe COPD: prevalence, factors and follow-up: the FUNGI-COPD study. Respir. Res., 2014, 15(1), 17.
[http://dx.doi.org/10.1186/1465-9921-15-17] [PMID: 24517318]
[97]
Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules, 2018, 23(4)E762
[http://dx.doi.org/10.3390/molecules23040762] [PMID: 29584636]
[98]
Katz, L.; Baltz, R.H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[99]
Langeder, J.; Grienke, U.; Chen, Y.; Kirchmair, J.; Schmidtke, M.; Rollinger, J.M. Natural products against acute respiratory infections: Strategies and lessons learned. J. Ethnopharmacol., 2020, 248112298
[http://dx.doi.org/10.1016/j.jep.2019.112298] [PMID: 31610260]
[100]
Liu, M.; El-Hossary, E.M.; Oelschlaeger, T.A.; Donia, M.S.; Quinn, R.J.; Abdelmohsen, U.R. Potential of marine natural products against drug-resistant bacterial infections. Lancet Infect. Dis., 2019, 19(7), e237-e245.
[http://dx.doi.org/10.1016/S1473-3099(18)30711-4] [PMID: 31031171]
[101]
Liu, C.; Eichelberger, M.C.; Compans, R.W.; Air, G.M. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J. Virol., 1995, 69(2), 1099-1106.
[http://dx.doi.org/10.1128/JVI.69.2.1099-1106.1995] [PMID: 7815489]
[102]
Ghosh, S.; Chisti, Y.; Banerjee, U.C. Production of shikimic acid. Biotechnol. Adv., 2012, 30(6), 1425-1431.
[http://dx.doi.org/10.1016/j.biotechadv.2012.03.001] [PMID: 22445787]
[103]
Jefferson, T.; Jones, M.A.; Doshi, P.; Del Mar, C.B.; Heneghan, C.J.; Hama, R.; Thompson, M.J. Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst. Rev., 2012, 1(1)CD008965
[http://dx.doi.org/10.1002/14651858.CD008965.pub3] [PMID: 22258996]
[104]
Zeng, F.L.; Xiang, Y.F.; Liang, Z.R.; Wang, X.; Huang, D.E.; Zhu, S.N.; Li, M.M.; Yang, D.P.; Wang, D.M.; Wang, Y.F. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola. Am. J. Chin. Med., 2013, 41(1), 119-130.
[http://dx.doi.org/10.1142/S0192415X13500092] [PMID: 23336511]
[105]
Rechtman, M.M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1alpha. FEBS Lett., 2010, 584(11), 2485-2490.
[http://dx.doi.org/10.1016/j.febslet.2010.04.067] [PMID: 20434445]
[106]
Abdelmohsen, U.R.; Balasubramanian, S.; Oelschlaeger, T.A.; Grkovic, T.; Pham, N.B.; Quinn, R.J.; Hentschel, U. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect. Dis., 2017, 17(2), e30-e41.
[http://dx.doi.org/10.1016/S1473-3099(16)30323-1] [PMID: 27979695]
[107]
Ma, L.Y.; Ma, S.C.; Wei, F.; Lin, R.C.; But, P.P.; Lee, S.H.; Lee, S.F. Uncinoside A and B, two new antiviral chromone glycosides from Selaginella uncinata. Chem. Pharm. Bull. (Tokyo), 2003, 51(11), 1264-1267.
[http://dx.doi.org/10.1248/cpb.51.1264] [PMID: 14600370]
[108]
Huang, W.; Zhang, X.; Wang, Y.; Ye, W.; Ooi, V.E.; Chung, H.Y.; Li, Y. Antiviral biflavonoids from Radix Wikstroemiae (Liaogewanggen). Chin. Med., 2010, 5, 23.
[http://dx.doi.org/10.1186/1749-8546-5-23] [PMID: 20565950]
[109]
Wang, Y.; Chen, M.; Zhang, J.; Zhang, X.L.; Huang, X.J.; Wu, X.; Zhang, Q.W.; Li, Y.L.; Ye, W.C. Flavone C-glycosides from the leaves of Lophatherum gracile and their in vitro antiviral activity. Planta Med., 2012, 78(1), 46-51.
[http://dx.doi.org/10.1055/s-0031-1280128] [PMID: 21870321]
[110]
Budden, K.F.; Shukla, S.D.; Rehman, S.F.; Bowerman, K.L.; Keely, S.; Hugenholtz, P.; Armstrong-James, D.P.H.; Adcock, I.M.; Chotirmall, S.H.; Chung, K.F.; Hansbro, P.M. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med., 2019, 7(10), 907-920.
[http://dx.doi.org/10.1016/S2213-2600(18)30510-1] [PMID: 30975495]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 18
Year: 2020
Page: [2931 - 2948]
Pages: 18
DOI: 10.2174/0929867327666191213110551
Price: $65

Article Metrics

PDF: 21
HTML: 1