Cell-Derived Microparticles and Acute Coronary Syndromes: Is there a Predictive Role for Microparticles?

Author(s): Effimia Zacharia*, Konstantinos Zacharias, George-Angelo Papamikroulis, Dimitrios Bertsias, Antigoni Miliou, Zoi Pallantza, Nikolaos Papageorgiou, Dimitris Tousoulis

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 27 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Despite the recent advances in the treatment of Acute Coronary Syndromes (ACS), patients with ACS are still exposed to an increased risk for adverse cardiovascular events, while their prognosis is difficult to determine. Experimental and clinical studies have shown that cell-derived Microparticles (MPs) are associated with the underlying pathophysiological processes that are responsible for atherogenesis and may be causally implicated in the induction of atherothrombosis.

Objective: In the present article, we aimed to review the available evidence regarding the predictive role of MPs in patients with ACS.

Results: Evidence suggests that endothelial MPs are associated with future adverse cardiovascular events in patients with ACS. Platelet-derived MPs have been excessively studied, since they have been found to trigger the coagulation cascade; however, their role as predictors of future cardiovascular events remains debatable. The role of red blood cell-derived MPs is more intriguing; they have been proposed as markers of ongoing thrombosis in patients with ACS, while previous studies have shown that they have anti-coagulant properties in healthy individuals. Leukocyte-derived MPs may also have a predictive role, although the studies regarding these are still limited. Last but not least, it was an interesting discovery that circulating MPs can provide information regarding the angiographic lesions in patients with ACS.

Conclusion: The concept of MPs as potential circulating biomarkers in patients with ACS holds much promise. However, large-scale clinical studies are required to evaluate whether the measurement of plasma MPs could be of clinical significance and, thus, dictate a more aggressive treatment strategy in patients with high levels of circulating MPs.

Keywords: Microparticles, Acute Coronary Syndromes, Endothelium-derived Microparticles, Platelet-derived Microparticles, Acute Myocardial Infarction, Unstable Angina, prognosis, outcomes.

[1]
Libby, P.; Ridker, P.M.; Hansson, G.K. Leducq Transatlantic Network on Atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol., 2009, 54(23), 2129-2138.
[http://dx.doi.org/10.1016/j.jacc.2009.09.009] [PMID: 19942084]
[2]
Crea, F.; Liuzzo, G. Pathogenesis of acute coronary syndromes. J. Am. Coll. Cardiol., 2013, 61(1), 1-11.
[http://dx.doi.org/10.1016/j.jacc.2012.07.064] [PMID: 23158526]
[3]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[4]
Hargett, L.A.; Bauer, N.N. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication. Pulm. Circ., 2013, 3(2), 329-340.
[http://dx.doi.org/10.4103/2045-8932.114760] [PMID: 24015332]
[5]
Curtis, A.M.; Edelberg, J.; Jonas, R.; Rogers, W.T.; Moore, J.S.; Syed, W.; Mohler, E.R., III Endothelial microparticles: sophisticated vesicles modulating vascular function. Vasc. Med., 2013, 18(4), 204-214.
[http://dx.doi.org/10.1177/1358863X13499773] [PMID: 23892447]
[6]
Souza, A.C.; Yuen, P.S.; Star, R.A. Microparticles: markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI. Kidney Int., 2015, 87(6), 1100-1108.
[http://dx.doi.org/10.1038/ki.2015.26] [PMID: 25692956]
[7]
Nomura, S.; Niki, M.; Nisizawa, T.; Tamaki, T.; Shimizu, M. Microparticles as biomarkers of blood coagulation in cancer. Biomark. Cancer, 2015, 7, 51-56.
[http://dx.doi.org/10.4137/BIC.S30347] [PMID: 26462252]
[8]
Mackman, N. On the trail of microparticles. Circ. Res., 2009, 104(8), 925-927.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.196840] [PMID: 19390059]
[9]
Morel, O.; Morel, N.; Jesel, L.; Freyssinet, J.M.; Toti, F. Microparticles: a critical component in the nexus between inflammation, immunity, and thrombosis. Semin. Immunopathol., 2011, 33(5), 469-486.
[http://dx.doi.org/10.1007/s00281-010-0239-3] [PMID: 21866419]
[10]
Habersberger, J.; Strang, F.; Scheichl, A.; Htun, N.; Bassler, N.; Merivirta, R.M.; Diehl, P.; Krippner, G.; Meikle, P.; Eisenhardt, S.U.; Meredith, I.; Peter, K. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovasc. Res., 2012, 96(1), 64-72.
[http://dx.doi.org/10.1093/cvr/cvs237] [PMID: 22798388]
[11]
Tsiantoulas, D.; Perkmann, T.; Afonyushkin, T.; Mangold, A.; Prohaska, T.A.; Papac-Milicevic, N.; Millischer, V.; Bartel, C.; Hörkkö, S.; Boulanger, C.M.; Tsimikas, S.; Fischer, M.B.; Witztum, J.L.; Lang, I.M.; Binder, C.J. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res., 2015, 56(2), 440-448.
[http://dx.doi.org/10.1194/jlr.P054569] [PMID: 25525116]
[12]
Berckmans, R.J.; Nieuwland, R.; Böing, A.N.; Romijn, F.P.; Hack, C.E.; Sturk, A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb. Haemost., 2001, 85(4), 639-646.
[http://dx.doi.org/10.1055/s-0037-1615646] [PMID: 11341498]
[13]
Rautou, P.E.; Vion, A.C.; Amabile, N.; Chironi, G.; Simon, A.; Tedgui, A.; Boulanger, C.M. Microparticles, vascular function, and atherothrombosis. Circ. Res., 2011, 109(5), 593-606.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233163] [PMID: 21852557]
[14]
Boulanger, C.M.; Scoazec, A.; Ebrahimian, T.; Henry, P.; Mathieu, E.; Tedgui, A.; Mallat, Z. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation, 2001, 104(22), 2649-2652.
[http://dx.doi.org/10.1161/hc4701.100516] [PMID: 11723013]
[15]
Han, W.Q.; Chang, F.J.; Wang, Q.R.; Pan, J.Q. Microparticles from patients with the acute coronary syndrome impair vasodilatation by inhibiting the Akt/eNOS-Hsp90 signaling pathway. Cardiology, 2015, 132(4), 252-260.
[http://dx.doi.org/10.1159/000438782] [PMID: 26329646]
[16]
Dignat-George, F.; Boulanger, C.M. The many faces of endothelial microparticles. Arterioscler. Thromb. Vasc. Biol., 2011, 31(1), 27-33.
[http://dx.doi.org/10.1161/ATVBAHA.110.218123] [PMID: 21160065]
[17]
Horn, P.; Cortese-Krott, M.M.; Amabile, N.; Hundsdörfer, C.; Kröncke, K.D.; Kelm, M.; Heiss, C. Circulating microparticles carry a functional endothelial nitric oxide synthase that is decreased in patients with endothelial dysfunction. J. Am. Heart Assoc., 2012, 2(1) e003764
[http://dx.doi.org/10.1161/jaha.112.003764] [PMID: 23525410]
[18]
Mallat, Z.; Benamer, H.; Hugel, B.; Benessiano, J.; Steg, P.G.; Freyssinet, J.M.; Tedgui, A. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation, 2000, 101(8), 841-843.
[http://dx.doi.org/10.1161/01.CIR.101.8.841] [PMID: 10694520]
[19]
Bernard, S.; Loffroy, R.; Sérusclat, A.; Boussel, L.; Bonnefoy, E.; Thévenon, C.; Rabilloud, M.; Revel, D.; Moulin, P.; Douek, P. Increased levels of endothelial microparticles CD144 (VE-Cadherin) positives in type 2 diabetic patients with coronary noncalcified plaques evaluated by multidetector computed tomography (MDCT). Atherosclerosis, 2009, 203(2), 429-435.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.07.039] [PMID: 18804209]
[20]
Stępień, E.; Stankiewicz, E.; Zalewski, J.; Godlewski, J.; Zmudka, K.; Wybrańska, I. Number of microparticles generated during acute myocardial infarction and stable angina correlates with platelet activation. Arch. Med. Res., 2012, 43(1), 31-35.
[http://dx.doi.org/10.1016/j.arcmed.2012.01.006] [PMID: 22306248]
[21]
Lu, Y.; Li, L.; Yan, H.; Su, Q.; Huang, J.; Fu, C. Endothelial microparticles exert differential effects on functions of Th1 in patients with acute coronary syndrome. Int. J. Cardiol., 2013, 168(6), 5396-5404.
[http://dx.doi.org/10.1016/j.ijcard.2013.08.050] [PMID: 24012161]
[22]
Nijiati, M.; Gao, Y.; Abudureheman, Z.; Yu, X.; Li, G. Relationship between the level of circulating endothelial micro-particles in the blood and blood lipid content in Uyghur and Han patients with acute coronary syndrome. Clin. Lab., 2015, 61(8), 1071-1075.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150137] [PMID: 26427153]
[23]
Zhang, Y.; Cheng, J.; Chen, F.; Wu, C.; Zhang, J.; Ren, X.; Pan, Y.; Nie, B.; Li, Q.; Li, Y. Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci. Rep., 2017, 37(2), BSR2017004
[http://dx.doi.org/10.1042/BSR20170047] [PMID: 28213360]
[24]
Bernal-Mizrachi, L.; Jy, W.; Jimenez, J.J.; Pastor, J.; Mauro, L.M.; Horstman, L.L.; de Marchena, E.; Ahn, Y.S. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am. Heart J., 2003, 145(6), 962-970.
[http://dx.doi.org/10.1016/S0002-8703(03)00103-0] [PMID: 12796750]
[25]
Zielińska, M.; Koniarek, W.; Goch, J.H.; Cebula, B.; Tybura, M.; Robak, T.; Smolewski, P. Circulating endothelial microparticles in patients with acute myocardial infarction. Kardiol. Pol., 2005, 62(6), 531-542.
[PMID: 16123851]
[26]
Biasucci, L.M.; Porto, I.; Di Vito, L.; De Maria, G.L.; Leone, A.M.; Tinelli, G.; Tritarelli, A.; Di Rocco, G.; Snider, F.; Capogrossi, M.C.; Crea, F. Differences in microparticle release in patients with acute coronary syndrome and stable angina. Circ. J., 2012, 76(9), 2174-2182.
[http://dx.doi.org/10.1253/circj.CJ-12-0068] [PMID: 22664782]
[27]
George, M.; Ganesh, M.R.; Sridhar, A.; Jena, A.; Rajaram, M.; Shanmugam, E.; Dhandapani, V.E. Evaluation of endothelial and platelet derived microparticles in patients with acute coronary syndrome. J. Clin. Diagn. Res., 2015, 9(12), OC09-OC13.
[http://dx.doi.org/10.7860/JCDR/2015/14493.6920] [PMID: 26816931]
[28]
Lumsden, N.G.; Andrews, K.L.; Bobadilla, M.; Moore, X.L.; Sampson, A.K.; Shaw, J.A.; Mizrahi, J.; Kaye, D.M.; Dart, A.M.; Chin-Dusting, J.P. Endothelial dysfunction in patients with type 2 diabetes post acute coronary syndrome. Diab. Vasc. Dis. Res., 2013, 10(4), 368-374.
[http://dx.doi.org/10.1177/1479164113482593] [PMID: 23673378]
[29]
Ye, S.; Shan, X.F.; Han, W.Q.; Zhang, Q.R.; Gao, J.; Jin, A.P.; Wang, Y.; Sun, C.F.; Zhang, S.L. Microparticles from patients undergoing percutaneous coronary intervention impair vasodilatation by uncoupling endothelial nitric oxide synthase. Shock, 2017, 48(2), 201-208.
[http://dx.doi.org/10.1097/SHK.0000000000000823] [PMID: 28002238]
[30]
Zhou, B.; Li, J.; Chen, S.; Zhou, E.; Zheng, L.; Zu, L.; Gao, W. Time course of various cell origin circulating microparticles in ST-segment elevation myocardial infarction patients undergoing percutaneous transluminal coronary intervention. Exp. Ther. Med., 2016, 11(4), 1481-1486.
[http://dx.doi.org/10.3892/etm.2016.3060] [PMID: 27073469]
[31]
Min, P.K.; Kim, J.Y.; Chung, K.H.; Lee, B.K.; Cho, M.; Lee, D.L.; Hong, S.Y.; Choi, E.Y.; Yoon, Y.W.; Hong, B.K.; Rim, S.J.; Kwon, H.M. Local increase in microparticles from the aspirate of culprit coronary arteries in patients with ST-segment elevation myocardial infarction. Atherosclerosis, 2013, 227(2), 323-328.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.032] [PMID: 23422831]
[32]
Montoro-García, S.; Shantsila, E.; Tapp, L.D.; López-Cuenca, A.; Romero, A.I.; Hernández-Romero, D.; Orenes-Piñero, E.; Manzano-Fernández, S.; Valdés, M.; Marín, F.; Lip, G.Y. Small-size circulating microparticles in acute coronary syndromes: relevance to fibrinolytic status, reparative markers and outcomes. Atherosclerosis, 2013, 227(2), 313-322.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.028] [PMID: 23415055]
[33]
Morel, O.; Pereira, B.; Averous, G.; Faure, A.; Jesel, L.; Germain, P.; Grunebaum, L.; Ohlmann, P.; Freyssinet, J.M.; Bareiss, P.; Toti, F. Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. Atherosclerosis, 2009, 204(2), 636-641.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.10.039] [PMID: 19091315]
[34]
Porto, I.; Biasucci, L.M.; De Maria, G.L.; Leone, A.M.; Niccoli, G.; Burzotta, F.; Trani, C.; Tritarelli, A.; Vergallo, R.; Liuzzo, G.; Crea, F. Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur. Heart J., 2012, 33(23), 2928-2938.
[http://dx.doi.org/10.1093/eurheartj/ehs065] [PMID: 22453653]
[35]
Suades, R.; Padró, T.; Crespo, J.; Ramaiola, I.; Martin-Yuste, V.; Sabaté, M.; Sans-Roselló, J.; Sionis, A.; Badimon, L. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. Int. J. Cardiol., 2016, 202, 378-387.
[http://dx.doi.org/10.1016/j.ijcard.2015.09.011] [PMID: 26432487]
[36]
Gawaz, M.; Neumann, F.J.; Ott, I.; Schiessler, A.; Schömig, A. Platelet function in acute myocardial infarction treated with direct angioplasty. Circulation, 1996, 93(2), 229-237.
[http://dx.doi.org/10.1161/01.CIR.93.2.229] [PMID: 8548893]
[37]
Katopodis, J.N.; Kolodny, L.; Jy, W.; Horstman, L.L.; De Marchena, E.J.; Tao, J.G.; Haynes, D.H.; Ahn, Y.S. Platelet microparticles and calcium homeostasis in acute coronary ischemias. Am. J. Hematol., 1997, 54(2), 95-101.
[http://dx.doi.org/10.1002/(SICI)1096-8652(199702)54:2<95::AID-AJH1>3.0.CO;2-Z] [PMID: 9034282]
[38]
Li, M.; Goto, S.; Sakai, H.; Kim, J.Y.; Ichikawa, N.; Yoshida, M.; Ikeda, Y.; Handa, S. Enhanced shear-induced von Willebrand factor binding to platelets in acute myocardial infarction. Thromb. Res., 2000, 100(4), 251-261.
[http://dx.doi.org/10.1016/S0049-3848(00)00326-1] [PMID: 11113268]
[39]
Vidal, C.; Spaulding, C.; Picard, F.; Schaison, F.; Melle, J.; Weber, S.; Fontenay-Roupie, M. Flow cytometry detection of platelet procoagulation activity and microparticles in patients with unstable angina treated by percutaneous coronary angioplasty and stent implantation. Thromb. Haemost., 2001, 86(3), 784-790.
[http://dx.doi.org/10.1055/s-0037-1616132] [PMID: 11583308]
[40]
Matsumoto, N.; Nomura, S.; Kamihata, H.; Kimura, Y.; Iwasaka, T. Association of platelet-derived microparticles with C-C chemokines on vascular complication in patients with acute myocardial infarction. Clin. Appl. Thromb. Hemost., 2002, 8(3), 279-286.
[http://dx.doi.org/10.1177/107602960200800313] [PMID: 12361207]
[41]
Héloire, F.; Weill, B.; Weber, S.; Batteux, F. Aggregates of endothelial microparticles and platelets circulate in peripheral blood. Variations during stable coronary disease and acute myocardial infarction. Thromb. Res., 2003, 110(4), 173-180.
[http://dx.doi.org/10.1016/S0049-3848(03)00297-4] [PMID: 14512078]
[42]
Matsumoto, N.; Nomura, S.; Kamihata, H.; Kimura, Y.; Iwasaka, T. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb. Haemost., 2004, 91(1), 146-154.
[http://dx.doi.org/10.1160/TH03-04-0247] [PMID: 14691580]
[43]
Morel, O.; Hugel, B.; Jesel, L.; Mallat, Z.; Lanza, F.; Douchet, M.P.; Zupan, M.; Chauvin, M.; Cazenave, J.P.; Tedgui, A.; Freyssinet, J.M.; Toti, F. Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists. J. Thromb. Haemost., 2004, 2(7), 1118-1126.
[http://dx.doi.org/10.1111/j.1538-7836.2004.00805.x] [PMID: 15219195]
[44]
Dymicka-Piekarska, V.; Kemona, H.; Butkiewicz, A.; Bychowski, J. [Platelets and platelet microparticles glycoprotein IIb/IIIa complex in patients with unstable angina.J Pol. Merkuriusz Lek., 2005, 18(103), 9-12.
[PMID: 15859538]
[45]
van der Zee, P.M.; Biró, E.; Ko, Y.; de Winter, R.J.; Hack, C.E.; Sturk, A.; Nieuwland, R. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin. Chem., 2006, 52(4), 657-664.
[http://dx.doi.org/10.1373/clinchem.2005.057414] [PMID: 16439610]
[46]
Huisse, M.G.; Lanoy, E.; Tcheche, D.; Feldman, L.J.; Bezeaud, A.; Anglès-Cano, E.; Mary-Krause, M.; de Prost, D.; Guillin, M.C.; Steg, P.G. Prothrombotic markers and early spontaneous recanalization in ST-segment elevation myocardial infarction. Thromb. Haemost., 2007, 98(2), 420-426.
[PMID: 17721626]
[47]
Michelsen, A.E.; Brodin, E.; Brosstad, F.; Hansen, J.B. Increased level of platelet microparticles in survivors of myocardial infarction. Scand. J. Clin. Lab. Invest., 2008, 68(5), 386-392.
[http://dx.doi.org/10.1080/00365510701794957] [PMID: 18752144]
[48]
Huisse, M.G.; Ajzenberg, N.; Feldman, L.; Guillin, M.C.; Steg, P.G. Microparticle-linked tissue factor activity and increased thrombin activity play a potential role in fibrinolysis failure in ST-segment elevation myocardial infarction. Thromb. Haemost., 2009, 101(4), 734-740.
[http://dx.doi.org/10.1160/TH08-06-0407] [PMID: 19350119]
[49]
Maly, M.; Hrachovinova, I.; Tomasov, P.; Salaj, P.; Hajek, P.; Veselka, J. Patients with acute coronary syndromes have low tissue factor activity and microparticle count, but normal concentration of tissue factor antigen in platelet free plasma: a pilot study. Eur. J. Haematol., 2009, 82(2), 148-153.
[http://dx.doi.org/10.1111/j.1600-0609.2008.01175.x] [PMID: 19018869]
[50]
Keuren, J.F.; Jie, K.S.; Leers, M.P. Increased expression of TF on monocytes, but decreased numbers of TF bearing microparticles in blood from patients with acute myocardial infarction. Eur. J. Haematol., 2009, 83(4), 387-388.
[http://dx.doi.org/10.1111/j.1600-0609.2009.01306.x] [PMID: 19558505]
[51]
Skeppholm, M.; Mobarrez, F.; Malmqvist, K.; Wallén, H. Platelet-derived microparticles during and after acute coronary syndrome. Thromb. Haemost., 2012, 107(6), 1122-1129.
[http://dx.doi.org/10.1160/TH11-11-0779] [PMID: 22371053]
[52]
Giannopoulos, G.; Oudatzis, G.; Paterakis, G.; Synetos, A.; Tampaki, E.; Bouras, G.; Hahalis, G.; Alexopoulos, D.; Tousoulis, D.; Cleman, M.W.; Stefanadis, C.; Deftereos, S. Red blood cell and platelet microparticles in myocardial infarction patients treated with primary angioplasty. Int. J. Cardiol., 2014, 176(1), 145-150.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.022] [PMID: 25062560]
[53]
Suades, R.; Padró, T.; Vilahur, G.; Martin-Yuste, V.; Sabaté, M.; Sans-Roselló, J.; Sionis, A.; Badimon, L. Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J. Thromb. Haemost., 2015, 13(10), 1776-1786.
[http://dx.doi.org/10.1111/jth.13065] [PMID: 26239059]
[54]
Wang, L.; Bi, Y.; Cao, M.; Ma, R.; Wu, X.; Zhang, Y.; Ding, W.; Liu, Y.; Yu, Q.; Zhang, Y.; Jiang, H.; Sun, Y.; Tong, D.; Guo, L.; Dong, Z.; Tian, Y.; Kou, J.; Shi, J. Microparticles and blood cells induce procoagulant activity via phosphatidylserine exposure in NSTEMI patients following stent implantation. Int. J. Cardiol., 2016, 223, 121-128.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.260] [PMID: 27537737]
[55]
Hartopo, A.B.; Puspitawati, I.; Gharini, P.P.; Setianto, B.Y. Platelet microparticle number is associated with the extent of myocardial damage in acute myocardial infarction. Arch. Med. Sci., 2016, 12(3), 529-537.
[http://dx.doi.org/10.5114/aoms.2016.59926] [PMID: 27279844]
[56]
Sun, C.; Zhao, W.B.; Chen, Y.; Hu, H.Y. Higher plasma concentrations of platelet microparticles in patients with acute coronary syndrome: a systematic review and meta-analysis. Can. J. Cardiol., 2016, 32(11), 1325.e1-1325.e10.
[http://dx.doi.org/10.1016/j.cjca.2016.02.052] [PMID: 27177836]
[57]
Liu, Y.; He, Z.; Zhang, Y.; Dong, Z.; Bi, Y.; Kou, J.; Zhou, J.; Shi, J. Dissimilarity of increased phosphatidylserine-positive microparticles and associated coagulation activation in acute coronary syndromes. Coron. Artery Dis., 2016, 27(5), 365-375.
[http://dx.doi.org/10.1097/MCA.0000000000000368] [PMID: 27058313]
[58]
Chiva-Blanch, G.; Laake, K.; Myhre, P.; Bratseth, V.; Arnesen, H.; Solheim, S.; Badimon, L.; Seljeflot, I. Platelet, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One, 2017, 12(2) e0172558
[http://dx.doi.org/10.1371/journal.pone.0172558] [PMID: 28207887]
[59]
Christersson, C.; Thulin, Å.; Siegbahn, A. Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thromb. Haemost., 2017, 117(8), 1571-1581.
[http://dx.doi.org/10.1160/TH16-11-0837] [PMID: 28424820]
[60]
Mavroudis, C.A.; Eleftheriou, D.; Hong, Y.; Majumder, B.; Koganti, S.; Sapsford, R.; North, J.; Lowdell, M.; Klein, N.; Brogan, P.; Rakhit, R.D. Microparticles in acute coronary syndrome. Thromb. Res., 2017, 156, 109-116.
[http://dx.doi.org/10.1016/j.thromres.2017.06.003] [PMID: 28624718]
[61]
Nijiati, M.; Saidaming, A.; Guoqing, L. In vitro study of the thrombogenic activity of platelet-derived microparticles from patients with acute coronary syndrome. Ann. Clin. Lab. Sci., 2017, 47(2), 156-161.
[PMID: 28442516]
[62]
Fan, Y.; Wang, L.; Li, Y.; Yin, Z.; Xu, Z.; Wang, C. Quantification of endothelial microparticles on modified cytometric bead assay and prognosis in chest pain patients. Circ. J., 2014, 78(1), 206-214.
[http://dx.doi.org/10.1253/circj.CJ-13-0488] [PMID: 24200872]
[63]
Radecke, C.E.; Warrick, A.E.; Singh, G.D.; Rogers, J.H.; Simon, S.I.; Armstrong, E.J. Coronary artery endothelial cells and microparticles increase expression of VCAM-1 in myocardial infarction. Thromb. Haemost., 2015, 113(3), 605-616.
[http://dx.doi.org/10.1160/TH14-02-0151] [PMID: 25413339]
[64]
Abbas, M.; Jesel, L.; Auger, C.; Amoura, L.; Messas, N.; Manin, G.; Rumig, C.; León-González, A.J.; Ribeiro, T.P.; Silva, G.C.; Abou-Merhi, R.; Hamade, E.; Hecker, M.; Georg, Y.; Chakfe, N.; Ohlmann, P.; Schini-Kerth, V.B.; Toti, F.; Morel, O. Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated activation of MAPKs and PI3-kinase pathways. Circulation, 2017, 135(3), 280-296.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.017513] [PMID: 27821539]
[65]
Bernal-Mizrachi, L.; Jy, W.; Fierro, C.; Macdonough, R.; Velazques, H.A.; Purow, J.; Jimenez, J.J.; Horstman, L.L.; Ferreira, A.; de Marchena, E.; Ahn, Y.S. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int. J. Cardiol., 2004, 97(3), 439-446.
[http://dx.doi.org/10.1016/j.ijcard.2003.10.029] [PMID: 15561331]
[66]
Empana, J.P.; Boulanger, C.M.; Tafflet, M.; Renard, J.M.; Leroyer, A.S.; Varenne, O.; Prugger, C.; Silvain, J.; Tedgui, A.; Cariou, A.; Montalescot, G.; Jouven, X.; Spaulding, C. Microparticles and sudden cardiac death due to coronary occlusion. The TIDE (thrombus and inflammation in sudden death) study. Eur. Heart J. Acute Cardiovasc. Care, 2015, 4(1), 28-36.
[http://dx.doi.org/10.1177/2048872614538404] [PMID: 24912925]
[67]
Jung, C.; Sörensson, P.; Saleh, N.; Arheden, H.; Rydén, L.; Pernow, J. Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction. Atherosclerosis, 2012, 221(1), 226-231.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.12.025] [PMID: 22245039]
[68]
Faille, D.; Frere, C.; Cuisset, T.; Quilici, J.; Moro, P.J.; Morange, P.E.; Bonnet, J.L.; Alessi, M.C. CD11b+ leukocyte microparticles are associated with high-risk angiographic lesions and recurrent cardiovascular events in acute coronary syndromes. J. Thromb. Haemost., 2011, 9(9), 1870-1873.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04418.x] [PMID: 21707910]
[69]
Morel, O.; Hugel, B.; Jesel, L.; Lanza, F.; Douchet, M.P.; Zupan, M.; Chauvin, M.; Cazenave, J.P.; Freyssinet, J.M.; Toti, F. Sustained elevated amounts of circulating procoagulant membrane microparticles and soluble GPV after acute myocardial infarction in diabetes mellitus. Thromb. Haemost., 2004, 91(2), 345-353.
[http://dx.doi.org/10.1160/TH03-05-0294] [PMID: 14961163]
[70]
Steppich, B.A.; Braun, S.L.; Stein, A.; Demetz, G.; Groha, P.; Schömig, A.; von Beckerath, N.; Kastrati, A.; Ott, I. Plasma TF activity predicts cardiovascular mortality in patients with acute myocardial infarction. Thromb. J., 2009, 7, 11.
[http://dx.doi.org/10.1186/1477-9560-7-11] [PMID: 19570241]
[71]
Sinning, J.M.; Losch, J.; Walenta, K.; Böhm, M.; Nickenig, G.; Werner, N. Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur. Heart J., 2011, 32(16), 2034-2041.
[http://dx.doi.org/10.1093/eurheartj/ehq478] [PMID: 21186238]
[72]
Chiva-Blanch, G.; Bratseth, V.; Ritschel, V.; Andersen, G.O.; Halvorsen, S.; Eritsland, J.; Arnesen, H.; Badimon, L.; Seljeflot, I. Monocyte-derived circulating microparticles (CD14+, CD14+/CD11b+ and CD14+/CD142+) are related to long-term prognosis for cardiovascular mortality in STEMI patients. Int. J. Cardiol., 2017, 227, 876-881.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.302] [PMID: 27915085]
[73]
Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol., 1967, 13(3), 269-288.
[http://dx.doi.org/10.1111/j.1365-2141.1967.tb08741.x] [PMID: 6025241]
[74]
Chargaff, E.; West, R. The biological significance of the thromboplastic protein of blood. J. Biol. Chem., 1946, 166(1), 189-197.
[PMID: 20273687]
[75]
Williams, M.S.; Rogers, H.L.; Wang, N.Y.; Ziegelstein, R.C. Do platelet-derived microparticles play a role in depression, inflammation, and acute coronary syndrome? Psychosomatics, 2014, 55(3), 252-260.
[http://dx.doi.org/10.1016/j.psym.2013.09.004] [PMID: 24374086]
[76]
Kafian, S.; Mobarrez, F.; Wallén, H.; Samad, B. Association between platelet reactivity and circulating platelet-derived microvesicles in patients with acute coronary syndrome. Platelets, 2015, 26(5), 467-473.
[http://dx.doi.org/10.3109/09537104.2014.940304] [PMID: 25025694]
[77]
Berezin, A.E.; Kremzer, A.; Berezina, T.; Martovitskaya, Y. The signature of circulating microparticles in heart failure patients with metabolic syndrome. J Circ Biomark, 2016, 51849454416663659
[http://dx.doi.org/10.1177/1849454416663659] [PMID: 28936261]
[78]
Montoro-García, S.; Shantsila, E.; Wrigley, B.J.; Tapp, L.D.; Abellán Alemán, J.; Lip, G.Y. Small-size microparticles as indicators of acute decompensated state in ischemic heart failure. Rev. Esp. Cardiol. (Engl. Ed.), 2015, 68(11), 951-958.
[http://dx.doi.org/10.1016/j.rec.2014.11.016] [PMID: 25819989]
[79]
Fatih Ozlu, M.; Sen, N.; Fatih Karakas, M.; Turak, O.; Ozcan, F.; Kanat, S.; Aras, D.; Topaloglu, S.; Cagli, K.; Timur Selcuk, M. Erythrocyte sedimentation rate in acute myocardial infarction as a predictor of poor prognosis and impaired reperfusion. Med Glas (Zenica), 2012, 9(2), 189-197.
[PMID: 22926349]
[80]
İlhan, E.; Güvenç, T.S.; Altay, S.; Çağdaş, M.; Çalik, A.N.; Karaca, M.; Güzelburç, Ö.; Karaca, G.; Biteker, M.; Tayyareci, G. Predictive value of red cell distribution width in intrahospital mortality and postintervention thrombolysis in myocardial infarction flow in patients with acute anterior myocardial infarction. Coron. Artery Dis., 2012, 23(7), 450-454.
[http://dx.doi.org/10.1097/MCA.0b013e3283587897] [PMID: 22936020]
[81]
Karabulut, A.; Uyarel, H.; Uzunlar, B.; Çakmak, M. Elevated red cell distribution width level predicts worse postinterventional thrombolysis in myocardial infarction flow reflecting abnormal reperfusion in acute myocardial infarction treated with a primary coronary intervention. Coron. Artery Dis., 2012, 23(1), 68-72.
[http://dx.doi.org/10.1097/MCA.0b013e32834f1188] [PMID: 22167053]
[82]
Duran, M.; Uysal, O.K.; Günebakmaz, O.; Yılmaz, Y.; Akın, F.; Baran, O.; Inanç, M.T.; Eryol, N.K.; Ergin, A.; Oğuzhan, A.; Kaya, M.G. Increased red cell distribution width level is associated with absence of coronary collateral vessels in patients with acute coronary syndromes. Turk Kardiyol. Dern. Ars., 2013, 41(5), 399-405.
[http://dx.doi.org/10.5543/tkda.2013.86244] [PMID: 23917005]
[83]
Gonçalves, S.; Ferreira Santos, J.; Amador, P.; Rassi, L.; Rodrigues, A.R.; Seixo, F.; Neves Soares, L. [Impact of red blood cell distribution width on risk for bleeding events in patients with non-ST elevation acute coronary syndromes]. Rev. Port. Cardiol., 2013, 32(1), 27-33.
[http://dx.doi.org/10.1016/j.repc.2012.05.018] [PMID: 23201111]
[84]
Bekler, A.; Gazi, E.; Tenekecioglu, E.; Karaagac, K.; Altun, B.; Temiz, A.; Barutçu, A.; Peker, T.; Aslan, B.; Yılmaz, M. Assessment of the relationship between red cell distribution width and fragmented QRS in patients with non-ST elevated acute coronary syndrome. Med. Sci. Monit., 2014, 20, 413-419.
[http://dx.doi.org/10.12659/MSM.890151] [PMID: 24621882]
[85]
Xie, R.; Jia, D.; Gao, C.; Zhou, J.; Sui, H.; Wei, X.; Zhang, T.; Han, Y.; Shi, J.; Bai, Y. Homocysteine induces procoagulant activity of red blood cells via phosphatidylserine exposure and microparticles generation. Amino Acids, 2014, 46(8), 1997-2004.
[http://dx.doi.org/10.1007/s00726-014-1755-6] [PMID: 24817414]
[86]
Liu, M.; Wang, Y.L.; Shang, M.; Wang, Y.; Zhang, Q.; Wang, S.X.; Wei, S.; Zhang, K.; Liu, C.; Wu, Y.N.; Liu, M.L.; Song, J.Q.; Liu, Y.X. Flow cytometric analysis of circulating microvesicles derived from myocardial Ischemic preconditioning and cardioprotection of Ischemia/reperfusion Injury in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2015, 31(6), 524-531.
[PMID: 27215020]
[87]
Levin, G.; Sukhareva, E.; Lavrentieva, A. Impact of microparticles derived from erythrocytes on fibrinolysis. J. Thromb. Thrombolysis, 2016, 41(3), 452-458.
[http://dx.doi.org/10.1007/s11239-015-1299-y] [PMID: 26590996]
[88]
Giannopoulos, G.; Vrachatis, D.A.; Oudatzis, G.; Paterakis, G.; Angelidis, C.; Koutivas, A.; Sianos, G.; Cleman, M.W.; Filippatos, G.; Lekakis, J.; Deftereos, S. Circulating erythrocyte microparticles and the biochemical extent of myocardial injury in ST elevation myocardial infarction. Cardiology, 2017, 136(1), 15-20.
[http://dx.doi.org/10.1159/000447625] [PMID: 27552820]
[89]
Cimmino, G.; D’Amico, C.; Vaccaro, V.; D’Anna, M.; Golino, P. The missing link between atherosclerosis, inflammation and thrombosis: is it tissue factor? Expert Rev. Cardiovasc. Ther., 2011, 9(4), 517-523.
[http://dx.doi.org/10.1586/erc.11.40] [PMID: 21517734]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 27
Year: 2020
Published on: 05 August, 2020
Page: [4440 - 4468]
Pages: 29
DOI: 10.2174/0929867327666191213104841
Price: $65

Article Metrics

PDF: 26
HTML: 3