Will Tissue-Engineering Strategies Bring New Hope for the Reconstruction of Nasal Septal Cartilage?

Author(s): Zohreh Bagher, Negin Asgari, Parisa Bozorgmehr, Seyed Kamran Kamrava, Rafieh Alizadeh, Alexander Seifalian*

Journal Name: Current Stem Cell Research & Therapy

Volume 15 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor


The nasal septal cartilage plays an important role in the growth of midface and as a vertical strut preventing the collapse of the nasal bones. The repair of nasal cartilage defects remains a major challenge in reconstructive surgery. The tissue engineering strategy in the development of tissue has opened a new perspective to generate functional tissue for transplantation. Given the poor regenerative properties of cartilage and a limited amount of autologous cartilage availability, intense interest has evoked for tissue engineering approaches for cartilage development to provide better outcomes for patients who require nasal septal reconstruction. Despite numerous attempts to substitute the shapely hyaline cartilage in the nasal cartilages, many significant challenges remained unanswered. The aim of this research was to carry out a critical review of the literature on research work carried out on the development of septal cartilage using a tissue engineering approach, concerning different cell sources, scaffolds and growth factors, as well as its clinical pathway and trials have already been carried out.

Keywords: Cartilage, nasal septal, graphene, tissue engineering, stem cells, cartilage.

Holton NE, Franciscus RG, Marshall SD, Southard TE, Nieves MA. Nasal septal and premaxillary developmental integration: Implications for facial reduction in Homo. Anat Rec (Hoboken) 2011; 294(1): 68-78.
[http://dx.doi.org/10.1002/ar.21288] [PMID: 21157917]
Kim JH, Jung DJ, Kim HS, Kim CH, Kim TY. Analysis of the development of the nasal septum and measurement of the harvestable septal cartilage in koreans using three-dimensional facial bone computed tomography scanning. Arch Plast Surg 2014; 41(2): 163-70.
[http://dx.doi.org/10.5999/aps.2014.41.2.163] [PMID: 24665426]
Oseni A, Crowley C, Lowdell M, Birchall M, Butler PE, Seifalian AM. Advancing nasal reconstructive surgery: The application of tissue engineering technology. J Tissue Eng Regen Med 2012; 6(10): 757-68.
[http://dx.doi.org/10.1002/term.487] [PMID: 22095677]
Cannady SB, Cook TA, Wax MK. The total nasal defect and reconstruction. Facial Plast Surg Clin North Am 2009; 17(2): 189-201.
[http://dx.doi.org/10.1016/j.fsc.2009.01.002] [PMID: 19393942]
Sapmaz E, Toplu Y, Somuk BT. A new classification for septal perforation and effects of treatment methods on quality of life.Rev Bras Otorrinolaringol (Engl Ed). 2018.
[PMID: 30057254]
Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 2009; 37(1-2): 1-57.
[http://dx.doi.org/10.1615/CritRevBiomedEng.v37.i1-2.10] [PMID: 20201770]
Sajjadian A, Naghshineh N, Rubinstein R. Current status of grafts and implants in rhinoplasty: Part II. Homologous grafts and allogenic implants. Plast Reconstr Surg 2010; 125(3): 99e-109e.
[http://dx.doi.org/10.1097/PRS.0b013e3181cb662f] [PMID: 20195087]
Jang YJ, Moon BJ. State of the art in augmentation rhinoplasty: implant or graft? Curr Opin Otolaryngol Head Neck Surg 2012; 20(4): 280-6.
[http://dx.doi.org/10.1097/MOO.0b013e328354b390] [PMID: 22695624]
Bos EJ, Pluemeekers M, Helder M, et al. Structural and mechanical comparison of human ear, alar, and septal cartilage. Plast Reconstr Surg Glob Open 2018; 6(1)e1610
[http://dx.doi.org/10.1097/GOX.0000000000001610] [PMID: 29464156]
Berghaus A, Stelter K. Alloplastic materials in rhinoplasty. Curr Opin Otolaryngol Head Neck Surg 2006; 14(4): 270-7.
[http://dx.doi.org/10.1097/01.moo.0000233599.14671.4a] [PMID: 16832185]
Bücheler M, Haisch A. Tissue engineering in otorhinolaryngology. DNA Cell Biol 2003; 22(9): 549-64.
[http://dx.doi.org/10.1089/104454903322405446] [PMID: 14577908]
Andrews SHJ, Kunze M, Mulet-Sierra A, et al. Strategies to mitigate variability in engineering human nasal cartilage. Sci Rep 2017; 7(1): 6490.
[http://dx.doi.org/10.1038/s41598-017-06666-2] [PMID: 28747655]
Greene JJ, Watson D. Septal cartilage tissue engineering: new horizons. Facial Plast Surg 2010; 26(5): 396-404.
[http://dx.doi.org/10.1055/s-0030-1265019] [PMID: 20853231]
Lim E-H, Sardinha JP, Myers S. Nanotechnology biomimetic cartilage regenerative scaffolds. Arch Plast Surg 2014; 41(3): 231-40.
[http://dx.doi.org/10.5999/aps.2014.41.3.231] [PMID: 24883273]
Popko M, Bleys RL, De Groot JW, Huizing EH. Histological structure of the nasal cartilages and their perichondrial envelope. I. The septal and lobular cartilage. Rhinology 2007; 45(2): 148-52.
[PMID: 17708463]
Mansfield JC, Winlove CP, Moger J, Matcher SJ. Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy. J Biomed Opt 2008; 13(4)044020
[http://dx.doi.org/10.1117/1.2950318] [PMID: 19021348]
Homicz MR, McGowan KB, Lottman LM, Beh G, Sah RL, Watson D. A compositional analysis of human nasal septal cartilage. Arch Facial Plast Surg 2003; 5(1): 53-8.
[http://dx.doi.org/10.1001/archfaci.5.1.53] [PMID: 12533140]
Rotter N, Bonassar LJ, Tobias G, Lebl M, Roy AK, Vacanti CA. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials 2002; 23(15): 3087-94.
[http://dx.doi.org/10.1016/S0142-9612(02)00031-5] [PMID: 12102179]
Griffin MF, Premakumar Y, Seifalian AM, Szarko M, Butler PEM. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering. J Mater Sci Mater Med 2016; 27(1): 11.
[http://dx.doi.org/10.1007/s10856-015-5619-8] [PMID: 26676857]
Ustünel I, Çaylį S, Güney K, et al. Immunohistochemical distribution patterns of collagen type II, chondroitin 4-sulfate, laminin and fibronectin in human nasal septal cartilage. Acta Histochem 2003; 105(2): 109-14.
[http://dx.doi.org/10.1078/0065-1281-00699] [PMID: 12831162]
Ansari K, Asaria J, Hilger P, Adamson PA. Grafts and implants in rhinoplasty—techniques and long-term results. Oper Tech Otolaryngol--Head Neck Surg 2008; 19(1): 42-58.
D D’Lima D, C Chen P, W Colwell C Jr. Osteochondral grafting: effect of graft alignment, material properties, and articular geometry. Open Orthop J 2009; 3: 61-8.
[http://dx.doi.org/10.2174/1874325000903010061] [PMID: 19696917]
Babula WJ Jr, Smiley GR, Dixon AD. The role of the cartilaginous nasal septum in midfacial growth. Am J Orthod 1970; 58(3): 250-63.
[http://dx.doi.org/10.1016/0002-9416(70)90088-6] [PMID: 5270906]
Rotter N, Bonassar LJ, Tobias G, Lebl M, Roy AK, Vacanti CA. Age dependence of cellular properties of human septal cartilage: implications for tissue engineering. Arch Otolaryngol Head Neck Surg 2001; 127(10): 1248-52.
[http://dx.doi.org/10.1001/archotol.127.10.1248] [PMID: 11587607]
Zemek A, Garg R, Wong BJ. Model for estimating the threshold mechanical stability of structural cartilage grafts used in rhinoplasty. Laryngoscope 2010; 120(6): 1089-93.
[http://dx.doi.org/10.1002/lary.20891] [PMID: 20513022]
Kim JH, Hamamoto A, Kiyohara N, Wong BJ. Model to estimate threshold mechanical stability of lower lateral cartilage. JAMA Facial Plast Surg 2015; 17(4): 245-50.
[http://dx.doi.org/10.1001/jamafacial.2015.0255] [PMID: 25927180]
Richmon JD, Sage AB, Wong VW, et al. Tensile biomechanical properties of human nasal septal cartilage. Am J Rhinol 2005; 19(6): 617-22.
[http://dx.doi.org/10.1177/194589240501900616] [PMID: 16402652]
Richmon JD, Sage A, Wong WV, Chen AC, Sah RL, Watson D. Compressive biomechanical properties of human nasal septal cartilage. Am J Rhinol 2006; 20(5): 496-501.
[http://dx.doi.org/10.2500/ajr.2006.20.2932] [PMID: 17063745]
Bermueller C, Schwarz S, Elsaesser AF, et al. Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 2013; 19(19-20): 2201-14.
[http://dx.doi.org/10.1089/ten.tea.2012.0650] [PMID: 23621795]
Oseni AO, Butler PE, Seifalian AM. Optimization of chondrocyte isolation and characterization for large-scale cartilage tissue engineering. J Surg Res 2013; 181(1): 41-8.
[http://dx.doi.org/10.1016/j.jss.2012.05.087] [PMID: 22819310]
Idrusa RBH, Huia CK, Ibrahimb FW, Husseinc FN, Saimd AB. The expansion potential of human nasal septum chondrocytes for the formation of engineered cartilage. Sci Asia 2007; 33: 145-52.
Tay AG, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 2004; 10(5-6): 762-70.
[http://dx.doi.org/10.1089/1076327041348572] [PMID: 15265293]
Kafienah W, Jakob M, Démarteau O, et al. Three-dimensional tissue engineering of hyaline cartilage: Comparison of adult nasal and articular chondrocytes. Tissue Eng 2002; 8(5): 817-26.
[http://dx.doi.org/10.1089/10763270260424178] [PMID: 12459060]
Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 2005; 23(2): 425-32.
[http://dx.doi.org/10.1016/j.orthres.2004.08.008] [PMID: 15734258]
Chia SH, Schumacher BL, Klein TJ, et al. Tissue-engineered human nasal septal cartilage using the alginate-recovered-chondrocyte method. Laryngoscope 2004; 114(1): 38-45.
[http://dx.doi.org/10.1097/00005537-200401000-00006] [PMID: 14709992]
Wu W, Chen F, Feng X, Liu Y, Mao T. Engineering cartilage tissues with the shape of human nasal alar by using chondrocyte macroaggregate--Experiment study in rabbit model. J Biotechnol 2007; 130(1): 75-84.
[http://dx.doi.org/10.1016/j.jbiotec.2007.02.029] [PMID: 17434638]
Chia SH, Homicz MR, Schumacher BL, et al. Characterization of human nasal septal chondrocytes cultured in alginate. J Am Coll Surg 2005; 200(5): 691-704.
[http://dx.doi.org/10.1016/j.jamcollsurg.2005.01.006] [PMID: 15848359]
Stuart MP, Matsui RA, Santos MF, Côrtes I, Azevedo MS, Silva KR, et al. Successful low-cost scaffold-free cartilage tissue engineering using human cartilage progenitor cell spheroids formed by micromolded nonadhesive hydrogel. Stem Cells Int 2017.
King SN, Hanson SE, Hematti P, Thibeault SL. Current applications of mesenchymal stem cells for tissue replacement in otolaryngology-head and neck surgery. Am J Stem Cells 2012; 1(3): 225-38.
[PMID: 23671810]
Pleumeekers MM, Nimeskern L, Koevoet WL, Karperien M, Stok KS, van Osch GJ. Cartilage regeneration in the head and neck area: combination of ear or nasal chondrocytes and mesenchymal stem cells improves cartilage production. Plast Reconstr Surg 2015; 136(6): 762e-74e.
[http://dx.doi.org/10.1097/PRS.0000000000001812] [PMID: 26267395]
Csaki C, Schneider PRA, Shakibaei M. Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 2008; 190(5): 395-412.
[http://dx.doi.org/10.1016/j.aanat.2008.07.007] [PMID: 18842397]
Yourek G, McCormick SM, Mao JJ, Reilly GC. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 2010; 5(5): 713-24.
[http://dx.doi.org/10.2217/rme.10.60] [PMID: 20868327]
Sun L-Y, Hsieh D-K, Syu W-S, Li Y-S, Chiu H-T, Chiou T-W. Cell proliferation of human bone marrow mesenchymal stem cells on biodegradable microcarriers enhances in vitro differentiation potential. Cell Prolif 2010; 43(5): 445-56.
[http://dx.doi.org/10.1111/j.1365-2184.2010.00694.x] [PMID: 20887551]
Rothenberg AR, Ouyang L, Elisseeff JH. Mesenchymal stem cell stimulation of tissue growth depends on differentiation state. Stem Cells Dev 2011; 20(3): 405-14.
[http://dx.doi.org/10.1089/scd.2010.0097] [PMID: 20887213]
Shieh S-J, Terada S, Vacanti JP. Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials 2004; 25(9): 1545-57.
[http://dx.doi.org/10.1016/S0142-9612(03)00501-5] [PMID: 14697857]
Liu X, Sun H, Yan D, et al. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010; 31(36): 9406-14.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.052] [PMID: 21056466]
Wu L, Prins H-J, Helder MN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 2012; 18(15-16): 1542-51.
[http://dx.doi.org/10.1089/ten.tea.2011.0715] [PMID: 22429306]
Sage A, Chang AA, Schumacher BL, Sah RL, Watson D. Cartilage outgrowth in fibrin scaffolds. Am J Rhinol Allergy 2009; 23(5): 486-91.
[http://dx.doi.org/10.2500/ajra.2009.23.3347] [PMID: 19807980]
Tuli R, Li W-J, Tuan RS. Current state of cartilage tissue engineering. Arthritis Res Ther 2003; 5(5): 235-8.
[http://dx.doi.org/10.1186/ar991] [PMID: 12932283]
Fulco I, Miot S, Haug MD, et al. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 2014; 384(9940): 337-46.
[http://dx.doi.org/10.1016/S0140-6736(14)60544-4] [PMID: 24726477]
Schwarz S, Koerber L, Elsaesser AF, et al. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 2012; 18(21-22): 2195-209.
[http://dx.doi.org/10.1089/ten.tea.2011.0705] [PMID: 22690787]
Xu Y, Fan F, Kang N, et al. Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing. Plast Reconstr Surg 2015; 135(2): 451-8.
[http://dx.doi.org/10.1097/PRS.0000000000000856] [PMID: 25357157]
Masaeli E, Karamali F, Loghmani S, Eslaminejad MB, Nasr-Esfahani MH. Bio-engineered electrospun nanofibrous membranes using cartilage extracellular matrix particles. J Mater Chem B Mater Biol Med 2017; 5(4): 765-76.
Rajzer I, Kurowska A, Jabłoński A, Jatteau S, Śliwka M, Ziąbka M, et al. Layered gelatin/PLLA scaffolds fabricated by electrospinning and 3D printing-for nasal cartilages and subchondral bone reconstruction. Mater Des 2018; 155: 297-306.
Park SH, Yun BG, Won JY, et al. New application of three-dimensional printing biomaterial in nasal reconstruction. Laryngoscope 2017; 127(5): 1036-43.
[http://dx.doi.org/10.1002/lary.26400] [PMID: 28150412]
Hashimdeen SH, Thorogate R, Miodownik M, Edirisinghe MJ. Fabrication of bespoke nasal septal scaffolds. Mater Des 2016; 90: 403-9.
Somohano Marquez T. Custom nasal septum prosthesis fabricated from a 3D-printed working model: A clinical report. J Prosthodont 2019; 28(5): 493-6.
[http://dx.doi.org/10.1111/jopr.13064] [PMID: 30942537]
Puelacher WC, Mooney D, Langer R, Upton J, Vacanti JP, Vacanti CA. Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials 1994; 15(10): 774-8.
[http://dx.doi.org/10.1016/0142-9612(94)90031-0] [PMID: 7986941]
Homicz MR, Schumacher BL, Sah RL, Watson D. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngol Head Neck Surg 2002; 127(5): 398-408.
[http://dx.doi.org/10.1067/mhn.2002.129730] [PMID: 12447233]
Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 2015; 11(1): 21-34.
[http://dx.doi.org/10.1038/nrrheum.2014.157] [PMID: 25247412]
Dufour A, Buffier M, Vertu-Ciolino D, Disant F, Mallein-Gerin F, Perrier-Groult E. Combination of bioactive factors and IEIK13 self-assembling peptide hydrogel promotes cartilage matrix production by human nasal chondrocytes. J Biomed Mater Res A 2019; 107(4): 893-903.
[http://dx.doi.org/10.1002/jbm.a.36612] [PMID: 30650239]
Lee WC, Lim CH. Kenry, Su C, Loh KP, Lim CT. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 2015; 11(8): 963-9.
[http://dx.doi.org/10.1002/smll.201401635] [PMID: 25320042]
Mendelson A, Ahn JM, Paluch K, Embree MC, Mao JJ. Engineered nasal cartilage by cell homing: A model for augmentative and reconstructive rhinoplasty. Plast Reconstr Surg 2014; 133(6): 1344-53.
[http://dx.doi.org/10.1097/PRS.0000000000000232] [PMID: 24867716]
Richmon JD, Sage AB, Shelton E, Schumacher BL, Sah RL, Watson D. Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer. Laryngoscope 2005; 115(9): 1553-60.
[http://dx.doi.org/10.1097/01.MLG.0000175541.31131.A5] [PMID: 16148694]
Hicks DL, Sage AB, Shelton E, Schumacher BL, Sah RL, Watson D. Effect of bone morphogenetic proteins 2 and 7 on septal chondrocytes in alginate. Otolaryngol Head Neck Surg 2007; 136(3): 373-9.
[http://dx.doi.org/10.1016/j.otohns.2006.10.040] [PMID: 17321862]
Alexander TH, Sage AB, Chen AC, et al. Insulin-like growth factor-I and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage. Tissue Eng Part C Methods 2010; 16(5): 1213-21.
[http://dx.doi.org/10.1089/ten.tec.2009.0396] [PMID: 20178406]
Skodacek D, Brandau S, Deutschle T, Lang S, Rotter N. Growth factors and scaffold composition influence properties of tissue engineered human septal cartilage implants in a murine model. Int J Immunopathol Pharmacol 2008; 21(4): 807-16.
[http://dx.doi.org/10.1177/039463200802100405] [PMID: 19144266]
Elsaesser AF, Bermueller C, Schwarz S, Koerber L, Breiter R, Rotter N. In vitro cytotoxicity and in vivo effects of a decellularized xenogeneic collagen scaffold in nasal cartilage repair. Tissue Eng Part A 2014; 20(11-12): 1668-78.
[http://dx.doi.org/10.1089/ten.tea.2013.0365] [PMID: 24372309]
Kim DH, Lim JY, Kim SW, et al. Characteristics of nasal septal cartilage-derived progenitor cells during prolonged cultivation. Otolaryngol Head Neck Surg 2018; 159(4): 774-82.
[http://dx.doi.org/10.1177/0194599818777195] [PMID: 29787348]
Morrison RJ, Nasser HB, Kashlan KN, et al. Co-culture of adipose-derived stem cells and chondrocytes on three-dimensionally printed bioscaffolds for craniofacial cartilage engineering. Laryngoscope 2018; 128(7): E251-7.
[http://dx.doi.org/10.1002/lary.27200] [PMID: 29668079]
Won H-R, Kim YS, Won J-E, Shin YS, Kim C-H. The Application of Fibrin/Hyaluronic Acid-Poly(l-Lactic-co-Glycolic Acid) Construct in Augmentation Rhinoplasty. Tissue Eng Regen Med 2017; 15(2): 223-30.
[http://dx.doi.org/10.1007/s13770-017-0095-5] [PMID: 30603549]
Goldberg-Bockhorn E, Schwarz S, Subedi R, et al. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering. Lasers Med Sci 2018; 33(2): 375-84.
[http://dx.doi.org/10.1007/s10103-017-2402-8] [PMID: 29209868]
Vedicherla S, Buckley CT. In vitro extracellular matrix accumulation of nasal and articular chondrocytes for intervertebral disc repair. Tissue Cell 2017; 49(4): 503-13.
[http://dx.doi.org/10.1016/j.tice.2017.05.002] [PMID: 28515001]
Yanaga H, Imai K, Yanaga K. Generative surgery of cultured autologous auricular chondrocytes for nasal augmentation. Aesthetic Plast Surg 2009; 33(6): 795-802.
[http://dx.doi.org/10.1007/s00266-009-9399-8] [PMID: 19690908]
Zhang J, Liu L, Gao Z, et al. Novel approach to engineer implantable nasal alar cartilage employing marrow precursor cell sheet and biodegradable scaffold. J Oral Maxillofac Surg 2009; 67(2): 257-64.
[http://dx.doi.org/10.1016/j.joms.2008.08.009] [PMID: 19138597]
Homicz MR, Chia SH, Schumacher BL, et al. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture. Laryngoscope 2003; 113(1): 25-32.
[http://dx.doi.org/10.1097/00005537-200301000-00005] [PMID: 12514377]
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications Chem Rev 2018; 25;118(14): 6766-843.
Seifalian A, Hancock S. Composite material and its method of production Patent number: GB 2569670 2019.
Nayyer L, Jell G, Esmaeili A, Birchall M, Seifalian AM. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction. Adv Healthc Mater 2016; 5(10): 1203-12.
[http://dx.doi.org/10.1002/adhm.201500968] [PMID: 26992039]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 25 March, 2020
Page: [144 - 154]
Pages: 11
DOI: 10.2174/1574888X14666191212160757
Price: $65

Article Metrics

PDF: 16
PRC: 1