Microbial Biosurfactants-an Ecofriendly Boon to Industries for Green Revolution

Author(s): Pushpinder Sharma, Nivedita Sharma*

Journal Name: Recent Patents on Biotechnology

Volume 14 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Biosurfactants have a biological origin, and are widely known as surface active agents. Different classes of biosurfactant have significant importance in both the biotechnological and microbiological arena. Pseudomonas aeruginosa, Bacillus subtilis and Candida sp. are important classes of microorganisms that are highly investigated for the production of rhamnolipids (RLs) biosurfactants. Rhamnolipids have unique surface activity and have gained interest in various industrial applications. Due to their high biodegradability, renewability and functionally maintenance at extreme conditions, microbial biosurfactants are more advantageous than chemical-based biosurfactants. Biosurfactants produced by microorganisms are a potential candidate for biodegradation, environmental cleanup of pollutants and also play a role in the heavy metal removal of metallurgical industries also many patents have been filed. Therefore, greater attention has been paid to biosurfactants and identifying their potential applications for further studies.

Keywords: Rhamnolipids (RLs), biosurfactant, Pseudomonas aeruginosa, biodegradation, Bacillus sp., hydrophobicity.

[1]
Rosenberg E, Ron EZ. Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 1997; 8(3): 313-6.
[http://dx.doi.org/10.1016/S0958-1669(97)80009-2] [PMID: 9206012]
[2]
Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Biosurfactants: multifunctional biomolecules of the 21st Century. Int J Mol Sci 2016; 17(3): 401.
[http://dx.doi.org/10.3390/ijms17030401] [PMID: 26999123]
[3]
Willumsen PA, Karlson U. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 1997; 7: 415-23.
[http://dx.doi.org/10.1007/BF00056425]
[4]
Volkering F, Breure AM, Rulkens WH. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 1997-1998; 8(6): 401-17.
[http://dx.doi.org/10.1023/A:1008291130109] [PMID: 15765586]
[5]
Tabatabaee A, Mazaheri MA, Noohi AA, Sajadian VA. Isolation of biosurfactant producing bacteria from oil reservoirs. J Environ Health Sci Eng 2005; 2: 6-12.
[6]
Lai CC, Huang YC, Wei YH, Chang JS. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 2009; 167(1-3): 609-14.
[http://dx.doi.org/10.1016/j.jhazmat.2009.01.017] [PMID: 19217712]
[7]
Amaral PFF, da Silva JM, Lehocky M, Barros-Timmons AMV, Coelho MAZ, Marrucho IM, et al. Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 2006; 41: 1894-8.
[http://dx.doi.org/10.1016/j.procbio.2006.03.029]
[8]
Muthusamy K, Gopalakrishnan S, Kochupappy Ravi T, Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr Sci 2008; 94: 736-47.
[9]
Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 1997; 61(1): 47-64.
[PMID: 9106364]
[10]
Jadhav M, Kalme S, Tamboli D, Govindwar S. Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 2011; 51(4): 385-96.
[http://dx.doi.org/10.1002/jobm.201000364] [PMID: 21656804]
[11]
Kim SY, Oh DK, Lee KH, Kim JH. Effect of soybean oil and glucose on sophorose lipid fermentation by Torulopsis bombicola in continuous culture. Appl Microbiol Biotechnol 1997; 48(1): 23-6.
[http://dx.doi.org/10.1007/s002530051009] [PMID: 9274044]
[12]
Chandran P, Das N. Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. IJESTEC. 2010; 6942-53.
[13]
Casas JA, de Lara SG, Garcia-Ochoa F. Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzyme Microb Technol 1997; 21: 221-9.
[http://dx.doi.org/10.1016/S0141-0229(97)00038-0]
[14]
Rufino RD, Sarubbo LA, Campos-Takaki GM. Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 2007; 23: 729-34.
[http://dx.doi.org/10.1007/s11274-006-9278-2]
[15]
Rosenberg E, Ron EZ. High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 1999; 52(2): 154-62.
[http://dx.doi.org/10.1007/s002530051502] [PMID: 10499255]
[16]
Kosaric N. Biosurfactants and their Applications for Soil Bioremediation. Food Technol Biotechnol 2001; 39: 295-304.
[17]
Karanth NGK, Deo PG, Veenanadig NK. Microbial production of biosurfactants and their importance. Curr Sci 1999; 77: 116-26.
[18]
Jarvis FG, Johnson MJ. A glycolipid produced by Pseudomonas aeruginosa. JACS 1949; 71: 4124-6.
[http://dx.doi.org/10.1021/ja01180a073]
[19]
Ristau E, Wanger F. Formation of novel trehalose lipids from Rhodococcus erythropolis under growth RR limiting conditions. Biotechnol Lett 1983; 5: 95-100.
[http://dx.doi.org/10.1007/BF00132166]
[20]
Lang S, Wagner F. Structure and properties of biosurfactants, Biosurfactants and biotechnology. New York, N.Y: Marcel Dekker, Inc. 1987; pp. 21-47.
[21]
Hommel RK, Stuwer O, Stuber W, Haferburg D, Kleber HP. Production of water-soluble surface-active exolipids by Torulopsis apicola. Appl Environ Microbiol 1987; 26: 199-205.
[22]
Göbbert U, Lang S, Wagner S. Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol Lett 1984; 6: 225-30.
[http://dx.doi.org/10.1007/BF00140041]
[23]
Inoue S, Itoh S. Sorphorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentation. Biotechnol Lett 1982; 4: 3-8.
[http://dx.doi.org/10.1007/BF00139273]
[24]
Cooper DG, Macdonald CR, Duff SJB, Kosaric N. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 1981; 42(3): 408-12.
[PMID: 16345840]
[25]
Tulloch P, Hill A, Spencer JFT. A new type of macrocyclic lactone from Torulopsis apicola. J Chem Soc Chem Commun 1967; 12: 584-6.
[26]
Cooper DG, Paddock DA. Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 1984; 47(1): 173-6.
[PMID: 16346455]
[27]
Sen S, Borah SN, Bora A, Deka S. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Fact 2017; 16(1): 95.
[http://dx.doi.org/10.1186/s12934-017-0711-z] [PMID: 28558761]
[28]
Brundish DE, Shaw N, Baddiley J. Bacterial glycolipids. Glycosyl diglycerides in gram-positive bacteria. Biochem J 1966a; 99(3): 546-9.
[PMID: 4381586]
[29]
Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr Sci 1988; 94(6): 736-47.
[30]
Edwards JR, Hayashi JA. Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 1965; 111(2): 415-21.
[http://dx.doi.org/10.1016/0003-9861(65)90204-3] [PMID: 4285853]
[31]
Cooper DG, Paddock DA. Torulopsis petrophilum and surface activity. Appl Environ Microbiol 1983; 46(6): 1426-9.
[PMID: 16346449]
[32]
Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 1968; 31(3): 488-94.
[http://dx.doi.org/10.1016/0006-291X(68)90503-2] [PMID: 4968234]
[33]
Singh SN, Tripathi RD. Environmental bioremediation technologies. Heidelberg: Springer 2003; pp. 391-408.
[34]
Costa SG, Nitschke M, Lépine F, Déziel E, Contiero J. Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochem 2010; (9): 1511-6.
[http://dx.doi.org/10.1016/j.procbio.2010.05.033]
[35]
Geetha SJ, Banat IM, Joshi SJ. Biosurfactants: production and potential applications in microbial enhanced oil recovery (MEOR). ISBAB 2018; 14: 23-32.
[36]
Dhanarajan G, Rangarajan V, Bandi C, Dixit A, Das S, Ale K, et al. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique. J Biotechnol 2017; 256: 46-56.
[http://dx.doi.org/10.1016/j.jbiotec.2017.05.007] [PMID: 28499818]
[37]
Magalhaes L, Nitschke M. Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 2013; 29: 138-42.
[http://dx.doi.org/10.1016/j.foodcont.2012.06.009]
[38]
Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Geltinger C, Nakahara T, et al. Mannosylerythritol lipid is a potent inducer of apoptosis and differentiation of mouse melanoma cells in culture. Cancer Res 1999; 59(2): 482-6.
[PMID: 9927066]
[39]
Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N, et al. Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. Eur J Biochem 2001; 268(2): 374-83.
[http://dx.doi.org/10.1046/j.1432-1033.2001.01887.x] [PMID: 11168372]
[40]
Kitamoto D, Yanagishita H, Shinbo T. Chemical and physical characterization of interfacial active lipids from Rhodococcus erythropolis grown on n-alkane. Appl Environ Microbiol 1993; 44: 864-70.
[41]
Piljac T, Piljac G. Use of Rhamnolipids as Cosmetics EP 1056462 B1 2017.
[42]
Parry AJ, Parry NJ, Peilow C, Stevenson PS. Combinations of rhamnolipids and enzymes for improved cleaning EP 2596087 A1 2013.
[43]
Sachdev DP, Cameotra SS. Biosurfactants in agriculture. Appl Microbiol Biotechnol 2013; 97(3): 1005-16.
[http://dx.doi.org/10.1007/s00253-012-4641-8] [PMID: 23280539]
[44]
Itoh S, Suzuki T. Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 1972; 36: 2233-5.
[http://dx.doi.org/10.1080/00021369.1972.10860546]
[45]
Chang MW, Holoman TP, Yi H. Molecular characterization of surfactant-driven microbial community changes in anaerobic phenanthrene-degrading cultures under methanogenic conditions. Biotechnol Lett 2008; 30(9): 1595-601.
[http://dx.doi.org/10.1007/s10529-008-9731-4] [PMID: 18421419]
[46]
Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci Total Environ 2009; 407(12): 3634-40.
[http://dx.doi.org/10.1016/j.scitotenv.2008.07.008] [PMID: 18722001]
[47]
Nayak AS, Vijaykumar MH, Karegoudar TB. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegradation 2009; 63: 73-9.
[http://dx.doi.org/10.1016/j.ibiod.2008.07.003]
[48]
Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, et al. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 1995; 61(9): 3240-4.
[PMID: 7574633]
[49]
Bezza FA, Chirwa EMN. The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Chem Eng J 2017; 309: 563-76.
[http://dx.doi.org/10.1016/j.cej.2016.10.055]
[50]
Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, et al. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry 2009;1; 44(3): 302-8.
[http://dx.doi.org/10.1016/j.procbio.2008.11.003]
[51]
Shin KH, Kim KW, Seagren EA. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Appl Microbioland Biotechnol 2004;1; 65(3): 336-43.
[http://dx.doi.org/10.1007/s00253-004-1561-2]
[52]
Parthipan P, Preetham E, Machuca LL, Rahman PKSM, Murugan K, Rajasekar A. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 2017; 8: 193.
[http://dx.doi.org/10.3389/fmicb.2017.00193] [PMID: 28232826]
[53]
Kachholz T, Schlingmann M. Possible food and agricultural applications of microbial surfactants: an assessment.In: Mukherjee AK, Das K, eds. Biosurfactants and biotechnology. New York, USA: Marcel Dekker 1987; pp. 183-210.
[54]
Anjum F, Gautam G, Edgard G, Negi S. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresour Technol 2016; 213: 262-9.
[http://dx.doi.org/10.1016/j.biortech.2016.02.091] [PMID: 27013189]
[55]
Díaz De Rienzo MA, Stevenson PS, Marchant R, Banat IM. Pseudomonas aeruginosa biofilm disruption using microbial surfactants. J Appl Microbiol 2016; 120(4): 868-76.
[http://dx.doi.org/10.1111/jam.13049] [PMID: 26742560]
[56]
Van Haesendonck IPH, Vanzeveren ECA. Rhamnolipids in bakery products US Patent, 2006023393 5A1 2004.
[57]
Mnif I, Sahnoun R, Chaabouni SE, Ghribi D. Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ 2017; 109: 72-81.
[http://dx.doi.org/10.1016/j.psep.2017.02.002]
[58]
Mohan PK, Nakhla G, Yanful EK. Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res 2006; 40(3): 533-40.
[http://dx.doi.org/10.1016/j.watres.2005.11.030] [PMID: 16405945]
[59]
Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Ramu Dirisala V, et al. Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 2018; 4: 241-9.
[http://dx.doi.org/10.1016/j.petlm.2018.03.007]
[60]
de Cássia FS, Silva R, Almeida DG, et al. Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 2014; 15(7): 12523-42.
[http://dx.doi.org/10.3390/ijms150712523] [PMID: 25029542]
[61]
Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. Environmental applications of biosurfactants: recent advances. Int J Mol Sci 2011; 12(1): 633-54.
[http://dx.doi.org/10.3390/ijms12010633] [PMID: 21340005]
[62]
Sarubbo LA, Rocha RB Jr. Luna, JM, Rufino RD, Santos VA, Banat IM. Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem Ecol 2015; 31: 1-17.
[http://dx.doi.org/10.1080/02757540.2015.1095293]
[63]
JM, Stamford TLM, Sarubbo LA, Luna JM, Rufino RD, Banat IM.. Microbial biosurfactants as additives for food industries. Biotechnology programme. 2013; 29: E1097-1108.
[64]
Ławniczak L, Marecik R, Chrzanowski L. Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 2013; 97(6): 2327-39.
[http://dx.doi.org/10.1007/s00253-013-4740-1] [PMID: 23400445]
[65]
Sachdeva S, Prashar P, Kapoor N. Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 2014; (1): 63-77.
[66]
Vijayakumar S, Saravanan V. Biosurfactants-types, sources and applications. Int J Microbiol Res 2015; 10: 181-92.
[67]
Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, et al. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 2010; 87(2): 427-44.
[http://dx.doi.org/10.1007/s00253-010-2589-0] [PMID: 20424836]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 3
Year: 2020
Published on: 25 September, 2020
Page: [169 - 183]
Pages: 15
DOI: 10.2174/1872208313666191212094628
Price: $65

Article Metrics

PDF: 18
HTML: 2
EPUB: 1
PRC: 1