Pharmaceutical Co-Crystals - Design, Development and Applications

Author(s): Rachna Anand, Arun Kumar, Arun Nanda*

Journal Name: Drug Delivery Letters

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Solubility and dissolution profile are the major factors which directly affect the biological activity of a drug and these factors are governed by the physicochemical properties of the drug. Crystal engineering is a newer and promising approach to improve physicochemical characteristics of a drug without any change in its pharmacological action through a selection of a wide range of easily available crystal formers.

Objective: The goal of this review is to summarize the importance of crystal engineering in improving the physicochemical properties of a drug, methods of design, development, and applications of cocrystals along with future trends in research of pharmaceutical co-crystals. Co-crystallization can also be carried out for the molecules which lack ionizable functional groups, unlike salts which require ionizable groups.

Conclusion: Co-crystals is an interesting and promising research area amongst pharmaceutical scientists to fine-tune the physicochemical properties of drug materials. Co-crystallization can be a tool to increase the lifecycle of an older drug molecule. Crystal engineering carries the potential of being an advantageous technique than any other approach used in the pharmaceutical industry. Crystal engineering offers a plethora of biopharmaceutical and physicochemical enhancements to a drug molecule without the need of any pharmacological change in the drug.

Keywords: Bioavailability, co-crystals, coformer, dissolution, permeability, solubility, stability.

[1]
Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm., 2004, 58(2), 265-278.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.001] [PMID: 15296954]
[2]
Kawakami, K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv. Drug Deliv. Rev., 2012, 64(6), 480-495.
[http://dx.doi.org/10.1016/j.addr.2011.10.009] [PMID: 22265844]
[3]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. ISRN Pharm., 2012, 2012, 195727.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[4]
Lin, S.Y. Mechanochemical approaches to pharmaceutical cocrystal formation and stability analysis. Curr. Pharm. Des., 2016, 22(32), 5001-5018.
[http://dx.doi.org/10.2174/1381612822666160726111253] [PMID: 27464722]
[5]
Karki, S.; Friscic, T.; Jones, W. Control and interconversion of co-crystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded co-crystal. CrystEngComm, 2009, 11(3), 470-481.
[http://dx.doi.org/10.1039/B812531G]
[6]
Schultheiss, N.; Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des., 2009, 9(6), 2950-2967.
[http://dx.doi.org/10.1021/cg900129f] [PMID: 19503732]
[7]
Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: How co crystals enhance solubility. Prog. Cryst. Growth Charact. Mater., 2016, 62(3), 1-8.
[http://dx.doi.org/10.1016/j.pcrysgrow.2016.07.001]
[8]
Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry Aug 2016; Available at:. https://www.fda.gov/downloads/drugs/guidances/ucm281764.pdf (Accessed on September 23, 2017)
[9]
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm., 2013, 453(1), 101-125.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.043] [PMID: 23207015]
[10]
Nazar, A.A.; Azim, Y. Pharmaceutical co-crystals: A new paradigm of crystal engineering. J. Indian Inst. Sci., 2014, 94(1), 45-67.
[11]
Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm., 2011, 407(1-2), 63-71.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.030] [PMID: 21256944]
[12]
Fukte, S.R.; Wagh, M.P.; Rawat, S. Coformer selection: An important tool in co-crystal formation. Int. J. Pharma Sci., 2014, 6(7), 9-14.
[13]
Allen, F.H.; Motherwell, W.D. Application of cambridge structural database in organic chemistry and crystal chemistry. Acta Crystallogr. Section B, 2002, 58(3-1), 407-422.
[http://dx.doi.org/10.1107/S0108768102004895]
[14]
Etter, M.C. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res., 1990, 23(4), 120-126.
[http://dx.doi.org/10.1021/ar00172a005]
[15]
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: an overview. Int. J. Pharm., 2011, 419(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.037] [PMID: 21827842]
[16]
Sekhon, B.S. Pharmaceutical co-crystal-a review. ARS Pharmaceutica, 2009, 50(3), 99-117.
[17]
Childs, S.L.; Stahly, G.P.; Park, A. The salt-cocrystal continuum: the influence of crystal structure on ionization state. Mol. Pharm., 2007, 4(3), 323-338.
[http://dx.doi.org/10.1021/mp0601345] [PMID: 17461597]
[18]
Cruz-Cabeza, A.J. Acid–base crystalline complexes and the pKa rule. CrystEngComm, 2012, 14(20), 6362-6365.
[http://dx.doi.org/10.1039/c2ce26055g]
[19]
Kumar, S.; Nanda, A. Pharmaceutical co-crystals: an overview. Indian J. Pharm. Sci., 2017, 79(6), 858-871.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000302]
[20]
Kumar, S.; Nanda, A. Approaches to design of pharmaceutical co-crystals: A review. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2018, 667(1), 54-77.
[http://dx.doi.org/10.1080/15421406.2019.1577462]
[21]
Bak, A.; Gore, A.; Yanez, E.; Stanton, M.; Tufekcic, S.; Syed, R.; Akrami, A.; Rose, M.; Surapaneni, S.; Bostick, T.; King, A.; Neervannan, S.; Ostovic, D.; Koparkar, A. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J. Pharm. Sci., 2008, 97(9), 3942-3956.
[http://dx.doi.org/10.1002/jps.21280] [PMID: 18214948]
[22]
Aakeröy, C.B.; Forbes, S.; Desper, J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J. Am. Chem. Soc., 2009, 131(47), 17048-17049.
[http://dx.doi.org/10.1021/ja907674c] [PMID: 19894718]
[23]
Reutzel-Edens, S.M.; Newman, A.W. Physical characterization of hygroscopicity in pharmaceutical solids., 2006.
[http://dx.doi.org/10.1002/3527607889.ch9]
[24]
McNamara, D.P.; Childs, S.L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M.S.; Mannion, R.; O’Donnell, E.; Park, A. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res., 2006, 23(8), 1888-1897.
[http://dx.doi.org/10.1007/s11095-006-9032-3] [PMID: 16832611]
[25]
Padrela, L.; Rodrigues, M.A.; Velaga, S.P.; Fernandes, A.C.; Matos, H.A.; Azevedo, E.G. Screening for pharmaceutical co-crystals using the supercritical fluid enhanced atomization process. J. Supercrit. Fluids, 2010, 53(1-3), 156-164.
[http://dx.doi.org/10.1016/j.supflu.2010.01.010]
[26]
Basavoju, S.; Boström, D.; Velaga, S.P. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm. Res., 2008, 25(3), 530-541.
[http://dx.doi.org/10.1007/s11095-007-9394-1] [PMID: 17703346]
[27]
Variankaval, N.; Wenslow, R.; Murry, J.; Hartman, R.; Helmy, R.; Kwong, E.; Clas, S.D.; Dalton, C.; Santos, I. Preparation and solid-state characterization of nonstoichiometric co-crystals of a phosphodiesterase-IV inhibitor and l-tartaric acid. Cryst. Growth Des., 2006, 6(3), 690-700.
[http://dx.doi.org/10.1021/cg050462u]
[28]
Good, D.J.; Rodriguez-Hornedo, N. Co-crystal eutectic constants and prediction of solubility behavior. Cryst. Growth Des., 2010, 10(3), 1028-1032.
[http://dx.doi.org/10.1021/cg901232h]
[29]
Serajuddin, A.T.M. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci., 1999, 88(10), 1058-1066.
[http://dx.doi.org/10.1021/js980403l] [PMID: 10514356]
[30]
Kobayashi, Y.; Ito, S.; Itai, S.; Yamamoto, K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int. J. Pharm., 2000, 193(2), 137-146.
[http://dx.doi.org/10.1016/S0378-5173(99)00315-4] [PMID: 10606776]
[31]
Jung, M.S.; Kim, J.S.; Kim, M.S.; Alhalaweh, A.; Cho, W.; Hwang, S.J.; Velaga, S.P. Bioavailability of indomethacin-saccharin cocrystals. J. Pharm. Pharmacol., 2010, 62(11), 1560-1568.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01189.x] [PMID: 21039541]
[32]
Surov, A.O.; Voronin, A.P.; Manin, A.N.; Manin, N.G.; Kuzmina, L.G.; Churakov, A.V.; Perlovich, G.L. Pharmaceutical cocrystals of diflunisal and diclofenac with theophylline. Mol. Pharm., 2014, 11(10), 3707-3715.
[http://dx.doi.org/10.1021/mp5004652] [PMID: 25184906]
[33]
Karki, S.; Friščić, T.; Fabian, L.; Laity, P.R.; Day, G.M.; Jones, W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv. Mater., 2009, 21(38-39), 3905-3909.
[http://dx.doi.org/10.1002/adma.200900533]
[34]
Maeno, Y.; Fukami, T.; Kawahata, M.; Yamaguchi, K.; Tagami, T.; Ozeki, T.; Suzuki, T.; Tomono, K. Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former. Int. J. Pharm., 2014, 473(1-2), 179-186.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.008] [PMID: 25010838]
[35]
Smith, A.J.; Kavuru, P.; Wojtas, L.; Zaworotko, M.J.; Shytle, R.D. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol. Pharm., 2011, 8(5), 1867-1876.
[http://dx.doi.org/10.1021/mp200209j] [PMID: 21846121]
[36]
Kumar, A.; Kumar, S.; Nanda, A. A review about regulatory status and recent patents of pharmaceutical co-crystals. Adv. Pharm. Bull., 2018, 8(3), 355-363.
[http://dx.doi.org/10.15171/apb.2018.042] [PMID: 30276131]
[37]
Patel, P.V.; Brahmbhatt, H.; Upadhyay, U.M.; Shah, V. A Review on increased therapeutic efficiency of drugs by pharmaceutical co-crystals approach. Int. J. Pharm. Sci. Rev. Res., 2012, 16(1), 27-,140-148.
[38]
Yadav, S.; Gupta, P.C.; Sharma, N.; Kumar, J. Co-crystals: An alternative approach to modify physicochemical properties of drugs. Int. J. Pharm. Chem. Biol. Sci., 2015, 5(2), 427-436.
[39]
Bhatt, P.M.; Azim, Y.; Thakur, T.S.; Desiraju, G.R. Co-crystals of the anti-HIV drugs Lamivudine and Zidovudine. Cryst. Growth Des., 2009, 9(2), 951-957.
[http://dx.doi.org/10.1021/cg8007359]
[40]
Lin, H.L.; Hsu, P.C.; Lin, S.Y. Theophylline-citric acid co-crystals easily induced by DSC-FTIR microspectroscopy or different storage conditions. Asian J. Pharm. Sc., 2013, 8(1), 19-27.
[http://dx.doi.org/10.1016/j.ajps.2013.07.003]
[41]
Yadav, A.V.; Shete, A.S.; Dabke, A.P.; Kulkarni, P.V.; Sakhare, S.S. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci., 2009, 71(4), 359-370.
[http://dx.doi.org/10.4103/0250-474X.57283] [PMID: 20502540]
[42]
Zhang, S.; Chen, H.; Rasmuson, A.C. Thermodynamics and crystallization of a theophylline–salicylic acid co-crystal. CrystEngComm, 2015, 17, 4125.
[http://dx.doi.org/10.1039/C5CE00240K]
[43]
Mutalik, S.; Anju, P.; Manoj, K.; Usha, A.N. Enhancement of dissolution rate and bioavailability of aceclofenac: a chitosan-based solvent change approach. Int. J. Pharm., 2008, 350(1-2), 279-290.
[http://dx.doi.org/10.1016/j.ijpharm.2007.09.006] [PMID: 17945447]
[44]
Vaghela, P.; Tank, H.M.; Jalpa, P. Co-crystals: A novel approach to improve the physicochemical and mechanical properties. Indo Am. J. Pharm. Res., 2014, 4(10), 5055-5065.
[45]
Chun, N.H.; Lee, M.J.; Song, G.H.; Chang, K.Y.; Kim, C.S.; Choi, G.J. Combined anti-solvent and cooling method of manufacturing indomethacin–saccharin (IMC–SAC) co-crystal powders. J. Cryst. Growth, 2014, 408, 112-118.
[http://dx.doi.org/10.1016/j.jcrysgro.2014.07.057]
[46]
Cuadra, I.A.; Cabanas, A.; Cheda, J.A.R.; Martinez-Casado, F.J.; Pando, C. Pharmaceutical co-crystals of the anti-inflammatory drug diflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent. J. CO2 Util., 2016, 13, 29-37.
[47]
Sugandha, K.; Kaity, S.; Mukherjee, S.; Isaac, J.; Ghosh, A. Solubility enhancement of Ezetimibe by co-crystal engineering technique. Cryst. Growth Des., 2014, 14(9), 4475-4486.
[http://dx.doi.org/10.1021/cg500560w]
[48]
Nehm, S.J.; Rodriguez-Spong, B.; Rodríguez-Hornedo, N. Phase solubility diagrams of co-crystals are explained by solubility product and solution complexation. Cryst. Growth Des., 2006, 6(2), 592-600.
[http://dx.doi.org/10.1021/cg0503346]
[49]
Alhalaweh, A.; Velaga, P.S. Formation of co-crystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst. Growth Des., 2010, 10(8), 3302-3305.
[http://dx.doi.org/10.1021/cg100451q]
[50]
Grossjohann, C.; Serrano, D.R.; Paluch, K.J.; O’Connell, P.; Vella-Zarb, L.; Manesiotis, P.; Mccabe, T.; Tajber, L.; Corrigan, O.I.; Healy, A.M. Polymorphism in sulfadimidine/4-aminosalicylic acid cocrystals: solid-state characterization and physicochemical properties. J. Pharm. Sci., 2015, 104(4), 1385-1398.
[http://dx.doi.org/10.1002/jps.24345] [PMID: 25605031]
[51]
Karki, S.; Friscić, T.; Jones, W.; Motherwell, W.D.S. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol. Pharm., 2007, 4(3), 347-354.
[http://dx.doi.org/10.1021/mp0700054] [PMID: 17497885]
[52]
Boksa, K.; Otte, A.; Pinal, R. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion. J. Pharm. Sci., 2014, 103(9), 2904-2910.
[http://dx.doi.org/10.1002/jps.23983] [PMID: 24807421]
[53]
Kotak, U.; Prajapati, V.; Solanki, H.; Jani, G.; Jha, P. Co-crystallization technique its rational and recent progress. World J. Pharm. Pharm. Sci., 2015, 4(4), 1484-1508.
[54]
Aher, S.; Dhumal, R.; Mahadik, K.; Paradkar, A.; York, P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid. Eur. J. Pharm. Sci., 2010, 41(5), 597-602.
[http://dx.doi.org/10.1016/j.ejps.2010.08.012] [PMID: 20801215]
[55]
Cerreia Vioglio, P.; Chierotti, M.R.; Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev., 2017, 117, 86-110.
[http://dx.doi.org/10.1016/j.addr.2017.07.001] [PMID: 28687273]
[56]
Tiwary, A.K.S., Ed.; Crystal habit changes and dosage form performance. Encyclopedia of Pharmaceutical Technology, (3rd ed. ). 2007, Vol. 2, 820.
[57]
Nair, R.H.; Ron, C.K.; Brent, D.S.; Jonathan, M.M. Swarbreek editors. Crystallization: General principles and significance on product development. Encyclopedia of Pharmaceutical Technology, 3rd ed. Vol.2, London: Informa Healthcare, 2007, 834
[58]
Kiang, Y.H.; Yang, C.Y.; Staples, R.J.; Jona, J. Crystal structure, crystal morphology, and surface properties of an investigational drug. Int. J. Pharm., 2009, 368(1-2), 76-82.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.062] [PMID: 19007872]
[59]
Leyssens, T.; Springuel, G.; Montis, R.; Candoni, N.; Veesler, S. Importance of solvent selection for stoichiometrically diverse cocrystal systems: caffeine/maleic acid 1: 1 and 2: 1 cocrystals. Cryst. Growth Des., 2012, 12(3), 1520-1530.
[http://dx.doi.org/10.1021/cg201581z]
[60]
Sathisaran, I.; Dalvi, S.V. Engineering cocrystals of poorly water- soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics, 2018, 10(3), 1-74.
[http://dx.doi.org/10.3390/pharmaceutics10030108] [PMID: 30065221]
[61]
Robertson, C.C.; Wright, J.S.; Carrington, E.J.; Perutz, R.N.; Hunter, C.A.; Brammer, L. Hydrogen bonding vs. halogen bonding: the solvent decides. Chem. Sci. (Camb.), 2017, 8(8), 5392-5398.
[http://dx.doi.org/10.1039/C7SC01801K] [PMID: 28970918]
[62]
Rasenac, N.; Muller, B.W. Properties of ibuprofen crystallized under various conditions: A comparative study. Drug Dev. Ind. Pharm., 2001, 27, 803-809.
[63]
Jingkang, W.; Yongli, W.; Ying, B. Effects of solvent and impurity on crystal habit modification of 11α-hydroxy-16α,17α-epoxyprogesteron. Chin. J. Chem. Eng., 2007, 15(5), 648-653.
[http://dx.doi.org/10.1016/S1004-9541(07)60140-2]
[64]
Aaltonen, J.; Allesø, M.; Mirza, S.; Koradia, V.; Gordon, K.C.; Rantanen, J. Solid form screening--a review. Eur. J. Pharm. Biopharm., 2009, 71(1), 23-37.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.014] [PMID: 18715549]
[65]
Wang, J.R.; Yu, X.; Zhou, C.; Lin, Y.; Chen, C.; Pan, G.; Mei, X. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide. Bioorg. Med. Chem. Lett., 2015, 25(5), 1036-1039.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.022] [PMID: 25630224]
[66]
Skorepova, E.; Husak, M.; Cejka, J.; Zamostny, P.; Kratochvil, B. Increasing dissolution of trospium chloride by co-crystallization with urea. J. Crys. Gro., 2014, 399, 19-26.
[http://dx.doi.org/10.1016/j.jcrysgro.2014.04.018]
[67]
Sevukarajan, M.; Thanuja, B.; Sodanapalli, R.; Nair, R. Synthesis and characterization of a pharmaceutical co-crystal: (aceclofenac: nicotinamide). J. Pharm. Sci., 2011, 3(6), 1288-1293.
[68]
Muresan-Pop, M.; Chiriac, L.B.; Martin, F.; Simon, S. Novel nutraceutical Myricetin composite of enhanced dissolution obtained by co-crystallization with acetamide. Composite Part B, 2016, 89, 60-66.
[http://dx.doi.org/10.1016/j.compositesb.2015.11.024]
[69]
El-Gizawy, S.A.; Osman, M.A.; Arafa, M.F.; El Maghraby, G.M. Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. Int. J. Pharm., 2015, 478(2), 773-778.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.037] [PMID: 25529436]
[70]
Yan, Y.; Chen, J.M.; Lu, T.B. Thermodynamics and preliminary pharmaceutical characterization of a melatonin– pimelic acid co-crystal prepared by a melt crystallization Method. CrystEngComm, 2015, 17(3), 612-620.
[http://dx.doi.org/10.1039/C4CE01921K]
[71]
Sachit, G.; Michael, R.T.; Geoff, G.Z.; Yuchuan, G.; Paul, J.K. Microfluidic approach to co-crystal screening of pharmaceutical parent compounds. Cryst. Growth Des., 2012, 12(12), 1-12.
[72]
Inoue, M.; Hisada, H.; Koide, T.; Carriere, J.; Heyler, R.; Fukami, T. Real-time formation monitoring of co-crystals with different stoichiometries using probe-type low-frequency raman spectroscopy. Ind. Eng. Chem. Res., 2017, 56(44), 12693-12697.
[http://dx.doi.org/10.1021/acs.iecr.7b03141]
[73]
Parrott, E.P.J.; Zeitler, J.A.; Friscic, T.; Pepper, M.; Jones, W.; Day, G.M.; Gladden, L.F. Testing the sensitivity of terahertz spectrocopy to changes in molecular and supramolecular structure: a study of structurally similar co-crystals. Cryst. Growth Des., 2009, 9(3), 1452-1460.
[http://dx.doi.org/10.1021/cg8008893]
[74]
Berry, D.J.; Seaton, C.C.; Clegg, W.; Harrington, R.W.; Coles, S.J.; Horton, P.N.; Hursthouse, M.B.; Storey, R.; Jones, W.; Friscic, T.; Blagden, N. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst. Growth Des., 2008, 8(5), 1697-1712.
[http://dx.doi.org/10.1021/cg800035w]
[75]
Li, J.; Liu, P.; Liu, J.P.; Zhang, W.L.; Yang, J.K.; Fan, Y.Q. Novel Tanshinone II A ternary solid dispersion pellets prepared by a single-step technique: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm., 2012, 80(2), 426-432.
[http://dx.doi.org/10.1016/j.ejpb.2011.11.003] [PMID: 22119664]
[76]
Gurunath, S.; Nanjwade, B.K.; Patila, P.A. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs. Saudi Pharm. J., 2014, 22(3), 246-257.
[http://dx.doi.org/10.1016/j.jsps.2013.03.006] [PMID: 25067902]
[77]
Shefter, E.; Higuchi, T. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. J. Pharm. Sci., 1963, 52, 781-791.
[http://dx.doi.org/10.1002/jps.2600520815] [PMID: 14057898]
[78]
Sathali, A.A.; Selvaraj, V. Enhancement of solubility and dissolution rate of Racecadotril by solid dispersion methods. J. Curr. Chem. Pharm. Sc., 2012, 2(3), 209-225.
[79]
Haigh, J.M.; Smith, E.W. The selection and use of natural and synthetic membranes for in vitro diffusion experiments. Eur. J. Pharm. Sci., 1994, 2(5-6), 311-330.
[http://dx.doi.org/10.1016/0928-0987(94)90032-9]
[80]
Choudhary, A.; Rana, A.C.; Aggarwal, G.; Kumar, V.; Zakir, F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed ilk for improved oral bioavailability. Acta Pharm. Sin. B, 2012, 2(4), 421-428.
[http://dx.doi.org/10.1016/j.apsb.2012.05.002]
[81]
Han, H.K.; Lee, B.J.; Lee, H.K. Enhanced dissolution and bioavailability of biochanin A via the preparation of solid dispersion: in vitro and in vivo evaluation. Int. J. Pharm., 2011, 415(1-2), 89-94.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.055] [PMID: 21645596]
[82]
Mohammadi, G.; Hemati, V.; Nikbakht, M.R.; Mirzaee, S.; Fattahi, A.; Ghanbari, K.; Adibkia, K. In vitro and in vivo evaluation of clarithromycin–urea solid dispersions prepared by solvent evaporation, electrospraying and freeze drying methods. Powder Technol., 2014, 257, 168-174.
[http://dx.doi.org/10.1016/j.powtec.2014.03.014]
[83]
Bu Ccaron Ar, D.K.; Macgillivray, L.R. Preparation and reactivity of nanocrystalline cocrystals formed via sonocrystallization. J. Am. Chem. Soc., 2007, 129(1), 32-33.
[http://dx.doi.org/10.1021/ja0671161] [PMID: 17199274]
[84]
Sander, J.R.; Bučar, D.K.; Henry, R.F.; Zhang, G.G.; MacGillivray, L.R. Pharmaceutical nano-cocrystals: sonochemical synthesis by solvent selection and use of a surfactant. Angew. Chem. Int. Ed. Engl., 2010, 49(40), 7284-7288.
[http://dx.doi.org/10.1002/anie.201002588] [PMID: 20814994]
[85]
Pi, J.; Wang, S.; Li, W.; Kebebe, D.; Zhang, Y.; Zhang, B.; Qi, D.; Guo, P.; Li, N.; Liu, Z. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J. Pharm. Sci, 2018, 14(2), 154-164.
[http://dx.doi.org/10.1016/j.ajps.2018.04.009]
[86]
Sreekanth, B.R.; Vishweshwar, P.; Vyas, K. Supramolecular synthon polymorphism in 2: 1 co-crystal of 4-hydroxybenzoic acid and 2,3,5,6-tetramethylpyrazine. Chem. Commun. (Camb.), 2007, 23(23), 2375-2377.
[http://dx.doi.org/10.1039/b700082k] [PMID: 17844751]
[87]
Badu, N.J.; Reddy, S.L.; Aitipamula, S.; Nangia, A. Polymorphs and polymorphic co-crystals of temozolomide. Chem. Asian J., 2010, 3(7), 1122-1133.
[88]
Aakeröy, C.B.; Desper, J.; Smith, M.M. Constructing, deconstructing, and reconstructing ternary supermolecules. Chem. Commun. (Camb.), 2007, 38(38), 3936-3938.
[http://dx.doi.org/10.1039/b707518a] [PMID: 17896038]
[89]
Bhogala, B.R.; Basavoju, S.; Nangia, A. Three-component carboxylic acid-bipyridine lattice inclusion host. Supramolecular synthesis of ternary co-crystals. Cryst. Growth Des., 2005, 5(5), 1683-1686.
[http://dx.doi.org/10.1021/cg058012p]
[90]
Goud, N.R.; Matzger, A.J. Impact of Hydrogen and Halogen Bonding Interactions on the Packing and Ionicity of Charge-Transfer Cocrystals. Cryst. Growth Des., 2017, 17, 328-336.
[http://dx.doi.org/10.1021/acs.cgd.6b01548]
[91]
Dey, D.; Chopra, D.N-H. ⋯π induced configurational isomerism and the role of temperature in the Z to E isomerization of 2-fluoro-N′-(3-fluorophenyl)benzimidamide. CrystEngComm, 2015, 28(17), 5288-5298.
[http://dx.doi.org/10.1039/C5CE00124B]
[92]
Bolla, G.; Nangia, A. Multicomponent ternary cocrystals of the sulfonamide group with pyridine-amides and lactams. Chem. Commun. (Camb.), 2015, 51(85), 15578-15581.
[http://dx.doi.org/10.1039/C5CC06475A] [PMID: 26355724]
[93]
Tothadi, S.; Desiraju, G.R. Designing ternary cocrystals with hydrogen bonds and halogen bonds. Chem. Commun. (Camb.), 2013, 49(71), 7791-7793.
[http://dx.doi.org/10.1039/c3cc43822h] [PMID: 23880638]
[94]
Tothadi, S.; Mukherjee, A.; Desiraju, G.R. Shape and size mimicry in the design of ternary molecular solids: towards a robust strategy for crystal engineering. Chem. Commun. (Camb.), 2011, 47(44), 12080-12082.
[http://dx.doi.org/10.1039/c1cc14567c] [PMID: 21994920]
[95]
Perumalla, S.R.; Sun, C.C. Confused HCl: hydrogen chloride or hydrochloric acid? Chemistry, 2012, 18(21), 6462-6464.
[http://dx.doi.org/10.1002/chem.201103669] [PMID: 22508152]
[96]
Perumalla, S.R.; Shi, L.; Sun, C.C. Ionized form of acetaminophen with improved compaction properties. CrystEngComm, 2012, 14(7), 2389-2390.
[http://dx.doi.org/10.1039/C1CE06278F]
[97]
Sherman, B.C. Solid substances comprising valproic acid and sodium valproate. U.S. Patent 6,077,542, June 20,2000.
[98]
Petrusevski, G.; Naumov, P.; Jovanovski, G.; Bogoeva-Gaceva, G.; Ng, S.W. Solid-state forms of sodium valproate, active component of the anticonvulsant drug epilim. ChemMedChem, 2008, 3(9), 1377-1386.
[http://dx.doi.org/10.1002/cmdc.200800112] [PMID: 18613204]
[99]
Brittain, H.G. Vibrational spectroscopic studies of co-crystals and salts. 3.Co-crystal products formed by benzenecarboxylic acids and their sodium salts. Cryst. Growth Des., 2010, 10(4), 1990-2003.
[http://dx.doi.org/10.1021/cg100099w]
[100]
Brittain, H.G. Vibrational spectroscopic studies of co-crystals and salts. 4. Co-crystal products formed by benzylamine, alpha-methylbenzylamine, and their chloride salts. Cryst. Growth Des., 2011, 11(6), 2500-2509.
[http://dx.doi.org/10.1021/cg2002628]
[101]
Pop, M.; Sieger, P.; Cains, P.W. Tiotropium fumarate: an interesting pharmaceutical co-crystal. J. Pharm. Sci., 2009, 98(5), 1820-1834.
[http://dx.doi.org/10.1002/jps.21531] [PMID: 18781634]
[102]
Chen, A.M.; Ellison, M.E.; Peresypkin, A.; Wenslow, R.M.; Variankaval, N.; Savarin, C.G.; Natishan, T.K.; Mathre, D.J.; Dormer, P.G.; Euler, D.H.; Ball, R.G.; Ye, Z.; Wang, Y.; Santos, I. Development of a pharmaceutical cocrystal of a monophosphate salt with phosphoric acid. Chem. Commun. (Camb.), 2007, (4), 419-421.
[http://dx.doi.org/10.1039/B612353H] [PMID: 17220990]
[103]
Harrison, W.T.A.; Yathirajan, H.S.; Bindya, S.; Anilkumar, H.J. Devaraju. Escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal. Acta Cryst. Sec. C., 63(2), o129-o131.
[104]
Braga, D.; Grepioni, F.; Maini, L.; Prosperi, S.; Gobetto, R.; Chierotti, M.R. From unexpected reactions to a new family of ionic co-crystals: the case of barbituric acid with alkali bromides and caesium iodide. Chem. Commun. (Camb.), 2010, 46(41), 7715-7717.
[http://dx.doi.org/10.1039/c0cc02701d] [PMID: 20852785]
[105]
Smaldone, R.A.; Forgan, R.S.; Furukawa, H.; Gassensmith, J.J.; Slawin, A.M.Z.; Yaghi, O.M.; Stoddart, J.F. Metal-organic frameworks from edible natural products. Angew. Chem. Int. Ed. Engl., 2010, 49(46), 8630-8634.
[http://dx.doi.org/10.1002/anie.201002343] [PMID: 20715239]
[106]
Trask, A.V. An overview of pharmaceutical cocrystals as intellectual property. Mol. Pharm., 2007, 4(3), 301-309.
[http://dx.doi.org/10.1021/mp070001z] [PMID: 17477544]
[107]
Thayer, A.M. The choice of pharmaceutical crystalline form can be used to optimize drug properties, and co-crystals are emerging as new alternatives. Chem. Eng. News Archive, 2007, 85(25), 17-30.
[http://dx.doi.org/10.1021/cen-v085n025.p017]
[108]
Available at:. https://en.wikipedia.org/wiki/Patent (Accessed on May 3, 2019)
[109]
Gadade, D.D.; Pekamwar, S.S. Pharmaceutical co-crystals: Regulatory and strategic aspects, design and development. Adv. Pharm. Bull., 2016, 6(4), 479-494.
[http://dx.doi.org/10.15171/apb.2016.062] [PMID: 28101455]
[110]
Duggirala, N.K.; Perry, M.L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical cocrystals: along the path to improved medicines. Chem. Commun. (Camb.), 2016, 52(4), 640-655.
[http://dx.doi.org/10.1039/C5CC08216A] [PMID: 26565650]
[111]
Committee for medicinal products for human use. European Medicines Agency., Available at:. https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-cocrystals-active-substances-medicinal-products_en.pdf (Accessed on July 22, 2019)


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 3
Year: 2020
Published on: 10 September, 2020
Page: [169 - 184]
Pages: 16
DOI: 10.2174/2210303109666191211145144
Price: $25

Article Metrics

PDF: 32
HTML: 3
EPUB: 1
PRC: 1