2', 4'-dihydroxy-3, 4-methylenedioxychalcone Activate Mitochondrial Apoptosis of Ehrlich Ascites Carcinoma Cells

Author(s): Mahbuba Khatun, Farhadul Islam*, Vinod Gopalan, Md. Motiar Rahman, Natasha Zuberi, Laboni Khatun, Md. Abdur Rakib, Md. Azizul Islam, Alfred King-Yin Lam, Jahan Ara Khanam*

Journal Name: Current Drug Therapy

Volume 15 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Development of effective cancer-chemotherapy is the most challenging field due to the toxicity of chemo-agents.

Objective: As chalcone has been known to have pharmacological applications, here the aim is to synthesized three chalcone derivatives, 2',4'-dihydroxy-3,4-methylenedioxychalcone (C1), 2'-hydroxy- 2,4, 6-trimethoxychalcone (C2) and 2'-hydroxy-4-methylchalcone (C3) and investigate their anti-cancer properties against Ehrlich Ascites Carcinoma (EAC) cell.

Methods: Anticancer properties against EAC cells were studied by examining growth inhibition, MTT assays, tumour-bearing mice survival, tumour weight measurement and haematological profiles. Moreover, apoptosis of EAC cells was investigated by fluorescence microscopy, flowcytometry and DNA fragmentation assays. Expression of apoptosis related genes were studied by reverse transcriptase-PCR (RT-PCR).

Results: Among the compounds, C1 exhibited highest cell growth inhibition at 200 mg/kg/day (81.71%; P < 0.01). C1 treatment also increased the life span of EAC-bearing mice (82.60%, P < 0.05) with the reduction of tumour burden (22.2%, P < 0.01) compared to untreated EAC-bearing mice. In vitro study indicated that C1 killed EAC-cells in a dose-dependent manner and induced mitochondria-mediated apoptotic pathways. In addition, C1 treated cells exhibited increased apoptotic features such as membrane blebbing, chromatin condensation, and nuclear fragmentation after Hoechst 33342 staining. Increased fragmentation of DNA in gel electrophoresis followed by C1 treatment further confirmed apoptosis of EAC cells. EAC cells treated with C1 showed reduced Bcl-2 expression in contrast to notable upregulation of p53 and Bax expression. It implied that C1 could reinstate the expression of pro-apoptotic tumour suppressor and inhibit anti-apoptotic genes.

Conclusions: Thus, C1 showed significant growth inhibitory properties and induced apoptosis of EAC cells.

Keywords: Apoptosis, host toxicity, EAC cells, chalcones, survival time, tumour growth.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 4
Year: 2020
Published on: 30 November, 2020
Page: [337 - 350]
Pages: 14
DOI: 10.2174/1574885514666191211122437
Price: $65

Article Metrics

PDF: 21