Long-Term Effects of Hypoxia-Reoxygenation on Thioredoxins in Rat Central Nervous System

Author(s): Matilde Otero-Losada, Canepa L, Lucas Udovin, Tamara Kobiec, Nicolás Toro-Urrego, Kölliker-Frers Rodolfo A., Francisco Capani*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 45 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Oxidative stress induced by the oxidative pathway dysregulation following ischemia/ reperfusion has been proposed as an important cause of neuronal death and brain damage. The proteins of the thioredoxin (Trx) family are crucial mediators of protein function regulating the intracellular hydrogen peroxide levels and redox-sensitive post-translational protein changes.

Aim: To analyze the expression and distribution of fourteen members of the Trx family, potentially essential for the regeneration upon long-term brain damage, in a perinatal hypoxia-ischemia rat model induced by common carotid artery ligation.

Methods: The right common carotid artery (CCA) was exposed by an incision on the right side of the neck, isolated from nerve and vein, and permanently ligated. Sham-surgery rats underwent right CCA surgical exposure but no ligation. Euthanasia was administered to all rats at 30, 60, and 90 days of age. Protein expression and distribution of fourteen members of the Trx family and related proteins (Grx1, Grx2, Grx3, Grx5, Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, Trx2, TrxR1, TrxR2) was examined in the most hypoxia susceptible rat brain areas, namely, cerebellum, corpus striatum, and the hippocampus.

Results: The thioredoxin proteins displayed a complex, cell-type, and tissue-specific expression pattern following ischemia/reperfusion. Even 60 days after ischemia/reperfusion, Western blot analysis showed a persistent expression of Trx1 and Grx2 in several brain areas.

Conclusion: The Trx family of proteins might contribute to long-term survival and recovery supporting their therapeutic use to curtail ischemic brain oxidative damage following an ischemia/reperfusion insult. Characterization of ischemia/reperfusion oxidative brain damage and analysis of the involved mechanisms are required to understand the underneath processes triggered by ischemia/reperfusion and to what extent and in what way thioredoxins contribute to recovery from brain hypoxic stress.

Keywords: Common carotid artery occlusion, thioredoxin family, CNS, hypoxia-ischemia.

[1]
Nelson KB, Grether JK. Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol 1998; 179(2): 507-13.
[http://dx.doi.org/10.1016/S0002-9378(98)70387-4] [PMID: 9731861]
[2]
Paneth N. The causes of cerebral palsy. Recent evidence. Clin Invest Med 1993; 16(2): 95-102.
[PMID: 8513618]
[3]
Rice JE III, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981; 9(2): 131-41.
[http://dx.doi.org/10.1002/ana.410090206] [PMID: 7235629]
[4]
Titomanlio L, Kavelaars A, Dalous J, et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 2011; 70(5): 698-712.
[http://dx.doi.org/10.1002/ana.22518] [PMID: 22162055]
[5]
McGuire W. Perinatal asphyxia BMJ clinical evidence 2007. pii: 0320.
[6]
Levine S. Anoxic-ischemic encephalopathy in rats. Am J Pathol 1960; 36: 1-17.
[PMID: 14416289]
[7]
López-Aguilera F, Plateo-Pignatari MG, Biaggio V, Ayala C, Seltzer AM. Hypoxic preconditioning induces an AT2-R/VEGFR-2(Flk-1) interaction in the neonatal brain microvasculature for neuroprotection. Neuroscience 2012; 216: 1-9.
[http://dx.doi.org/10.1016/j.neuroscience.2012.04.070] [PMID: 22569153]
[8]
Taniguchi H, Andreasson K. The hypoxic-ischemic encephalopathy model of perinatal ischemia. J Vis Exp 2008; 21.: pii: 955.
[http://dx.doi.org/10.3791/955]
[9]
Wang Y, Cheung PT, Shen GX, et al. Hypoxic-ischemic brain injury in the neonatal rat model: relationship between lesion size at early MR imaging and irreversible infarction. AJNR Am J Neuroradiol 2006; 27(1): 51-4.
[PMID: 16418355]
[10]
Vannucci RC, Vannucci SJ. Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 2005; 27(2-4): 81-6.
[http://dx.doi.org/10.1159/000085978] [PMID: 16046840]
[11]
Capani F, Loidl CF, Aguirre F, et al. Changes in reactive oxygen species (ROS) production in rat brain during global perinatal asphyxia: an ESR study. Brain Res 2001; 914(1-2): 204-7.
[http://dx.doi.org/10.1016/S0006-8993(01)02781-0] [PMID: 11578613]
[12]
Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant-current concepts. Early Hum Dev 2004; 80(2): 125-41.
[http://dx.doi.org/10.1016/j.earlhumdev.2004.06.003] [PMID: 15500993]
[13]
Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 2003; 14(8): 2199-210.
[http://dx.doi.org/10.1097/01.ASN.0000079785.13922.F6] [PMID: 12874476]
[14]
Wardle EN. Cellular oxidative processes in relation to renal disease. Am J Nephrol 2005; 25(1): 13-22.
[http://dx.doi.org/10.1159/000083477] [PMID: 15668522]
[15]
Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol 2011; 2011609813
[http://dx.doi.org/10.1155/2011/609813] [PMID: 21197402]
[16]
Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989; 264(24): 13963-6.
[PMID: 2668278]
[17]
Lillig CH, Holmgren A. Thioredoxin and related molecules-from biology to health and disease. Antioxid Redox Signal 2007; 9(1): 25-47.
[http://dx.doi.org/10.1089/ars.2007.9.25] [PMID: 17115886]
[18]
Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J. Free radicals in cerebral ischemia. Stroke 1978; 9(5): 445-7.
[http://dx.doi.org/10.1161/01.STR.9.5.445] [PMID: 705824]
[19]
Phillis JWAA. “radical” view of cerebral ischemic injury. Prog Neurobiol 1994; 42(4): 441-8.
[http://dx.doi.org/10.1016/0301-0082(94)90046-9] [PMID: 8090929]
[20]
Alonso-Alconada D, Hilario E, Álvarez FJ, Álvarez A. Apoptotic cell death correlates with ROS overproduction and early cytokine expression after hypoxia-ischemia in fetal lambs. Reprod Sci 2012; 19(7): 754-63.
[http://dx.doi.org/10.1177/1933719111432868] [PMID: 22378862]
[21]
Buonocore G, Perrone S, Bracci R. Free radicals and brain damage in the newborn. Biol Neonate 2001; 79(3-4): 180-6.
[http://dx.doi.org/10.1159/000047088] [PMID: 11275648]
[22]
Aon-Bertolino ML, Romero JI, Galeano P, et al. Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system. Biochim Biophys Acta 2011; 1810(1): 93-110.
[http://dx.doi.org/10.1016/j.bbagen.2010.06.011] [PMID: 20620191]
[23]
Baines CP. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 2009; 104(2): 181-8.
[http://dx.doi.org/10.1007/s00395-009-0004-8] [PMID: 19242640]
[24]
Hutchens MP, Dunlap J, Hurn PD, Jarnberg PO. Renal ischemia: does sex matter? Anesth Analg 2008; 107(1): 239-49.
[http://dx.doi.org/10.1213/ane.0b013e318178ca42] [PMID: 18635495]
[25]
Weight SC, Bell PR, Nicholson ML. Renal ischaemia-reperfusion injury. Br J Surg 1996; 83(2): 162-70.
[http://dx.doi.org/10.1002/bjs.1800830206] [PMID: 8689154]
[26]
Stroev SA, Tjulkova EI, Gluschenko TS, Rybnikova EA, Samoilov MO, Pelto-Huikko M. The augmentation of brain thioredoxin-1 expression after severe hypobaric hypoxia by the preconditioning in rats. Neurosci Lett 2004; 370(2-3): 224-9.
[http://dx.doi.org/10.1016/j.neulet.2004.08.022] [PMID: 15488327]
[27]
Stroev SA, Tyul’kova EI, Glushchenko TS, Tugoi IA, Samoilov MO, Pelto-Huikko M. Thioredoxin-1 expression levels in rat hippocampal neurons in moderate hypobaric hypoxia. Neurosci Behav Physiol 2009; 39(1): 1-5.
[http://dx.doi.org/10.1007/s11055-008-9091-5] [PMID: 19089634]
[28]
Godoy JR, Oesteritz S, Hanschmann EM, Ockenga W, Ackermann W, Lillig CH. Segment-specific overexpression of redoxins after renal ischemia and reperfusion: protective roles of glutaredoxin 2, 51(2): 552-61.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.036] [PMID: 21586322]
[29]
Enoksson M, Fernandes AP, Prast S, Lillig CH, Holmgren A, Orrenius S. Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c release. Biochem Biophys Res Commun 2005; 327(3): 774-9.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.067] [PMID: 15649413]
[30]
Bräutigam L, Schütte LD, Godoy JR, et al. Vertebrate-specific glutaredoxin is essential for brain development. Proc Natl Acad Sci USA 2011; 108(51): 20532-7.
[http://dx.doi.org/10.1073/pnas.1110085108] [PMID: 22139372]
[31]
Gan Y, Ji X, Hu X, et al. Transgenic overexpression of peroxiredoxin-2 attenuates ischemic neuronal injury via suppression of a redox-sensitive pro-death signaling pathway. Antioxid Redox Signal 2012; 17(5): 719-32.
[http://dx.doi.org/10.1089/ars.2011.4298] [PMID: 22356734]
[32]
Hu X, Weng Z, Chu CT, et al. Peroxiredoxin-2 protects against 6-hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of the apoptosis signal-regulating kinase (ASK1) signaling cascade. J Neurosci 2011; 31(1): 247-61.
[http://dx.doi.org/10.1523/JNEUROSCI.4589-10.2011] [PMID: 21209210]
[33]
Arbelaez A, Castillo M, Mukherji SK. Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol 1999; 20(6): 999-1007.
[PMID: 10445435]
[34]
Busl KM, Greer DM. Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation 2010; 26(1): 5-13.
[http://dx.doi.org/10.3233/NRE-2010-0531] [PMID: 20130351]
[35]
Chalela JA, Wolf RL, Maldjian JA, Kasner SE. MRI identification of early white matter injury in anoxic-ischemic encephalopathy. Neurology 2001; 56(4): 481-5.
[http://dx.doi.org/10.1212/WNL.56.4.481] [PMID: 11222791]
[36]
Hattori I, Takagi Y, Nakamura H, et al. Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice. Antioxid Redox Signal 2004; 6(1): 81-7.
[http://dx.doi.org/10.1089/152308604771978372] [PMID: 14713338]
[37]
Ma YH, Su N, Chao XD, et al. Thioredoxin-1 attenuates post-ischemic neuronal apoptosis via reducing oxidative/nitrative stress. Neurochem Int 2012; 60(5): 475-83.
[http://dx.doi.org/10.1016/j.neuint.2012.01.029] [PMID: 22330043]
[38]
Godoy JR, Funke M, Ackermann W, et al. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim Biophys Acta 2011; 1810(1): 2-92.
[http://dx.doi.org/10.1016/j.bbagen.2010.05.006] [PMID: 20682242]
[39]
Tonge D, Chan K, Zhu N, et al. Enhancement of axonal regeneration by in vitro conditioning and its inhibition by cyclopentenone prostaglandins. J Cell Sci 2008; 121(Pt. 15): 2565-77.
[http://dx.doi.org/10.1242/jcs.024943] [PMID: 18650498]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 45
Year: 2019
Page: [4791 - 4798]
Pages: 8
DOI: 10.2174/1381612825666191211111926
Price: $65

Article Metrics

PDF: 16
HTML: 3
EPUB: 1
PRC: 1