Anti-Cancer Effects of Asiatic Acid, a Triterpene from Centilla asiatica L: A Review

Author(s): Muhammad T. Islam*, Eunus S. Ali, Shaikh J. Uddin, Ishaq N. Khan, Manik C. Shill, João M. de Castro e Sousa, Marcus V.O. Barros de Alencar, Ana A.C. Melo-Cavalcante, Mohammad S. Mubarak*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Centilla asiatica L is a medicinal herb that has been widely used in folk medicine to treat various diseases. Asiatic Acid (AA), a triterpene and a known component of this herb, has been shown to display important biological activities, including anti-inflammatory, antibacterial, antidiabetic and antihyperlipidemic, neuroprotective, anxiolytic and antidepressant, hepatoprotective, pancreas protective, and cardio- protective.

Objective: This review focuses on AA’s anti-cancer effects on the basis of published literature found in a number of databases such as PubMed and Science Direct. Emphasis has been given to the mechanisms of action of its anti-cancer effect.

Methods: A literature survey was conducted using known databases such as PubMed and Science Direct using the keywords ‘Asiatic acid’, pairing with ‘cancer’, ‘tumor’, ‘anti-cancer effect’, ‘cytotoxic effect’, ‘anti-tumor activity’, ‘cell line’, ‘animal cancer’, and ‘human cancer’.

Results: Findings suggest that AA exerts anti-cancer effects in several test systems through various pathways, including oxidative/antioxidant, anti-inflammatory, cytotoxicity, apoptotic cell death, necrosis, anti-angiogenesis, inhibition of proliferation and cell migration, and chemoprevention.

Conclusion: AA may be an effective plant-based cancer chemotherapeutic agent and a promising lead for the development of potent anticancer drugs.

Keywords: Asiatic acid, Centilla asiatica, cancer, mechanisms of action, chemotherapeutic agent, anticancer drugs.

[1]
Seyed, M.A.; Jantan, I.; Bukhari, S.N.A.; Vijayaraghavan, K. A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem., 2016, 64(4), 725-737.
[http://dx.doi.org/10.1021/acs.jafc.5b05993] [PMID: 26758628]
[2]
Martin, K.R. Targeting apoptosis with dietary bioactive agents. Exp. Biol. Med. (Maywood), 2006, 231(2), 117-129.
[http://dx.doi.org/10.1177/153537020623100201] [PMID: 16446487]
[3]
Wang, Z.H.; Mong, M.C.; Yang, Y.C.; Yin, M.C. Asiatic acid and maslinic acid attenuated kainic acid-induced seizure through decreasing hippocampal inflammatory and oxidative stress. Epilepsy Res., 2018, 139, 28-34.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.11.003] [PMID: 29156327]
[4]
Yuyun, X.; Xi, C.; Qing, Y.; Lin, X.; Ke, R.; Bingwei, S. Asiatic acid attenuates lipopolysaccharide-induced injury by suppressing activation of the Notch signaling pathway. Oncotarget, 2018, 9(19), 15036-15046.
[http://dx.doi.org/10.18632/oncotarget.24542] [PMID: 29599924]
[5]
Liu, W.H.; Liu, T.C.; Mong, M.C. Antibacterial effects and action modes of asiatic acid. Biomedicine (Taipei), 2015, 5(3), 16.
[http://dx.doi.org/10.7603/s40681-015-0016-7] [PMID: 26280399]
[6]
Ramachandran, V.; Saravanan, R.; Senthilraja, P. Antidiabetic and antihyperlipidemic activity of asiatic acid in diabetic rats, role of HMG CoA: in vivo and in silico approaches. Phytomedicine, 2014, 21(3), 225-232.
[http://dx.doi.org/10.1016/j.phymed.2013.08.027] [PMID: 24075211]
[7]
Wang, X.; Lu, Q.; Yu, D.S.; Chen, Y.P.; Shang, J.; Zhang, L.Y.; Sun, H.B.; Liu, J. Asiatic acid mitigates hyperglycemia and reduces islet fibrosis in Goto-Kakizaki rat, a spontaneous type 2 diabetic animal model. Chin. J. Nat. Med., 2015, 13(7), 529-534.
[http://dx.doi.org/10.1016/S1875-5364(15)30047-9] [PMID: 26233843]
[8]
Rather, M.A.; Thenmozhi, A.J; Manivasagam, T.; Bharathi, M.D.; Essa, M.M.; Guillemin, G.J. Neuroprotective role of Asiatic acid in aluminium chloride induced rat model of Alzheimer’s disease. Front. Biosci., 2018, 10, 262-275.
[http://dx.doi.org/10.2741/s514] [PMID: 28930532]
[9]
Qian, Y.; Xin, Z.; Lv, Y.; Wang, Z.; Zuo, L.; Huang, X.; Li, Y.; Xin, H.B. Asiatic acid suppresses neuroinflammation in BV2 microglia via modulation of the Sirt1/NF-κB signaling pathway. Food Funct., 2018, 9(2), 1048-1057.
[http://dx.doi.org/10.1039/C7FO01442B] [PMID: 29354820]
[10]
Ceremuga, T.E.; Valdivieso, D.; Kenner, C.; Lucia, A.; Lathrop, K.; Stailey, O.; Bailey, H.; Criss, J.; Linton, J.; Fried, J.; Taylor, A.; Padron, G.; Johnson, A.D. Evaluation of the anxiolytic and antidepressant effects of asiatic acid, a compound from Gotu kola or Centella asiatica, in the male Sprague Dawley rat. AANA J., 2015, 83(2), 91-98.
[PMID: 26016167]
[11]
Lu, Y.; Kan, H.; Wang, Y.; Wang, D.; Wang, X.; Gao, J.; Zhu, L. Asiatic acid ameliorates hepatic ischemia/reperfusion injury in rats via mitochondria-targeted protective mechanism. Toxicol. Appl. Pharmacol., 2018, 338, 214-223.
[http://dx.doi.org/10.1016/j.taap.2017.11.023] [PMID: 29196105]
[12]
Xia, X.; Dai, C.; Yu, H.; Huang, X.; Chen, A.; Tan, Y.; Wang, L. Asiatic acid prevents the development of interstitial lung disease in a hypochlorous acid-induced mouse model of scleroderma. Oncol. Lett., 2018, 15(6), 8711-8716.
[http://dx.doi.org/10.3892/ol.2018.8412] [PMID: 29805609]
[13]
Xiao, W.; Jiang, W.; Li, K.; Hu, Y.; Li, S.; Zhou, L.; Wan, R. Protective effect of asiatic acid in an experimental cerulein-induced model of acute pancreatitis in mice. Am. J. Transl. Res., 2017, 9(8), 3842-3852.
[PMID: 28861174]
[14]
Ma, Z-G.; Dai, J.; Wei, W-Y.; Zhang, W-B.; Xu, S.C.; Liao, H.H.; Yang, Z.; Tang, Q.Z. Asiatic acid protects against cardiac hypertrophy through activating AMPKα signalling pathway. Int. J. Biol. Sci., 2016, 12(7), 861-871.
[http://dx.doi.org/10.7150/ijbs.14213] [PMID: 27313499]
[15]
Rameshreddy, P.; Uddandrao, V.V.S.; Brahmanaidu, P.; Vadivukkarasi, S.; Ravindarnaik, R.; Suresh, P.; Swapna, K.; Kalaivani, A.; Parvathi, P.; Tamilmani, P.; Saravanan, G. Obesity-alleviating potential of asiatic acid and its effects on ACC1, UCP2, and CPT1 mRNA expression in high fat diet-induced obese Sprague-Dawley rats. Mol. Cell. Biochem., 2018, 442(1-2), 143-154.
[http://dx.doi.org/10.1007/s11010-017-3199-2] [PMID: 28993954]
[16]
Miao, X.L.; Gao, G.M.; Jiang, L.; Xu, R.; Wan, D.P. Asiatic acid attenuates high-fat diet-induced impaired spermatogenesis. Exp. Ther. Med., 2018, 15(3), 2397-2403.
[PMID: 29467846]
[17]
Nataraj, J.; Manivasagam, T.; Justin Thenmozhi, A.; Essa, M.M. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr. Neurosci., 2017, 20(6), 351-359.
[http://dx.doi.org/10.1080/1028415X.2015.1135559] [PMID: 26856988]
[18]
Qi, Z.; Ci, X.; Huang, J.; Liu, Q.; Yu, Q.; Zhou, J.; Deng, X. Asiatic acid enhances Nrf2 signaling to protect HepG2 cells from oxidative damage through Akt and ERK activation. Biomed. Pharmacother., 2017, 88, 252-259.
[http://dx.doi.org/10.1016/j.biopha.2017.01.067] [PMID: 28110191]
[19]
Yun, K.J.; Kim, J.Y.; Kim, J.B.; Lee, K.W.; Jeong, S.Y.; Park, H.J.; Jung, H.J.; Cho, Y.W.; Yun, K.; Lee, K.T. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-κ B inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways. Int. Immunopharmacol., 2008, 8(3), 431-441.
[http://dx.doi.org/10.1016/j.intimp.2007.11.003] [PMID: 18279797]
[20]
Nagoor Meeran, M.F.; Goyal, S.N.; Suchal, K.; Sharma, C.; Patil, C.R.; Ojha, S.K. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front. Pharmacol., 2018, 9, 892.
[http://dx.doi.org/10.3389/fphar.2018.00892] [PMID: 30233358]
[21]
Guo, W.; Liu, W.; Jin, B.; Geng, J.; Li, J.; Ding, H.; Wu, X.; Xu, Q.; Sun, Y.; Gao, J. Asiatic acid ameliorates dextran sulfate sodium-induced murine experimental colitis via suppressing mitochondria-mediated NLRP3 inflammasome activation. Int. Immunopharmacol., 2015, 24(2), 232-238.
[http://dx.doi.org/10.1016/j.intimp.2014.12.009] [PMID: 25523461]
[22]
Hao, C.; Wu, B.; Hou, Z.; Xie, Q.; Liao, T.; Wang, T.; Ma, D. Asiatic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. Int. Immunopharmacol., 2017, 50, 313-318.
[http://dx.doi.org/10.1016/j.intimp.2017.07.005] [PMID: 28738247]
[23]
Dong, S.H.; Liu, Y.W.; Wei, F.; Tan, H.Z.; Han, Z.D. Asiatic acid ameliorates pulmonary fibrosis induced by bleomycin (BLM) via suppressing pro-fibrotic and inflammatory signaling pathways. Biomed. Pharmacother., 2017, 89, 1297-1309.
[http://dx.doi.org/10.1016/j.biopha.2017.03.005] [PMID: 28320097]
[24]
Siddique, A.I.; Mani, V.; Renganathan, S.; Ayyanar, R.; Nagappan, A.; Namasivayam, N. Asiatic acid abridges pre-neoplastic lesions, inflammation, cell proliferation and induces apoptosis in a rat model of colon carcinogenesis. Chem. Biol. Interact., 2017, 278, 197-211.
[http://dx.doi.org/10.1016/j.cbi.2017.10.024] [PMID: 29108773]
[25]
Soo Lee, Y.; Jin, D.Q.; Beak, S.M.; Lee, E.S.; Kim, J.A. Inhibition of ultraviolet-A-modulated signaling pathways by asiatic acid and ursolic acid in HaCaT human keratinocytes. Eur. J. Pharmacol., 2003, 476(3), 173-178.
[http://dx.doi.org/10.1016/S0014-2999(03)02177-0] [PMID: 12969763]
[26]
Dong, M.S.; Jung, S.H.; Kim, H.J.; Kim, J.R.; Zhao, L.X.; Lee, E.S.; Lee, E.J.; Yi, J.B.; Lee, N.; Cho, Y.B.; Kwak, W.J.; Park, Y.I. Structure-related cytotoxicity and anti-hepatofibric effect of asiatic acid derivatives in rat hepatic stellate cell-line, HSC-T6. Arch. Pharm. Res., 2004, 27(5), 512-517.
[http://dx.doi.org/10.1007/BF02980124] [PMID: 15202556]
[27]
Meng, Y.Q.; Li, Y.Y.; Li, F.Q.; Song, Y.L.; Wang, H.F.; Chen, H.; Cao, B. Synthesis and antitumor activity evaluation of new asiatic acid derivatives. J. Asian Nat. Prod. Res., 2012, 14(9), 844-855.
[http://dx.doi.org/10.1080/10286020.2012.699961] [PMID: 22924623]
[28]
Guo, F.F.; Feng, X.; Chu, Z.Y.; Li, D.P.; Zhang, L.; Zhang, Z.S. Microbial transformation of asiatic acid. J. Asian Nat. Prod. Res., 2013, 15(1), 15-21.
[http://dx.doi.org/10.1080/10286020.2012.741124] [PMID: 23227815]
[29]
Kim, K.B.; Kim, K.; Bae, S.; Choi, Y.; Cha, H.J.; Kim, S.Y.; Lee, J.H.; Jeon, S.H.; Jung, H.J.; Ahn, K.J.; An, I.S.; An, S. MicroRNA-1290 promotes asiatic acid‑induced apoptosis by decreasing BCL2 protein level in A549 non‑small cell lung carcinoma cells. Oncol. Rep., 2014, 32(3), 1029-1036.
[http://dx.doi.org/10.3892/or.2014.3319] [PMID: 25016979]
[30]
Gonçalves, B.M.F.; Salvador, J.A.R.; Marín, S.; Cascante, M. Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives. Eur. J. Med. Chem., 2016, 114, 101-117.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.057] [PMID: 26974379]
[31]
Ren, L.; Cao, Q.X.; Zhai, F.R.; Yang, S.Q.; Zhang, H.X. Asiatic acid exerts anticancer potential in human ovarian cancer cells via suppression of PI3K/Akt/mTOR signalling. Pharm. Biol., 2016, 54(11), 2377-2382.
[http://dx.doi.org/10.3109/13880209.2016.1156709] [PMID: 26984021]
[32]
Jing, Y.; Wang, G.; Ge, Y.; Xu, M.; Tang, S.; Gong, Z. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells. OncoTargets Ther., 2016, 9, 1605-1621.
[http://dx.doi.org/10.2147/OTT.S98849] [PMID: 27073325]
[33]
Lian, G.Y.; Wang, Q.M.; Tang, P.M.; Zhou, S.; Huang, X.R.; Lan, H.Y. Combination of asiatic acid and naringenin modulates NK cell anti-cancer immunity by rebalancing Smad3/Smad7 signaling. Mol. Ther., 2018, 26(9), 2255-2266.
[http://dx.doi.org/10.1016/j.ymthe.2018.06.016] [PMID: 30017880]
[34]
Lu, Y.; Liu, S.; Wang, Y.; Wang, D.; Gao, J.; Zhu, L. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death. Eur. J. Pharmacol., 2016, 786, 212-223.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.010] [PMID: 27288117]
[35]
Ternchoocheep, K.; Surangkul, D.; Ysothonsreekul, S. The recovery and protective effects of asiatic acid on differentiated human neuroblastoma SH-SY5Y cells cytotoxic-induced by cholesterol. Asian Pac. J. Trop. Biomed., 2017, 7, 416-420.
[http://dx.doi.org/10.1016/j.apjtb.2017.01.012]
[36]
Thakor, F.K.; Wan, K.W.; Welsby, P.J.; Welsby, G. Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia. Mol. Cell. Biochem., 2017, 430(1-2), 179-190.
[http://dx.doi.org/10.1007/s11010-017-2965-5] [PMID: 28205096]
[37]
Lee, Y.S.; Jin, D.Q.; Kwon, E.J.; Park, S.H.; Lee, E.S.; Jeong, T.C.; Nam, D.H.; Huh, K.; Kim, J.A. Asiatic acid, a triterpene, induces apoptosis through intracellular Ca2+ release and enhanced expression of p53 in HepG2 human hepatoma cells. Cancer Lett., 2002, 186(1), 83-91.
[http://dx.doi.org/10.1016/S0304-3835(02)00260-4] [PMID: 12183079]
[38]
Gurfinkel, D.M.; Chow, S.; Hurren, R.; Gronda, M.; Henderson, C.; Berube, C.; Hedley, D.W.; Schimmer, A.D. Disruption of the endoplasmic reticulum and increases in cytoplasmic calcium are early events in cell death induced by the natural triterpenoid Asiatic acid. Apoptosis, 2006, 11(9), 1463-1471.
[http://dx.doi.org/10.1007/s10495-006-9086-z] [PMID: 16820960]
[39]
Bunpo, P.; Kataoka, K.; Arimochi, H.; Nakayama, H.; Kuwahara, T.; Vinitketkumnuen, U.; Ohnishi, Y. Inhibitory effects of asiatic acid and CPT-11 on growth of HT-29 cells. J. Med. Invest., 2005, 52(1-2), 65-73.
[http://dx.doi.org/10.2152/jmi.52.65] [PMID: 15751275]
[40]
Hsu, Y.L.; Kuo, P.L.; Lin, L.T.; Lin, C.C. Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. J. Pharmacol. Exp. Ther., 2005, 313(1), 333-344.
[http://dx.doi.org/10.1124/jpet.104.078808] [PMID: 15626723]
[41]
Park, B.C.; Bosire, K.O.; Lee, E.S.; Lee, Y.S.; Kim, J.A. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Lett., 2005, 218(1), 81-90.
[http://dx.doi.org/10.1016/j.canlet.2004.06.039] [PMID: 15639343]
[42]
Tang, X.L.; Yang, X.Y.; Jung, H.J.; Kim, S.Y.; Jung, S.Y.; Choi, D.Y.; Park, W.C.; Park, H. Asiatic acid induces colon cancer cell growth inhibition and apoptosis through mitochondrial death cascade. Biol. Pharm. Bull., 2009, 32(8), 1399-1405.
[http://dx.doi.org/10.1248/bpb.32.1399] [PMID: 19652380]
[43]
Xu, M.F.; Xiong, Y.Y.; Liu, J.K.; Qian, J.J.; Zhu, L.; Gao, J. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol. Sin., 2012, 33(5), 578-587.
[http://dx.doi.org/10.1038/aps.2012.3] [PMID: 22447225]
[44]
Zhang, X.; Wu, J.; Dou, Y.; Xia, B.; Rong, W.; Rimbach, G.; Lou, Y. Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis. Eur. J. Pharmacol., 2012, 679(1-3), 51-59.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.006] [PMID: 22296759]
[45]
Li, J.F.; Huang, R.Z.; Yao, G.Y.; Ye, M.Y.; Wang, H.S.; Pan, Y.M.; Xiao, J.T. Synthesis and biological evaluation of novel aniline-derived asiatic acid derivatives as potential anticancer agents. Eur. J. Med. Chem., 2014, 86, 175-188.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.003] [PMID: 25151580]
[46]
Kavitha, C.V.; Jain, A.K.; Agarwal, C.; Pierce, A.; Keating, A.; Huber, K.M.; Serkova, N.J.; Wempe, M.F.; Agarwal, R.; Deep, G. Asiatic acid induces endoplasmic reticulum stress and apoptotic death in glioblastoma multiforme cells both in vitro and in vivo. Mol. Carcinog., 2015, 54(11), 1417-1429.
[http://dx.doi.org/10.1002/mc.22220] [PMID: 25252179]
[47]
Wu, Q.; Lv, T.; Chen, Y.; Wen, L.; Zhang, J.; Jiang, X.; Liu, F. Apoptosis of HL-60 human leukemia cells induced by Asiatic acid through modulation of B-cell lymphoma 2 family proteins and the mitogen-activated protein kinase signaling pathway. Mol. Med. Rep., 2015, 12(1), 1429-1434.
[http://dx.doi.org/10.3892/mmr.2015.3534] [PMID: 25815462]
[48]
Garanti, T.; Stasik, A.; Burrow, A.J.; Alhnan, M.A.; Wan, K.W. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int. J. Pharm., 2016, 500(1-2), 305-315.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.018] [PMID: 26775062]
[49]
Wu, T.; Geng, J.; Guo, W.; Gao, J.; Zhu, X. Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B, 2017, 7(1), 65-72.
[http://dx.doi.org/10.1016/j.apsb.2016.04.003] [PMID: 28119810]
[50]
Hao, Y.; Huang, J.; Ma, Y.; Chen, W.; Fan, Q.; Sun, X.; Shao, M.; Cai, H. Asiatic acid inhibits proliferation, migration and induces apoptosis by regulating Pdcd4 via the PI3K/Akt/mTOR/p70S6K signaling pathway in human colon carcinoma cells. Oncol. Lett., 2018, 15(6), 8223-8230.
[http://dx.doi.org/10.3892/ol.2018.8417] [PMID: 29805556]
[51]
Wu, K.; Hu, M.; Chen, Z.; Xiang, F.; Chen, G.; Yan, W.; Peng, Q.; Chen, X. Asiatic acid enhances survival of human AC16 cardiomyocytes under hypoxia by upregulating miR-1290. IUBMB Life, 2017, 69(9), 660-667.
[http://dx.doi.org/10.1002/iub.1648] [PMID: 28686797]
[52]
Cho, C.W.; Choi, D.S.; Cardone, M.H.; Kim, C.W.; Sinskey, A.J.; Rha, C. Glioblastoma cell death induced by asiatic acid. Cell Biol. Toxicol., 2006, 22(6), 393-408.
[http://dx.doi.org/10.1007/s10565-006-0104-2] [PMID: 16897440]
[53]
Sakonsinsiri, C.; Kaewlert, W.; Armartmuntree, N.; Thanan, R.; Pakdeechote, P. Anti-cancer activity of asiatic acid against human cholangiocarcinoma cells through inhibition of proliferation and induction of apoptosis. Cell. Mol. Biol., 2018, 64(10), 28-33.
[http://dx.doi.org/10.14715/cmb/2018.64.10.5] [PMID: 30084792]
[54]
Kavitha, C.V.; Agarwal, C.; Agarwal, R.; Deep, G. Asiatic acid inhibits pro-angiogenic effects of VEGF and human gliomas in endothelial cell culture models. PLoS One, 2011, 6(8) e22745
[http://dx.doi.org/10.1371/journal.pone.0022745] [PMID: 21826202]
[55]
Jing, Y.; Wang, G.; Ge, Y.; Xu, M.; Gong, Z. Synthesis, anti-tumor and anti-angiogenic activity evaluations of asiatic Acid amino Acid derivatives. Molecules, 2015, 20(4), 7309-7324.
[http://dx.doi.org/10.3390/molecules20047309] [PMID: 25905607]
[56]
Wang, L.; Xu, J.; Zhao, C.; Zhao, L.; Feng, B. Antiproliferative, cell-cycle dysregulation effects of novel asiatic acid derivatives on human non-small cell lung cancer cells. Chem. Pharm. Bull. (Tokyo), 2013, 61(10), 1015-1023.
[http://dx.doi.org/10.1248/cpb.c13-00328] [PMID: 23924616]
[57]
Chaisawang, P.; Sirichoat, A.; Chaijaroonkhanarak, W.; Pannangrong, W.; Sripanidkulchai, B.; Wigmore, P.; Welbat, J.U. Asiatic acid protects against cognitive deficits and reductions in cell proliferation and survival in the rat hippocampus caused by 5-fluorouracil chemotherapy. PLoS One, 2017, 12(7) e0180650
[http://dx.doi.org/10.1371/journal.pone.0180650] [PMID: 28700628]
[58]
Siddique, A.I.; Mani, V.; Arivalagan, S.; Thomas, N.S.; Namasivayam, N. Asiatic acid attenuates pre-neoplastic lesions, oxidative stress, biotransforming enzymes and histopathological alterations in 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis. Toxicol. Mech. Methods, 2017, 27(2), 136-150.
[http://dx.doi.org/10.1080/15376516.2016.1273422] [PMID: 28004603]
[59]
Welbat, J.U.; Chaisawang, P.; Pannangrong, W.; Wigmore, P. Neuroprotective properties of asiatic acid against 5-fluorouracil chemotherapy in the hippocampus in an adult rat model. Nutrients, 2018, 10(8), 1053.
[http://dx.doi.org/10.3390/nu10081053] [PMID: 30096914]
[60]
Park, B.C.; Paek, S.H.; Lee, Y.S.; Kim, S.J.; Lee, E.S.; Choi, H.G.; Yong, C.S.; Kim, J.A. Inhibitory effects of asiatic acid on 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol 13-acetate-induced tumor promotion in mice. Biol. Pharm. Bull., 2007, 30(1), 176-179.
[http://dx.doi.org/10.1248/bpb.30.176] [PMID: 17202682]
[61]
Bian, D.; Zhang, J.; Wu, X.; Dou, Y.; Yang, Y.; Tan, Q.; Xia, Y.; Gong, Z.; Dai, Y. Asiatic acid isolated from Centella asiatica inhibits TGF-β1-induced collagen expression in human keloid fibroblasts via PPAR-γ activation. Int. J. Biol. Sci., 2013, 9(10), 1032-1042.
[http://dx.doi.org/10.7150/ijbs.7273] [PMID: 24250248]
[62]
Zhang, J.; Ai, L.; Lv, T.; Jiang, X.; Liu, F. Asiatic acid, a triterpene, inhibits cell proliferation through regulating the expression of focal adhesion kinase in multiple myeloma cells. Oncol. Lett., 2013, 6(6), 1762-1766.
[http://dx.doi.org/10.3892/ol.2013.1597] [PMID: 24260073]
[63]
Wang, Z.H. Anti-glycative effects of asiatic acid in human keratinocyte cells. Biomedicine (Taipei), 2014, 4, 19.
[http://dx.doi.org/10.7603/s40681-014-0019-9] [PMID: 25520932]
[64]
Chen, J.Y.; Chen, J.Y.; Xu, Q.W.; Xu, H.; Huang, Z.H. Asiatic acid promotes p21(WAF1/CIP1) protein stability through attenuation of NDR1/2 dependent phosphorylation of p21(WAF1/ CIP1) in HepG2 human hepatoma cells. Asian Pac. J. Cancer Prev., 2014, 15(2), 963-967.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.963] [PMID: 24568526]
[65]
Wang, G.; Jing, Y.; Cao, L.; Gong, C.; Gong, Z.; Cao, X. A novel synthetic Asiatic acid derivative induces apoptosis and inhibits proliferation and mobility of gastric cancer cells by suppressing STAT3 signaling pathway. OncoTargets Ther., 2016, 10, 55-66.
[http://dx.doi.org/10.2147/OTT.S121619] [PMID: 28053540]
[66]
Fong, L.Y.; Ng, C.T.; Cheok, Z.L.; Mohd Moklas, M.A.; Hakim, M.N.; Ahmad, Z. Barrier protective effect of asiatic acid in TNF-α-induced activation of human aortic endothelial cells. Phytomedicine, 2016, 23(2), 191-199.
[http://dx.doi.org/10.1016/j.phymed.2015.11.019] [PMID: 26926181]
[67]
Meng, Y.Q.; Cui, H.B.; Li, L.; Zhang, W.C.; Pan, H.S.; Yu, T.T.; Li, W. Synthesis and antitumor activity evaluation of asiatic acid derivatives as survivin inhibitor. J. Asian Nat. Prod. Res., 2018, 20(9), 897-908.
[http://dx.doi.org/10.1080/10286020.2017.1405940] [PMID: 29304559]
[68]
Cheng, Q.; Liao, M.; Hu, H.; Li, H.; Wu, L. Asiatic acid (AA) sensitizes multidrug-resistant human lung adenocarcinoma A549/DDP cells to cisplatin (DDP) via downregulation of P-glycoprotein (MDR1) and its targets. Cell. Physiol. Biochem., 2018, 47(1), 279-292.
[http://dx.doi.org/10.1159/000489806] [PMID: 29768255]
[69]
Fang, L.; Kong, S.S.; Zhong, L.K.; Wang, C.M.; Liu, Y.J.; Ding, H.Y.; Sun, J.; Zhang, Y.W.; Li, F.Z.; Huang, P. Asiatic acid enhances intratumor delivery and the antitumor effect of pegylated liposomal doxorubicin by reducing tumor-stroma collagen. Acta Pharmacol. Sin., 2019, 40(4), 539-545.
[http://dx.doi.org/10.1038/s41401-018-0038-2] [PMID: 29921887]
[70]
Wang, G.; Xiao, Q.; Wu, W.; Wu, Y.; Wei, Y.; Jing, Y.; Gong, Z. Assessment of toxicity and absorption of the novel AA derivative AA-Pme in SGC7901 cancer cells in vitro and in Zebrafish in vivo. Med. Sci. Monit., 2018, 24, 5412-5421.
[http://dx.doi.org/10.12659/MSM.909606] [PMID: 30076700]
[71]
Cui, Q.; Ren, J.; Zhou, Q.; Yang, Q.; Li, B. Effect of asiatic acid on epithelial-mesenchymal transition of human alveolar epithelium A549 cells induced by TGF-β1. Oncol. Lett., 2019, 17(5), 4285-4292.
[http://dx.doi.org/10.3892/ol.2019.10140] [PMID: 30988806]
[72]
Braga, A.L.; de Meneses, A.P.M.; Santos, J.V.O.; Dos Reis, A.C.; de Lima, R.M.T.; da Mata, A.M.O.F.; Paz, M.F.C.J.; Alves, L.B.D.S.; Shaw, S.; Uddin, S.J.; Rouf, R.; Das, A.K.; Dev, S.; Shil, M.C.; Shilpi, J.A.; Khan, I.N.; Islam, M.T.; Ali, E.S.; Mubarak, M.S.; Mishra, S.K.; Sousa, J.M.C.; Melo-Cavalcante, A.A.C. Toxicogenetic study of omeprazole and the modulatory effects of retinol palmitate and ascorbic acid on Allium cepa. Chemosphere, 2018, 204, 220-226.
[http://dx.doi.org/10.1016/j.chemosphere.2018.04.021] [PMID: 29656158]
[73]
Koc, K.; Ozdemir, O.; Ozdemir, A.; Dogru, U.; Turkez, H. Antioxidant and anticancer activities of extract of Inula helenium (L.) in human U-87 MG glioblastoma cell line. J. Cancer Res. Ther., 2018, 14(3), 658-661.
[http://dx.doi.org/10.4103/0973-1482.187289] [PMID: 29893335]
[74]
Bajpai, V.K.; Alam, M.B.; Ju, M.K.; Kwon, K.R.; Huh, Y.S.; Han, Y.K.; Lee, S.H. Antioxidant mechanism of polyphenol-rich Nymphaea nouchali leaf extract protecting DNA damage and attenuating oxidative stress-induced cell death via Nrf2-mediated heme-oxygenase-1 induction coupled with ERK/p38 signaling pathway. Biomed. Pharmacother., 2018, 103, 1397-1407.
[http://dx.doi.org/10.1016/j.biopha.2018.04.186] [PMID: 29864924]
[75]
Le Roy, A.; Prébet, T.; Castellano, R.; Goubard, A.; Riccardi, F.; Fauriat, C.; Granjeaud, S.; Benyamine, A.; Castanier, C.; Orlanducci, F.; Ben Amara, A.; Pont, F.; Fournié, J.J.; Collette, Y.; Mege, J.L.; Vey, N.; Olive, D. Immunomodulatory drugs exert anti-leukemia effects in acute Myeloid leukemia by direct and immunostimulatory activities. Front. Immunol., 2018, 9, 977.
[http://dx.doi.org/10.3389/fimmu.2018.00977] [PMID: 29780393]
[76]
Schäfer, G.; Kaschula, C.H. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer. Agents Med. Chem., 2014, 14(2), 233-240.
[http://dx.doi.org/10.2174/18715206113136660370] [PMID: 24237225]
[77]
Riss, T.L.; Moravec, R.A. Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. Assay Drug Dev. Technol., 2004, 2(1), 51-62.
[http://dx.doi.org/10.1089/154065804322966315] [PMID: 15090210]
[78]
Green, D.R. Means to an end: Apoptosis and other cell death mechanisms; Cold Spring Harbor Laboratory Press, 2011.
[79]
Scorilas, A. Editorial: The effects of anticancer agents on cell apoptosis and on the expression of cancer-related genes. Anticancer. Agents Med. Chem., 2014, 14(3), 341-342.
[http://dx.doi.org/10.2174/18715206113139990088] [PMID: 23855335]
[80]
Proskuryakov, S.Y.; Konoplyannikov, A.G.; Gabai, V.L. Necrosis: a specific form of programmed cell death? Exp. Cell Res., 2003, 283(1), 1-16.
[http://dx.doi.org/10.1016/S0014-4827(02)00027-7] [PMID: 12565815]
[81]
Zhivotovsky, B.; Orrenius, S. Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium, 2011, 50(3), 211-221.
[http://dx.doi.org/10.1016/j.ceca.2011.03.003] [PMID: 21459443]
[82]
Zhang, Q.; Li, Y.; Miao, C.; Wang, Y.; Xu, Y.; Dong, R.; Zhang, Z.; Griffin, B.B.; Yuan, C.; Yan, S.; Yang, X.; Liu, Z.; Kong, B. Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma. Cancer Lett., 2018, 432, 144-155.
[http://dx.doi.org/10.1016/j.canlet.2018.05.049] [PMID: 29879497]
[83]
Xu, M.; Gu, M.; Zhang, K.; Zhou, J.; Wang, Z.; Da, J. miR-203 inhibition of renal cancer cell proliferation, migration and invasion by targeting of FGF2. Diagn. Pathol., 2015, 10, 24.
[http://dx.doi.org/10.1186/s13000-015-0255-7] [PMID: 25890121]
[84]
Benetou, V.; Lagiou, A.; Lagiou, P. Chemoprevention of cancer: current evidence and future prospects. F1000 Res., 2015, 4(F1000 Faculty Rev), 916.
[http://dx.doi.org/10.12688/f1000research.6684.1] [PMID: 27006756]
[85]
Islam, M.T. Andrographolide, an up-coming multi-edged plant-derived sword in Cancers. Asian J. Ethnopharmacol. Med. Foods, 2016, 2, 1-3.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 5
Year: 2020
Page: [536 - 547]
Pages: 12
DOI: 10.2174/1871520619666191211103006
Price: $65

Article Metrics

PDF: 14
HTML: 3
EPUB: 1
PRC: 1