Pumping O2 with no N2: An Overview of Hollow Fiber Membrane Oxygenators with Integrated Arterial Filters

Author(s): Anxin Liu, Zhiquan Sun, Qier Liu, Ning Zhu, Shigang Wang*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer


The advancement of cardiac surgery benefits from the continual technological progress of cardiopulmonary bypass (CPB). Every improvement in the CPB technology requires further clinical and laboratory tests to prove its safety and effectiveness before it can be widely used in clinical practice. In order to reduce the priming volume and eliminate a separate arterial filter in the CPB circuit, several manufacturers developed novel hollow-fiber membrane oxygenators with integrated arterial filters (IAF). Clinical and experimental studies demonstrated that an oxygenator with IAF could reduce total priming volume, blood donor exposure and gaseous microemboli delivery to the patient. It can be easily set up and managed, simplifying the CPB circuit without sacrificing safety. An oxygenator with IAF is expected to be more beneficial to the patients with low body weight and when using a minimized extracorporeal circulation system. The aim of this review manuscript was to discuss briefly the concept of integration, the current oxygenators with IAF, and the in-vitro / in-vivo performance of the oxygenators with IAF.

Keywords: Hollow fiber membrane oxygenator, Arterial filter, Gaseous microemboli, Cardiopulmonary bypass, Cardiac surgery, Capiox.

Kurusz, M. Gaseous microemboli: sources, causes, and clinical considerations. Med. Instrum., 1985, 19(2), 73-76.
[PMID: 4000011]
Rodriguez, R.A.; Rubens, F.; Belway, D.; Nathan, H.J. Residual air in the venous cannula increases cerebral embolization at the onset of cardiopulmonary bypass. Eur. J. Cardiothorac. Surg., 2006, 29(2), 175-180.
[http://dx.doi.org/10.1016/j.ejcts.2005.11.006] [PMID: 16376562]
Wang, S.; Woitas, K.; Clark, J.B.; Myers, J.L.; Undar, A. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass. Artif. Organs, 2009, 33(11), 1026-1030.
[http://dx.doi.org/10.1111/j.1525-1594.2009.00910.x] [PMID: 20021476]
Barak, M.; Katz, Y. Microbubbles: pathophysiology and clinical implications. Chest, 2005, 128(4), 2918-2932.
[http://dx.doi.org/10.1378/chest.128.4.2918] [PMID: 16236969]
Willcox, T.W.; Mitchell, S.J. Microemboli in our bypass circuits: a contemporary audit. J. Extra Corpor. Technol., 2009, 41(4), 31-37.
[PMID: 20092085]
Jones, T.J.; Deal, D.D.; Vernon, J.C.; Blackburn, N.; Stump, D.A. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass? Ann. Thorac. Surg., 2002, 74(6), 2132-2137.
[http://dx.doi.org/10.1016/S0003-4975(02)04081-X] [PMID: 12643407]
Wang, S.; Kunselman, A.R.; Myers, J.L.; Undar, A. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model. ASAIO J., 2008, 54(5), 538-541.
[http://dx.doi.org/10.1097/MAT.0b013e318185da5b] [PMID: 18812749]
Ündar, A.; Ji, B.; Kunselman, A.R.; Myers, J.L. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model. ASAIO J., 2007, 53(6), 725-729.
[http://dx.doi.org/10.1097/MAT.0b013e3181588dc3] [PMID: 18043156]
Schreiner, R.S.; Rider, A.R.; Myers, J.W.; Ji, B.; Kunselman, A.R.; Myers, J.L.; Undar, A. Microemboli detection and classification by innovative ultrasound technology during simulated neonatal cardiopulmonary bypass at different flow rates, perfusion modes, and perfusate temperatures. ASAIO J., 2008, 54(3), 316-324.
[http://dx.doi.org/10.1097/MAT.0b013e31816ecfff] [PMID: 18496283]
Borger, M.A.; Peniston, C.M.; Weisel, R.D.; Vasiliou, M.; Green, R.E.; Feindel, C.M. Neuropsychologic impairment after coronary bypass surgery: effect of gaseous microemboli during perfusionist interventions. J. Thorac. Cardiovasc. Surg., 2001, 121(4), 743-749.
[http://dx.doi.org/10.1067/mtc.2001.112526] [PMID: 11279417]
Taylor, R.L.; Borger, M.A.; Weisel, R.D.; Fedorko, L.; Feindel, C.M. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions. Ann. Thorac. Surg., 1999, 68(1), 89-93.
[http://dx.doi.org/10.1016/S0003-4975(99)00475-0] [PMID: 10421121]
Hsia, T.Y.; Gruber, P.J. Factors influencing neurologic outcome after neonatal cardiopulmonary bypass: what we can and cannot control. Ann. Thorac. Surg., 2006, 81(6), S2381-S2388.
[http://dx.doi.org/10.1016/j.athoracsur.2006.02.074] [PMID: 16731107]
Clark, R.E.; Brillman, J.; Davis, D.A.; Lovell, M.R.; Price, T.R.; Magovern, G.J. Microemboli during coronary artery bypass grafting. Genesis and effect on outcome. J. Thorac. Cardiovasc. Surg., 1995, 109(2), 249-257.
[http://dx.doi.org/10.1016/S0022-5223(95)70386-1] [PMID: 7853878]
De Somer, F.; Dierickx, P.; Dujardin, D. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. J. Extra Corpor. Technol., 2007, 39(4), 271-273.
[PMID: 18293817]
Muth, C.M.; Shank, E.S. Gas embolism. N. Engl. J. Med., 2000, 342(7), 476-482.
[http://dx.doi.org/10.1056/NEJM200002173420706] [PMID: 10675429]
Fouilloux, V.; Davey, L.; Van Arsdell, G.S.; Honjo, O. Foam formation and acute air emboli with the maquet paediatric Quadrox I: a word of caution. Interact. Cardiovasc. Thorac. Surg., 2014, 19(1), 163-165.
[http://dx.doi.org/10.1093/icvts/ivu088] [PMID: 24706171]
Rider, A.R.; Schreiner, R.S.; Undar, A. Pulsatile perfusion during cardiopulmonary bypass procedures in neonates, infants, and small children. ASAIO J., 2007, 53(6), 706-709.
[http://dx.doi.org/10.1097/MAT.0b013e318158e3f9] [PMID: 18043152]
Stump, D.A. Embolic factors associated with cardiac surgery. Semin. Cardiothorac. Vasc. Anesth., 2005, 9(2), 151-152.
[http://dx.doi.org/10.1177/108925320500900208] [PMID: 15920640]
Motallebzadeh, R.; Bland, J.M.; Markus, H.S.; Kaski, J.C.; Jahangiri, M. Neurocognitive function and cerebral emboli: randomized study of on-pump versus off-pump coronary artery bypass surgery. Ann. Thorac. Surg., 2007, 83(2), 475-482.
[http://dx.doi.org/10.1016/j.athoracsur.2006.09.024] [PMID: 17257972]
Hessel, E.A. Circuitry and cannulation techniques. Cardiopulmonary Bypass. Principles and Practice,, 3rd ed; Gravlee, P.G.; Davis, R.F.; Stammers, A.H.; Ungerleider, R.M., Eds.; Wolters Kluwer - Lippincott Williams & Wilkins: Philadelphia,. 2008, p. 93.
Marshall, L. Filtration in cardiopulmonary bypass: past, present and future. Perfusion, 1983, 3, 135-147.
Wang, S.; Win, K.N.; Kunselman, A.R.; Woitas, K.; Myers, J.L.; Undar, A. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model. ASAIO J., 2008, 54(5), 519-522.
[http://dx.doi.org/10.1097/MAT.0b013e318184a9ab] [PMID: 18812745]
Wang, S.; Baer, L.; Kunselman, A.R.; Myers, J.L.; Undar, A. Delivery of gaseous microemboli with vacuum-assisted venous drainage during pulsatile and nonpulsatile perfusion in a simulated neonatal cardiopulmonary bypass model. ASAIO J., 2008, 54(4), 416-422.
[http://dx.doi.org/10.1097/MAT.0b013e3181772c7b] [PMID: 18645361]
De Somer, F. Evidence-based used, yet still controversial: the arterial filter. J. Extra Corpor. Technol., 2012, 44(1), 27-30.
[PMID: 22730869]
Selnes, O.A.; McKhann, G.M.; Borowicz, L.M., Jr; Grega, M.A. Cognitive and neurobehavioral dysfunction after cardiac bypass procedures. Neurol. Clin., 2006, 24(1), 133-145.
[http://dx.doi.org/10.1016/j.ncl.2005.10.001] [PMID: 16443135]
Murkin, J.M. Etiology and incidence of brain dysfunction after cardiac surgery. J. Cardiothorac. Vasc. Anesth., 1999, 13(4)(Suppl. 1), 12-17.
[PMID: 10468244]
Newman, M.F.; Kirchner, J.L.; Phillips-Bute, B.; Gaver, V.; Grocott, H.; Jones, R.H.; Mark, D.B.; Reves, J.G.; Blumenthal, J.A. Neurological Outcome Research Group and the Cardiothoracic Anesthesiology Research Endeavors Investigators.Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med., 2001, 344(6), 395-402.
[http://dx.doi.org/10.1056/NEJM200102083440601] [PMID: 11172175]
Johagen, D.; Svenmarker, S. The scientific evidence of arterial line filtration in cardiopulmonary bypass. Perfusion, 2016, 31(6), 446-457.
[http://dx.doi.org/10.1177/0267659115616179] [PMID: 26607840]
Wang, S.; Caneo, L.F.; Jatene, M.B.; Jatene, F.B.; Cestari, I.A.; Kunselman, A.R.; Ündar, A. In vitro evaluation of pediatric hollow-fiber membrane oxygenators on hemodynamic performance and gaseous microemboli handling: an international multicenter/multidisciplinary approach. Artif. Organs, 2017, 41(9), 865-874.
[http://dx.doi.org/10.1111/aor.12912] [PMID: 28597590]
Johagen, D.; Appelblad, M.; Svenmarker, S. Can the oxygenator screen filter reduce gaseous microemboli? J. Extra Corpor. Technol., 2014, 46(1), 60-66.
[PMID: 24779120]
Horton, S.B.; Donath, S.; Thuys, C.A.; Bennett, M.J.; Augustin, S.L.; Horton, A.M.; Schultz, B.J.; Bottrell, S.J.; Konstantinov, I.; d’Udekem, Y.; Brizard, C. Integrated oxygenator FX05. ASAIO J., 2011, 57(6), 522-526.
[http://dx.doi.org/10.1097/MAT.0b013e318232c1db] [PMID: 21970981]
Nuszkowski, M.M.; Deutsch, N.; Jonas, R.A.; Zurakowski, D.; Montague, E.; Holt, D.W. Randomized trial of the Terumo Capiox FX05 oxygenator with integral arterial filter versus Terumo Capiox Baby RX05 and Terumo Capiox AF02 arterial filter in infants undergoing cardiopulmonary bypass. J. Extra Corpor. Technol., 2011, 43(4), 207-214.
[PMID: 22416600]
Stehouwer, M.C.; Boers, C.; de Vroege, R.; C ; Kelder, J.; Yilmaz, A.; Bruins, P. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit. Int. J. Artif. Organs, 2011, 34(4), 374-382.
[http://dx.doi.org/10.5301/IJAO.2011.7749] [PMID: 21534248]
Gomez, D.; Preston, T.J.; Olshove, V.F.; Phillips, A.B.; Galantowicz, M.E. Evaluation of air handling in a new generation neonatal oxygenator with integral arterial filter. Perfusion, 2009, 24(2), 107-112.
[http://dx.doi.org/10.1177/0267659109106825] [PMID: 19654153]
Gürsu, Ö.; Isbir, S.; Ak, K.; Gerin, F.; Arsan, S. Comparison of new technology integrated and nonintegrated arterial filters used in cardiopulmonary bypass surgery: a randomized, prospective, and single blind study. BioMed Res. Int., 2013,.2013529087
[http://dx.doi.org/10.1155/2013/529087] [PMID: 24319685]
Pekna, M.; Borowiec, J.; Fagerhol, M.K.; Venge, P.; Thelin, S. Biocompatibility of heparin-coated circuits used in cardiopulmonary bypass. Scand. J. Thorac. Cardiovasc. Surg., 1994, 28(1), 5-11.
[http://dx.doi.org/10.3109/14017439409098703] [PMID: 7939508]
Senay, S.; Toraman, F.; Gunaydin, S.; Kilercik, M.; Karabulut, H.; Alhan, C. The impact of allogenic red cell transfusion and coated bypass circuit on the inflammatory response during cardiopulmonary bypass: a randomized study. Interact. Cardiovasc. Thorac. Surg., 2009, 8(1), 93-99.
[http://dx.doi.org/10.1510/icvts.2008.183608] [PMID: 18801802]
Shimamoto, A.; Kanemitsu, S.; Fujinaga, K.; Takao, M.; Onoda, K.; Shimono, T.; Tanaka, K.; Shimpo, H.; Yada, I. Biocompatibility of silicone-coated oxygenator in cardiopulmonary bypass. Ann. Thorac. Surg., 2000, 69(1), 115-120.
[http://dx.doi.org/10.1016/S0003-4975(99)01113-3] [PMID: 10654498]
Hoel, T.N.; Videm, V.; Baksaas, S.T.; Mollnes, T.E.; Brosstad, F.; Svennevig, J.L. Comparison of a Duraflo II-coated cardiopulmonary bypass circuit and a trillium-coated oxygenator during open-heart surgery. Perfusion, 2004, 19(3), 177-184.
[http://dx.doi.org/10.1191/0267659104pf737oa] [PMID: 15298426]
Stehouwer, M.C.; de Vroege, R.; Hoohenkerk, G.J.F.; Hofman, F.N.; Kelder, J.C.; Buchner, B.; de Mol, B.A.; Bruins, P. Carbon dioxide flush of an integrated minimized perfusion circuit prior to priming prevents spontaneous air release into the arterial line during clinical use. Artif. Organs, 2017, 41(11), 997-1003.
[http://dx.doi.org/10.1111/aor.12909] [PMID: 28741663]
Arens, J.; Schnoering, H.; Pfennig, M.; Mager, I.; Vázquez-Jiménez, J.F.; Schmitz-Rode, T.; Steinseifer, U. The Aachen MiniHLM--a miniaturized heart-lung machine for neonates with an integrated rotary blood pump. Artif. Organs, 2010, 34(9), 707-713.
[http://dx.doi.org/10.1111/j.1525-1594.2010.01082.x] [PMID: 20883389]
Mueller, X.M.; Jegger, D.; Augstburger, M.; Horisberger, J.; Godar, G.; von Segesser, L.K. A new concept of integrated cardiopulmonary bypass circuit. Eur. J. Cardiothorac. Surg., 2002, 21(5), 840-846.
[http://dx.doi.org/10.1016/S1010-7940(02)00086-6] [PMID: 12062272]
Getinge Group. Quadrox-i Adult & Small Adult. [ONLINE] Available at: https://www.getinge.com/us/product-catalog/quadrox-i-adult-and-small-adult/(Accessed. 2019).
Terumo Cardiovascular Group. CAPIOX® FX Advance Oxygenators with Integrated Arterial Filter. [ONLINE] Available at: https://www.terumo-cvs.com/products/ProductDetail.aspx? groupId=1&familyID=801&country=1 (Accessed . 2019).
Kelting, T.; Searles, B.; Darling, E. A survey on air bubble detector placement in the CPB circuit: a 2011 cross-sectional analysis of the practice of Certified Clinical Perfusionists. Perfusion, 2012, 27(4), 345-351.
[http://dx.doi.org/10.1177/0267659112446526] [PMID: 22730348]
Newland, R.F.; Baker, R.A.; Mazzone, A.L.; Valiyapurayil, V.N. Should air bubble detectors be used to quantify microbubble activity during cardiopulmonary bypass? J. Extra Corpor. Technol., 2015, 47(3), 174-179.
[PMID: 26543252]
Ringelstein, E.B.; Droste, D.W.; Babikian, V.L.; Evans, D.H.; Grosset, D.G.; Kaps, M.; Markus, H.S.; Russell, D.; Siebler, M. International Consensus Group on Microembolus Detection. Consensus on microembolus detection by TCD. Stroke, 1998, 29(3), 725-729.
[http://dx.doi.org/10.1161/01.STR.29.3.725] [PMID: 9506619]
Andropoulos, D.B.; Stayer, S.A.; Diaz, L.K.; Ramamoorthy, C. Neurological monitoring for congenital heart surgery. Anesth. Analg., 2004, 99(5), 1365-1375.
[http://dx.doi.org/10.1213/01.ANE.0000134808.52676.4D] [PMID: 15502032]
Polito, A.; Ricci, Z.; Di Chiara, L.; Giorni, C.; Iacoella, C.; Sanders, S.P.; Picardo, S. Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery: the role of transcranial Doppler--a systematic review of the literature. Cardiovasc. Ultrasound, 2006, 4, 47.
[http://dx.doi.org/10.1186/1476-7120-4-47] [PMID: 17166253]
Droste, D.W.; Hagedorn, G.; Nötzold, A.; Siemens, H.J.; Sievers, H.H.; Kaps, M. Bigated transcranial Doppler for the detection of clinically silent circulating emboli in normal persons and patients with prosthetic cardiac valves. Stroke, 1997, 28(3), 588-592.
[http://dx.doi.org/10.1161/01.STR.28.3.588] [PMID: 9056616]
Win, K.N.; Wang, S.; Undar, A. Microemboli generation, detection and characterization during CPB procedures in neonates, infants, and small children. ASAIO J., 2008, 54(5), 486-490.
[http://dx.doi.org/10.1097/MAT.0b013e3181857e6a] [PMID: 18812739]
Lynch, J.E.; Pouch, A.; Sanders, R.; Hinders, M.; Rudd, K.; Sevick, J. Gaseous microemboli sizing in extracorporeal circuits using ultrasound backscatter. Ultrasound Med. Biol., 2007, 33(10), 1661-1675.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2007.04.008] [PMID: 17570578]
De Somer, F.M.; Vetrano, M.R.; Van Beeck, J.P.; Van Nooten, G.J. Extracorporeal bubbles: a word of caution. Interact. Cardiovasc. Thorac. Surg., 2010, 10(6), 995-1001.
[http://dx.doi.org/10.1510/icvts.2009.229088] [PMID: 20197351]
Gisnarian, C.J.; Hedman, A.; Shann, K.G. An in-vitro study comparing the GME handling of two contemporary oxygenators. J. Extra Corpor. Technol., 2017, 49(4), 262-272.
[PMID: 29302117]
Stanzel, R.D.; Henderson, M. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC. Perfusion, 2016, 31(1), 38-44.
[http://dx.doi.org/10.1177/0267659115586437] [PMID: 25987549]
Hudacko, A.; Sievert, A.; Sistino, J. Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study. J. Extra Corpor. Technol., 2009, 41(3), 166-171.
[PMID: 19806800]
Segers, T.; Stehouwer, M.C.; de Somer, F.M.J.J.; de Mol, B.A.; Versluis, M. Optical verification and in-vitro characterization of two commercially available acoustic bubble counters for cardiopulmonary bypass systems. Perfusion, 2018, 33(1), 16-24.
[http://dx.doi.org/10.1177/0267659117722595] [PMID: 28766987]
Herbst, D.P. Effects of purge-flow rate on microbubble capture in radial arterial-line filters. J. Extra Corpor. Technol., 2016, 48(3), 105-112.
[PMID: 27729703]
G.A.M.P.T., Ultrasonic Solutions Bubble counter., Available at:. http://www.gampt.de/content/cms/front_content.php?idcat=266 (Accessed 21 October 2019).
Salavitabar, A.; Qiu, F.; Kunselman, A.; Ündar, A. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter. Perfusion, 2010, 25(6), 409-415.
[http://dx.doi.org/10.1177/0267659110380773] [PMID: 20699287]
Qiu, F.; Peng, S.; Kunselman, A.; Ündar, A. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line. Artif. Organs, 2010, 34(11), 1053-1057.
[http://dx.doi.org/10.1111/j.1525-1594.2010.01062.x] [PMID: 21137158]
Lin, J.; Dogal, N.M.; Mathis, R.K.; Qiu, F.; Kunselman, A.; Ündar, A. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass. Perfusion, 2012, 27(3), 235-243.
[http://dx.doi.org/10.1177/0267659112438932] [PMID: 22337759]
Sathianathan, S.; Nasir, R.; Wang, S.; Kunselman, A.R.; Ündar, A. In vitro evaluation of Capiox FX05 and RX05 oxygenators in neonatal cardiopulmonary bypass circuits with varying venous reservoir and vacuum-assisted venous drainage levels. Artif. Organs, 2018. Epub ahead of print
[http://dx.doi.org/10.1111/aor.13404] [PMID: 30512218]
Mathis, R.K.; Lin, J.; Dogal, N.M.; Qiu, F.; Kunselman, A.; Wang, S.; Ündar, A. Evaluation of four pediatric cardiopulmonary bypass circuits in terms of perfusion quality and capturing gaseous microemboli. Perfusion, 2012, 27(6), 470-479.
[http://dx.doi.org/10.1177/0267659112453078] [PMID: 22751383]
Moroi, M.; Force, M.; Wang, S.; Kunselman, A.R.; Ündar, A. In vitro comparison of pediatric oxygenators with and without integrated arterial filters in maintaining optimal hemodynamic stability and managing gaseous microemboli. Artif. Organs, 2018, 42(4), 420-431.
[http://dx.doi.org/10.1111/aor.13090] [PMID: 29377185]
Guan, Y.; Su, X.; McCoach, R.; Wise, R.; Kunselman, A.; Undar, A. Evaluation of Quadrox-i adult hollow fiber oxygenator with integrated arterial filter. J. Extra Corpor. Technol., 2010, 42(2), 134-138.
[PMID: 20648898]
Liu, S.; Newland, R.F.; Tully, P.J.; Tuble, S.C.; Baker, R.A. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters. J. Extra Corpor. Technol., 2011, 43(3), 107-114.
[PMID: 22164448]
Bakker, E.W.M.; Visser, K. An in vitro comparison of bubble elimination in Quadrox and Capiox oxygenators. NeSECC Uptodate, 2011, 1, 20-27.
Potger, K.C.; McMillan, D.; Ambrose, M. Air transmission comparison of the affinity fusion oxygenator with an integrated arterial filter to the affinity NT oxygenator with a separate arterial Filter. J. Extra Corpor. Technol., 2014, 46(3), 229-238.
[PMID: 26357789]
Deptula, J.; Valleley, M.; Glogowski, K.; Detwiler, J.; Hammel, J.; Duncan, K. Clinical evaluation of the Terumo Capiox FX05 hollow fiber oxygenator with integrated arterial line filter. J. Extra Corpor. Technol., 2009, 41(4), 220-225.
[PMID: 20092076]
Preston, T.J.; Gomez, D.; Olshove, V.F., Jr; Phillips, A.; Galantowicz, M. Clinical gaseous microemboli assessment of an oxygenator with integral arterial filter in the pediatric population. J. Extra Corpor. Technol., 2009, 41(4), 226-230.
[PMID: 20092077]
Onorati, F.; Santini, F.; Raffin, F.; Menon, T.; Graziani, M.S.; Chiominto, B.; Milano, A.; Faggian, G.; Mazzucco, A. Clinical evaluation of new generation oxygenators with integrated arterial line filters for cardiopulmonary bypass. Artif. Organs, 2012, 36(10), 875-885.
[http://dx.doi.org/10.1111/j.1525-1594.2012.01469.x] [PMID: 22803968]
Dodonov, M.; Milano, A.; Onorati, F.; Dal Corso, B.; Menon, T.; Ferrarini, D.; Tessari, M.; Faggian, G.; Mazzucco, A. Gaseous micro-emboli activity during cardiopulmonary bypass in adults: pulsatile flow versus nonpulsatile flow. Artif. Organs, 2013, 37(4), 357-367.
[http://dx.doi.org/10.1111/aor.12000] [PMID: 23489040]
Myers, G.J.; Gardiner, K.; Ditmore, S.N.; Swyer, W.J.; Squires, C.; Johnstone, D.R.; Power, C.V.; Mitchell, L.B.; Ditmore, J.E.; Cook, B. Clinical evaluation of the Sorin Synthesis oxygenator with integrated arterial filter. J. Extra Corpor. Technol., 2005, 37(2), 201-206.
[PMID: 16117460]
Milano, A.D.; Dodonov, M.; Onorati, F.; Menon, T.; Gottin, L.; Malerba, G.; Mazzucco, A.; Faggian, G. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass. Interact. Cardiovasc. Thorac. Surg., 2013, 17(5), 811-817.
[http://dx.doi.org/10.1093/icvts/ivt264] [PMID: 23842758]
Ginther, R.M., Jr; Gorney, R.; Cruz, R. A clinical evaluation of the Maquet Quadrox-i Neonatal oxygenator with integrated arterial filter. Perfusion, 2013, 28(3), 194-199.
[http://dx.doi.org/10.1177/0267659113475694] [PMID: 23449822]
Melchior, R.W.; Schiavo, K.; Frey, T.; Rogers, D.; Patel, J.; Chelnik, K.; Rosenthal, T. Evaluation of the Maquet Neonatal and Pediatric Quadrox I with an integrated arterial line filter during cardiopulmonary bypass. Perfusion, 2012, 27(5), 399-406.
[http://dx.doi.org/10.1177/0267659112450059] [PMID: 22717608]
Stehouwer, M.C.; Legg, K.R.; de Vroege, R.; Kelder, J.C.; Hofman, E.; de Mol, B.A.; Bruins, P. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter. Perfusion, 2017, 32(2), 118-125.
[http://dx.doi.org/10.1177/0267659116664402] [PMID: 27516417]
Bleilevens, C.; Borchard, R.; Stoppe, C.; Goetzenich, A.; Autschbac, R.; Breuer, T. Retrospective analysis of air handling by contemporary oxygenators in the setting of cardiac surgery. Ann. Thorac. Cardiovasc. Surg., 2018, 24(5), 230-237.
[http://dx.doi.org/10.5761/atcs.oa.18-00019] [PMID: 29998925]
Stammers, A.H.; Miller, R.; Francis, S.G.; Fuzesi, L.; Nostro, A.; Tesdahl, E. Goal-directed perfusion methodology for determining oxygenator performance during clinical cardiopulmonary bypass. J. Extra Corpor. Technol., 2017, 49(2), 81-92.
[PMID: 28638156]
Liu, G.; Zeng, Q.D.; Zheng, Z.; Wang, G.Y.; Diao, X.L.; Zhang, X.; Ji, B.Y. Clinical application of modified minimally cardiopulmonary bypass: compared with conventional cardiopulmonary bypass. Zhonghua Wai Ke Za Zhi, 2016, 54(8), 613-616.
[PMID: 27502137]
Basciani, R.; Kröninger, F.; Gygax, E.; Jenni, H.; Reineke, D.; Stucki, M.; Hagenbuch, N.; Carrel, T.; Eberle, B.; Erdoes, G. Cerebral microembolization during aortic valve replacement using minimally invasive or conventional extracorporeal circulation: a randomized trial. Artif. Organs, 2016, 40(12), E280-E291.
[http://dx.doi.org/10.1111/aor.12744] [PMID: 27283935]
Pascale, F. Removal of gaseous microemboli from extracorporeal circulation. Med. Instrum., 1985, 19(2), 70-72.
[PMID: 4000010]
Joffe, D.; Silvay, G. The use of microfiltration in cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth., 1994, 8(6), 685-692.
[http://dx.doi.org/10.1016/1053-0770(94)90205-4] [PMID: 7881002]
Miller, A.; Wang, S.; Myers, J.L.; Undar, A. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system. ASAIO J., 2008, 54(5), 504-508.
[http://dx.doi.org/10.1097/MAT.0b013e318186d32a] [PMID: 18812742]
Dogal, N.M.; Mathis, R.K.; Lin, J.; Qiu, F.; Kunselman, A.; Undar, A. Evaluation of three hollow-fiber membrane oxygenators without integrated arterial filters for neonatal cardiopulmonary bypass. Perfusion, 2012, 27(2), 132-140.
[http://dx.doi.org/10.1177/0267659111430560] [PMID: 22115879]
Strother, A.; Wang, S.; Kunselman, A.R.; Ündar, A. Handling ability of gaseous microemboli of two pediatric arterial filters in a simulated CPB model. Perfusion, 2013, 28(3), 244-252.
[http://dx.doi.org/10.1177/0267659112475106] [PMID: 23359037]
Reagor, J.A.; Holt, D.W. Removal of gross air embolization from cardiopulmonary bypass circuits with integrated arterial line filters: a comparison of circuit designs. J. Extra Corpor. Technol., 2016, 48(1), 19-22.
[PMID: 27134304]
Hawkins, J.L.; Myers, G.J.; Légaré, J.F.; Swyer, W. Arterial filter bypass loop: what occurs in this area during cardiopulmonary bypass and are there potential patient implications. J. Extra Corpor. Technol., 2010, 42(1), 71-74.
[PMID: 20437795]
Jabur, G.N.; Willcox, T.W.; Zahidani, S.H.; Sidhu, K.; Mitchell, S.J. Reduced embolic load during clinical cardiopulmonary bypass using a 20 micron arterial filter. Perfusion, 2014, 29(3), 219-225.
[http://dx.doi.org/10.1177/0267659113504445] [PMID: 24009263]
Jabur, G.N.; Sidhu, K.; Willcox, T.W.; Mitchell, S.J. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators. Perfusion, 2016, 31(5), 409-417.
[http://dx.doi.org/10.1177/0267659115621614] [PMID: 26643883]
Riley, J.B. Arterial line filters ranked for gaseous micro-emboli separation performance: an in vitro study. J. Extra Corpor. Technol., 2008, 40(1), 21-26.
[PMID: 18389662]
Baksaas, S.T.; Flom-Halvorsen, H.I.; Ovrum, E.; Videm, V.; Mollnes, T.E.; Brosstad, F.; Svennevig, J.L. Leucocyte filtration during cardiopulmonary reperfusion in coronary artery bypass surgery. Perfusion, 1999, 14(2), 107-117.
[http://dx.doi.org/10.1177/026765919901400204] [PMID: 10338322]
Karaiskos, T.E.; Palatianos, G.M.; Triantafillou, C.D.; Kantidakis, G.H.; Astras, G.M.; Papadakis, E.G.; Vassili, M.I. Clinical effectiveness of leukocyte filtration during cardiopulmonary bypass in patients with chronic obstructive pulmonary disease. Ann. Thorac. Surg., 2004, 78(4), 1339-1344.
[http://dx.doi.org/10.1016/j.athoracsur.2004.04.040] [PMID: 15464496]
Schneider, S.; Gunasinghe, H.; Sistino, J.; Blackwell, M.; Spinale, F. Effects of leukocyte depletion filters on matrix metalloproteinase activation in an extracorporeal circulation circuit. J. Extra Corpor. Technol., 2003, 35(2), 139-142.
[PMID: 12939023]
Palanzo David, A.; Manley Norman, J.; Montesano Ralph, M.; Yeisley Geary, L. Gordon David. Clinical evaluation of the LeukoGuard (LG-6) arterial line filter for routine open-heart surgery. Perfusion, 1993, 8(6), 489-496.
Scholz, M.; Simon, A.; Matheis, G.; Dzemali, O.; Henrich, D.; Kleine, P.; Wimmer-Reinecker, G.; Moritz, A. Leukocyte filtration fails to limit functional neutrophil activity during cardiac surgery. Inflamm. Res., 2002, 51(7), 363-368.
[http://dx.doi.org/10.1007/PL00000316] [PMID: 12146728]
Leal-Noval, S.R.; Amaya, R.; Herruzo, A.; Hernández, A.; Ordóñez, A.; Marín-Niebla, A.; Camacho, P. Effects of a leukocyte depleting arterial line filter on perioperative morbidity in patients undergoing cardiac surgery: a controlled randomized trial. Ann. Thorac. Surg., 2005, 80(4), 1394-1400.
[http://dx.doi.org/10.1016/j.athoracsur.2005.04.021] [PMID: 16181877]
Ilmakunnas, M.; Pesonen, E.J.; Ahonen, J.; Rämö, J.; Siitonen, S.; Repo, H. Activation of neutrophils and monocytes by a leukocyte-depleting filter used throughout cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg., 2005, 129(4), 851-859.
[http://dx.doi.org/10.1016/j.jtcvs.2004.07.061] [PMID: 15821654]
Taghipour, H.; Shafiei, H.; Assar, O.; Ghiasi, M.S. The effect of systemic arterial-line leukocyte filtration on the outcome of adult patients undergoing cardiac surgery. Iran. Red Crescent Med. J., 2013, 15(5), 414-417.
[http://dx.doi.org/10.5812/ircmj.10912] [PMID: 24349730]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 22 January, 2020
Page: [78 - 85]
Pages: 8
DOI: 10.2174/1568026619666191210161013
Price: $65

Article Metrics

PDF: 33
PRC: 1