Oral Soluble Films: Attributes of the Polymeric Material and Critical Process Parameters for Designing Good Quality Films

Author(s): Suhani Sinha, Rohit Dutt*

Journal Name: Current Applied Polymer Science

Volume 3 , Issue 3 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Soluble films prepared using polymeric matrices have gained prominence in drug delivery because of its multifarious merits. They are emerging as a momentous technology for designing precision medicines using printing technology, wherein the drugs, proteins/peptides and hormones in printing ink solution can be printed on placebo films targeted for specific age group dosage administration. Advances made in 3D printing technology in biomanufacturing for sophisticated tailor-made scaffolds of bone and tissue have further given impetus to digitally-controlled depositing of materials to create freeform geometries in the field of dosage form development.

Objective: The patent expiry of a significant number of existing chemical entities is an encouraging factor for the possible market potential of these films as a novel drug delivery system through the oral route, topical route and ocular route. Most prominent amongst them is the oral route simply because of its substantial advantages over other pre-existing oral dosage forms.

Method: Oral soluble films can be tailored for both local action in the buccal cavity as well as for systemic action to other parts of the body by direct absorption into the systemic circulation through the buccal mucosa. Depending upon the material attributes of its polymeric components, they can be targeted for buccal, sublingual, ocular or topical administration and can also be loaded inside hard gelatin capsule shells for administration into the gastrointestinal tract. Polymeric oral film technology has been exploited to address gaps in varied therapeutic segments including pain and inflammation management to provide instant relief, anti-emesis following chemotherapy, central nervous system disorders due to ease of administration to the caregivers and patient compliance, cardiovascular diseases due to faster onset of action, cancer therapy with enhanced safety and efficacy due to direct systemic absorption bypassing the first pass metabolism effect.

Conclusion: This review summarizes the research works done to address gaps in varied therapeutic areas with an emphasis on critical material attributes of its polymeric components and the critical process parameters to be considered for manufacturing robust good quality medicinal films.

Keywords: Buccal films, hot-melt extrusion, inkjet printing, orodispersible films, solvent casting, sublingual films.

Borges AF, Silva C, Coelho JF, Simões S. Oral films: Current status and future perspectives: I - Galenical development and quality attributes. J Control Release 2015; 206(206): 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.006] [PMID: 25747406]
Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv 2011; 8(3): 299-316.
[http://dx.doi.org/10.1517/17425247.2011.553217] [PMID: 21284577]
Patel DA, Patel MR, Patel KR, Patel NM, et al. Buccal mucosa as a route for systemic drug delivery: A review. Int J of Drug Dev Res 2012; 4(2): 99-116.
Patil SB, Sawant KK. Mucoadhesive microspheres: A promising tool in drug delivery. Curr Drug Deliv 2008; 5(4): 312-8.
[http://dx.doi.org/10.2174/156720108785914970] [PMID: 18855602]
Zaman M, Hanif M, Shaheryar ZA. Development of tizanidine HCl-Meloxicam loaded mucoadhesive buccal films: In-vitro and in-vivo evaluation. PLoS One 2018; 13(3)e0194410
[http://dx.doi.org/10.1371/journal.pone.0194410] [PMID: 29566073]
Nguyen S, Hiorth M. Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv 2015; 6(5): 595-608.
[http://dx.doi.org/10.4155/tde.15.5] [PMID: 26001175]
Shankraiah M, Nagesh C, Venkatesh J, et al. Sustained release device containing ornidazole for periodontitis. Int Res J Pharm 2011; 2(4): 217-21.
Ramesh B, Saravanakumar K, Nagaveni P, et al. A review on buccal drug delivery system. Int J Pharm Pharm Sci Res 2013; 3(1): 35-40.
Khan S, Trivedi V, Boateng J. Functional physico-chemical, ex vivo permeation and cell viability characterization of omeprazole loaded buccal films for paediatric drug delivery. Int J Pharm 2016; 500(1-2): 217-26.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.045] [PMID: 26802493]
Preis M. Orally disintegrating films and mini-tablets-innovative dosage forms of choice for pediatric use. AAPS PharmSciTech 2015; 16(2): 234-41.
[http://dx.doi.org/10.1208/s12249-015-0313-1] [PMID: 25739913]
Uppala A, Naga Swapna V, Neelima Devi R, et al. Formulation and evaluation of mucoadhesive buccal films of diclofenac potassium. Res J PharmTech 2015; 8(9): 1269-75.
Vakili H, Nyman JO, Genina N, Preis M, Sandler N. Application of a colorimetric technique in quality control for printed pediatric orodispersible drug delivery systems containing propranolol hydrochloride. Int J Pharm 2016; 511(1): 606-18.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.032] [PMID: 27444550]
Shiledar RR, Tagalpallewar AA, Kokare CR. Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesive buccal patches of zolmitriptan. Carbohydr Polym 2014; 101(101): 1234-42.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.072] [PMID: 24299896]
Roy S, Prabhakar B. Bioadhesive polymeric platforms for transmucosal drug delivery systems - a review. Trop J Pharm Res 2010; 9(1): 91-104.
Sosnik A, Das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014; 39(12): 2030-75.
Makhlof A, Werle M, Takeuchi H. Mucoadhesive drug carriers and polymers for effective drug delivery. J Drug Deliv Sci Technol 2008; 18(6): 375-86.
Khairnar A, Jain P, Bhaviskar D, Jain D. Development of mucoadhesive buccal patch containing aceclofenac: In vitro evaluations. Int J Pharm Tech Res 2009; 1(4): 978-81.
Li XQ, Ye ZM, Wang JB, et al. [Mucoadhesive buccal films of tramadol for effective pain management]. Rev Bras Anestesiol 2017; 67(3): 231-7.
[http://dx.doi.org/10.1016/j.bjan.2016.10.006] [PMID: 27899200]
Miro A, d’Angelo I, Nappi A, et al. Engineering poly(ethylene oxide) buccal films with cyclodextrin: A novel role for an old excipient? Int J Pharm 2013; 452(1-2): 283-91.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.030] [PMID: 23707963]
Santos TCD, Rescignano N, Boff L, et al. Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films. Carbohydr Polym 2017; 173(1): 638-44.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.014] [PMID: 28732908]
Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides 2018; 101(101): 112-23.
[http://dx.doi.org/10.1016/j.peptides.2018.01.002] [PMID: 29329977]
Mouftah S, Abdel-Mottaleb MMA, Lamprecht A. Buccal delivery of low molecular weight heparin by cationic polymethacrylate nanoparticles. Int J Pharm 2016; 515(1-2): 565-74.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.039] [PMID: 27773855]
Alexander A, Ajazuddin M, Swarna M, Sharma M, Tripathi DK. Polymers and permeation enhancers: specialized components of mucoadhesive. Stamford J Pharm Sci 2011; 4(1): 91-5.
Değim IT, Gümüşel B, Değim Z, Ozçelikay T, Tay A, Güner S. Oral administration of liposomal insulin. J Nanosci Nanotechnol 2006; 6(9-10): 2945-9.
[http://dx.doi.org/10.1166/jnn.2006.416] [PMID: 17048502]
Song Q, Shen C, Shen B, et al. Development of a fast dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. J Drug Delivery Sci Tech (43): 243-52.
Lai F, Franceschini I, Corrias F, et al. Maltodextrin fast dissolving films for quercetin nanocrystal delivery. A feasibility study. Carbohydr Polym 2015; 121(121): 217-23.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.070] [PMID: 25659692]
Kevadiya BD, Barvaliya M, Zhang L, et al. Fenofibrate nanocrystals embedded in oral strip-films for bioavailability enhancement. Bioengineering (Basel) 2018; 5(1): 16.
[http://dx.doi.org/10.3390/bioengineering5010016] [PMID: 29438297]
Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci 2015; 75(75): 2-9.
[http://dx.doi.org/10.1016/j.ejps.2015.02.015] [PMID: 25736528]
Corniellio C. Quick dissolving strips: From concept to commercialization. Drug Deliv Technol 2006; 6: 68-71.
Brniak W, Maślak E, Jachowicz R. Orodispersible films and tablets with prednisolone microparticles. Eur J Pharm Sci 2015; 75(75): 81-90.
[http://dx.doi.org/10.1016/j.ejps.2015.04.006] [PMID: 25889975]
Pawar SV, Jun Agade MS. Formulation and evaluation of mouth dissolving film of risperidone. Int J Pharm Tech Res 2015; (8): 218-30.
Abdelbary A, Bendas ER, Ramadan AA, Mostafa DA. Pharmaceutical and pharmacokinetic evaluation of a novel fast dissolving film formulation of flupentixol dihydrochloride. AAPS PharmSciTech 2014; 15(6): 1603-10.
[http://dx.doi.org/10.1208/s12249-014-0186-8] [PMID: 25142820]
Karki S, Kim H, Na S, Shin D, Jo K, Lee J. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci 2016; 11(5): 559-74.
Castro PM, Fonte P, Sousa F, Madureira AR, Sarmento B, Pintado ME. Oral films as breakthrough tools for oral delivery of proteins/peptides. J Control Release 2015; 211(211): 63-73.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.258] [PMID: 25979328]
Karn PR, Vanić Z, Pepić I, Skalko-Basnet N. Mucoadhesive liposomal delivery systems: The choice of coating material. Drug Dev Ind Pharm 2011; 37(4): 482-8.
[http://dx.doi.org/10.3109/03639045.2010.523425] [PMID: 20961263]
Chonkar AD, Rao JV, Managuli RS, et al. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur J Pharm Biopharm 2016; 103(103): 179-91.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.001] [PMID: 27063592]
Tan YL, Liu CG. Preparation and characterization of self-assembled nanoparticles based on folic acid modified carboxymethyl chitosan. J Mater Sci Mater Med 2011; 22(5): 1213-20.
[http://dx.doi.org/10.1007/s10856-011-4302-y] [PMID: 21461919]
Shanmugam S. Oral Films: A look back. Clin Pharmacol Biopharm 2016; 5(2): 124.
Leduy A, Zajic JE, Luong JHT. Encyclopedia of polymer science and engineering. 2nd ed. New York: Wiley & Sons 1988; p. 650.
Nagar P, Yasir ICM. Insights into polymers: Film formers in mouth dissolving films. Drug Inven Today 2011; 3(12): 280-9.
U.S. Congress. Office of technology assessment, biopolymers: Making materials nature’s way-background paper, OTA-BP-E-102. Washington, DC: U.S. Government Printing Office 1993.
Saini S, Samta AC. Rana gupta S. Optimization of formulation of fast dissolving films made of pullulan polymer. Int J Pharm Sci Rev Res 2011; (9): 127-31.
Claudia A, Bastida R, Bello-Perez LA, et al. Physiochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydr Polym 2005; (60): 235-44.
Prissaux X, Josh A, Francois A, Lefevre P. Evaluation of a novel modified starch polymer in an easy to formulate thin film drug delivery system and comparison with some marketed formulations. AAPS PharmSciTech 2007; 233-54.
FAO Corporate Document Repository A Guide to the seaweed industry Available from. http://www.fao.org/docrep/006/y4765e/y4765e08.htm [Accessed July 20, 2018]
Wu Y, Weller CL, Hamouz F, Cuppett S, Schnepf MJ. Moisture loss and lipid oxidation for precooked ground‐beef patties packaged in edible starch‐alginate‐based composite films. Food Sci 2001; 66: 486-93.
Gomez-Guillen MC, Turnay J, Fernandez-Martin F, Ulmo N, Lizarbe MA, Montero P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll 2002; 16: 25-34.
Sobral PJA, Habitante AMQB. Food Hydrocolloid 2001; (15): 377-82.
Jagtap AR, Mitkare SS, Chalikwar RD, Kulkarni AA. Rosin: A novel film forming polymer for pharmaceuticals. Int J Pharm Res Dev 2010; 2(5): 210-2.
Ramani CC, Puranik PK, Dorl AK. Study of diabetic acid as matrix forming material. Int J Pharm 1996; 137(1): 11-9.
Chief structure of Maltodextrin Available from. http://chief.ecs. umass.edu/index.php?module=phpwsbb&PHPWSBB_MAN_OP=report&PHPWS_MAN_ITEMS=434 [Accessed July 20, 2018]
Cilurzo F, Cupone IE, Minghetti P, Selmin F, Montanari L. Fast dissolving films made of maltodextrins. Eur J Pharm Biopharm 2008; 70(3): 895-900.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.032] [PMID: 18667164]
Cilurzo F, Cupone IE, Minghetti P, et al. Nicotine fast dissolving films made of maltodextrins: A feasibility study. AAPS PharmSciTech 2010; 11(4): 1511-7.
[http://dx.doi.org/10.1208/s12249-010-9525-6] [PMID: 20936440]
Felton LA. Aqueous polymeric coating for pharmaceutical dosage forms. 4th ed. New York: CRC Press 2017; pp. 83-100.
Kulkarni PK, Dixit M, Gunashekara K, Shahnawaz A, Singh MN, Kulkarni A. Formulation and evaluation of mouth dissolving film containing Rofecoxib, Int Res. J Pharm (Cairo) 2011; 2(3): 273-8.
Haaf F, Sanner A, Straub F. Polymers of N Vinylpyrrolidone: Synthesis, characterization and uses. Polym J 1985; (17): 143-52.
Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 2011; 77(2): 187-99.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.023] [PMID: 21130875]
Mishra R, Amin A. Formulation and characterization of rapidly dissolving films of cetirizine hydrochloride using pullulan as a film forming agent. Indian J Pharm Edu Res 2011; (45): 71-.
Vuddanda PR, Montenegro-Nicolini M, Morales JO, Velaga S. Effect of plasticizers on the physico-mechanical properties of pullulan based pharmaceutical oral films. Eur J Pharm Sci 2017; 96(96): 290-8.
[http://dx.doi.org/10.1016/j.ejps.2016.09.011] [PMID: 27629498]
Krull SM, Susarla R, Afolabi A, et al. Polymer strip films as a robust, surfactant-free platform for delivery of BCS Class II drug nanoparticles. Int J Pharm 2015; 489(1-2): 45-57.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.034] [PMID: 25888803]
Aungst BJ, Rogers NJ. Site dependence of absorption-promoting actions of laureth-9, Na salicylate, Na2EDTA, and aprotinin on rectal, nasal, and buccal insulin delivery. Pharm Res 1988; 5(5): 305-8.
[http://dx.doi.org/10.1023/A:1015930821648] [PMID: 2469079]
Oh CK, Ritschel WA. Biopharmaceutic aspects of buccal absorption of insulin. Methods Find Exp Clin Pharmacol 1990; 12(3): 205-12.
[PMID: 2191174]
Abd El Azim H, Nafee N, Ramadan A, Khalafallah N. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins. Int J Pharm 2015; 488(1-2): 78-85.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.052] [PMID: 25899288]
Balakrishna T, Vidyadhara S, Murthy T, Ramu A, Sasidhar RLC. Formulation and evaluation of Esomeprazole fast dissolving buccal films. Asian J Pharm Clin Res 2018; 11(10): 193-9.
Mashru RC, Sutariya VB, Sankalia MG, Parikh PP. Development and evaluation of fast-dissolving film of salbutamol sulphate. Drug Dev Ind Pharm 2005; 31(1): 25-34.
[http://dx.doi.org/10.1081/DDC-43947] [PMID: 15704855]
Khatoon N, Rao NGR, Reddy BM. Formulation and evaluation of oral fast dissolving films of Montelukast Sodium. Int J Pharm Sci Res 2014; 5(5): 1780-7.
Pimparade MB, Vo A, Maurya AS, et al. Development and evaluation of an oral fast disintegrating anti-allergic film using hot-melt extrusion technology. Eur J Pharm Biopharm 2017; 119(119): 81-90.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.004] [PMID: 28596037]
Speer I, Lenhart V, Preis M, Breitkreutz J. Prolonged release from orodispersible films by incorporation of diclofenac-loaded micropellets. Int J Pharm 2019; 554(554): 149-60.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.013] [PMID: 30414477]
Salehi S, Boddohi S. New formulation and approach for mucoadhesive buccal film of rizatriptan benzoate. Prog Biomater 2017; 6(4): 175-87.
[http://dx.doi.org/10.1007/s40204-017-0077-7] [PMID: 29110144]
Choonara BF, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv 2014; 32(7): 1269-82.
[http://dx.doi.org/10.1016/j.biotechadv.2014.07.006] [PMID: 25099657]
Chin J, Foyez Mahmud KA, Kim SE. Park k, Byun Y. Insight of current technologies for oral delivery of proteins and peptides. Drug Discov Today Technol 2012; 9(2): e105-12.
Morales JO, Huang S, Williams RO III, McConville JT. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids Surf B Biointerfaces 2014; 122(122): 38-45.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.025] [PMID: 25016543]
Haque SE, Sheela A. Development of polymer-bound fast-dissolving metformin buccal film with disintegrants. Int J Nanomedicine 2015; 10(1)(Suppl. 1): 199-205.
[PMID: 26491321]
Ke WT, Lin SY, Ho HO, Sheu MT. Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs. J Control Release 2005; 102(2): 489-507.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.030] [PMID: 15653166]
Iizhar SA, Ahmed MA, Arief M. Formulation and characterization of Mucoadhesive Buccal Films of Trimetazidine dihydrochloride. Lat Am J Pharm 2015; (34): 1585-93.
Deshmane SV, Joshi UM, Channwar MA, Biyani KR, Chandewar AV. Design and characterization of Carbopol-HPMC-Ethyl Cellulose based Buccal Compact containing Propranolol HCl. Indian J Pharm. Educ Res 2010; 44(3): 253-8.
Govindasamy P, Kesavan BR, Narasimha JK. Formulation of unidirectional release buccal patches of carbamazepine and study of permeation through porcine buccal mucosa. Asian Pac J Trop Biomed 2013; 3(12): 995-1002.
[http://dx.doi.org/10.1016/S2221-1691(13)60192-6] [PMID: 24093793]
Balaji A, Krishnaveni B, Goud V. Formulation and evaluation of mucoadhesive buccal films of atorvastatin using natural protein. Int J Pharm Pharm Sci 2014; 6(2): 332-7.
Gajdošová M, Vetchý D. Doležel Pet al. Evaluation of mucoadhesive oral films containing nystatin. J Appl Biomed 2016; 14(4): 247-56.
Woertz C, Kleinebudde P. Development of orodispersible polymer films with focus on the solid state characterization of crystalline loperamide. Eur J Pharm Biopharm 2015; 94(94): 52-63.
[http://dx.doi.org/10.1016/j.ejpb.2015.04.036] [PMID: 25976316]
Jain SK, Jain A, Gupta Y, Kharya A. Design and development of a mucoadhesive buccal film bearing progesterone. Pharmazie 2008; 63(2): 129-35.
[PMID: 18380399 ]
Sjöholm E, Sandler N. Additive manufacturing of personalized orodispersible warfarin films. Int J Pharm 2019; 564(564): 117-23.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.018] [PMID: 30974195]
Liew KB, Tan YTF, Peh KK. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev Ind Pharm 2014; 40(1): 110-9.
[http://dx.doi.org/10.3109/03639045.2012.749889] [PMID: 23311593]
Chaudhary H, Gauri S, Rathee P, Kumar V. Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box-Behnken statistical design. Bull Fac Pharm Cairo Univ 2013; 51(2): 193-201.
Oncologynurseadvisoronline Available from. http://www.oncolo gynurseadvisor.com/gas-x-thin-strips/drug/1277/ [Accessed Nov 30, 2018]
Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release 1985; (2): 257-75.
Krull SM, Moreno J, Li M, Bilgili E, Davé RN. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading. Int J Pharm 2017; 523(1): 33-41.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.023] [PMID: PMID: 28315716]
Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Chicago pharmaceutical press and American pharmacists association 2009.
Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs. J Control Release 2006; 114(1): 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.012] [PMID: 16828915]
Chien MJ, Tirol G, Chien C, Schmitt R. Film forming polymers in oral films 2006 Annual Meeting and exposition of the American Association of Pharmaceutical Scientist (AAPS). 1-5.
Fadden D, Kulkarni N, Sorg A. Fast dissolving orally consumable films containing a modified starch for improved heat and moisture resistance 2004. WO 2004096193.
Horst G, Al-Khalil Fadia. Breath freshening film comprising hydroxypropyl cellulose, a modified starch, and a flavour. 2003.US 20030053962.
Acino AG. Orodispersible film based on pea starch for the administration of antiparasitics to animal. DE 2009; p. 202008017304.
Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. J Control Release 2009; 139(2): 94-107.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.014] [PMID: 19559740]
Buanz ABM, Belaunde CC, Soutari N, Tuleu C, Gul MO, Gaisford S. Ink-jet printing versus solvent casting to prepare oral films: Effect on mechanical properties and physical stability. Int J Pharm 2015; 494(2): 611-8.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.032] [PMID: 25526674]
Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res 2011; 28(10): 2386-92.
[http://dx.doi.org/10.1007/s11095-011-0450-5] [PMID: 21544688]
Maniruzzaman M, Boateng JS, Chowdhry BZ, Snowden MJ, Douroumis D. A review on the taste masking of bitter APIs: Hot-melt extrusion (HME) evaluation. Drug Dev Ind Pharm 2014; 40(2): 145-56.
[http://dx.doi.org/10.3109/03639045.2013.804833] [PMID: 23763436]
Preis M, Breitkreutz J, Sandler N. Perspective: Concepts of printing technologies for oral film formulations. Int J Pharm 2015; 494(2): 578-84.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.032] [PMID: 25683143]
Visser JC, Woerdenbag HJ, Crediet S, et al. Orodispersible films in individualized pharmacotherapy: The development of a formulation for pharmacy preparations. Int J Pharm 2015; 478(1): 155-63.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.013] [PMID: 25448577]
Jani R, Patel D. Hot melt extrusion: An industrially feasible approach for casting orodispersible film. Asian J Pharm Sci 2015; 10(4): 292-305.
Janssen EM, Schliephacke R, Breitenbach A, Breitkreutz J. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films. Int J Pharm 2013; 441(1-2): 818-25.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.023] [PMID: 23266759]
Jamróz W, Kurek M, Łyszczarz E, et al. 3D printed orodispersible films with Aripiprazole. Int J Pharm 2017; 533(2): 413-20.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.052] [PMID: 28552800]
Lindert S, Breitkreutz J. Oromucosal multilayer films for tailor-made, controlled drug delivery. Expert Opin Drug Deliv 2017; 14(11): 1265-79.
[http://dx.doi.org/10.1080/17425247.2017.1276899] [PMID: 28043165]
Maher EM, Ali AMA, Salem HF, Abdelrahman AA. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv 2016; 23(8): 3088-100.
[http://dx.doi.org/10.3109/10717544.2016.1153746] [PMID: 26960680]
Visser JC, Dohmen WMC, Hinrichs WLJ, Breitkreutz J, Frijlink HW, Woerdenbag HJ. Quality by design approach for optimizing the formulation and physical properties of extemporaneously prepared orodispersible films. Int J Pharm 2015; 485(1-2): 70-6.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.005] [PMID: 25746737]
Shen C, Shen B, Xu H, et al. Formulation and optimization of a novel oral fast dissolving film containing drug nanoparticles by Box-Behnken design-response surface methodology. Drug Dev Ind Pharm 2014; 40(5): 649-56.
[http://dx.doi.org/10.3109/03639045.2014.884116] [PMID: 24506458]
Review CDER. CDER Review (SUBOXONE), Sublingual film, Full Prescribing information Application Number: 022410Orig1s000 2010. Available from. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022410Orig1s000AdminCorres.pdf [Accessed July 20, 2018]
Preis M, Gronkowsky D, Grytzan D, Breitkreutz J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J Pharm Pharmacol 2014; 66(8): 1102-11.
[http://dx.doi.org/10.1111/jphp.12246] [PMID: 24673551]
Krampe R, Sieber D, Pein-Hackelbusch M, Breitkreutz J. A new biorelevant dissolution method for orodispersible films. Eur J Pharm Biopharm 2016; 98(98): 20-5.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.012] [PMID: 26515261]
Sharma R, Parikh RK, Gohel MC, Soniwala MM. Development of taste masked film of valdecoxib for oral use. Indian J Pharm Sci 2007; 69(2): 320-3.
Sohi H, Sultana Y, Khar RK. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Dev Ind Pharm 2004; 30(5): 429-48.
[http://dx.doi.org/10.1081/DDC-120037477] [PMID: 15244079]
Sharma R, Kamboj S, Singh G, Rana V. Development of aprepitant loaded orally disintegrating films for enhanced pharmacokinetic performance. Eur J Pharm Sci 2016; 84(84): 55-69.
[http://dx.doi.org/10.1016/j.ejps.2016.01.006] [PMID: 26780381]
Adrover A, Pedacchia A, Petralito S, Spera R. In vitro dissolution testing of oral thin films: A comparison between USP 1, USP 2 apparatuses and a new millifluidic flow-through device. Chem Eng Res Des 2015; (95): 173-8.
Preis M, Knop K, Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int J Pharm 2014; 461(1-2): 22-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.033] [PMID: 24291075]
Nair AB, Kumria R, Harsha S, Attimarad M, Al-Dhubiab BE, Alhaider IA. In vitro techniques to evaluate buccal films. J Control Release 2013; 166(1): 10-21.
[http://dx.doi.org/10.1016/j.jconrel.2012.11.019] [PMID: 23219961]
Siddiqui MDN, Garg G, Sharma PK. A Short review on “A novel approach in oral fast dissolving drug delivery systems and their Patents’. Adv Biol Res (Faisalabad) 2011; 5(6): 291-303.
Cilurzo F, Musazzi UM, Franzé S, Selmin F, Minghetti P. Orodispersible dosage forms: biopharmaceutical improvements and regulatory requirements. Drug Discov Today 2018; 23(2): 251-9.
[http://dx.doi.org/10.1016/j.drudis.2017.10.003] [PMID: 29030242]
Krampe R, Visser JC, Frijlink HW, Breitkreutz J, Woerdenbag HJ, Preis M. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes. Expert Opin Drug Deliv 2016; 13(4): 493-506.
[http://dx.doi.org/10.1517/17425247.2016.1118048] [PMID: 26559519]
Khan S, Trivedi V, Mitchell J, Boateng JS. Conversion of sustained release omeprazole loaded buccal films into fast dissolving strips using supercritical carbon dioxide (scCO2) processing, for potential paediatric drug delivery. Eur J Pharm Sci 2016; 93(93): 45-55.
[http://dx.doi.org/10.1016/j.ejps.2016.08.007] [PMID: 27497613]
Amin PM, Gangurde AB, Alai PV. Oral film technology: challenges and future scope for pharmaceutical industry. Int J Pharm Pharm Res 2015; 3(3): 183-203.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 15 December, 2020
Page: [167 - 188]
Pages: 22
DOI: 10.2174/2452271603666191210121944

Article Metrics

PDF: 12