Treatment with Melittin Induces Apoptosis and Autophagy of Fibroblast-like Synoviocytes in Patients with Rheumatoid Arthritis

Author(s): Shou-di He, Ning Tan, Chen-xia Sun, Kang-han Liao, Hui-jun Zhu, Xiao-guang Luo, Jie-yao Zhang, De-yu Li, Sheng-guang Huang*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 8 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Melittin, the major medicinal component of honeybee venom, exerts antiinflammatory, analgesic, and anti-arthritic effects in patients with Rheumatoid Arthritis (RA). RA is an inflammatory autoimmune joint disease that leads to irreversible joint destruction and functional loss. Fibroblast-Like Synoviocytes (FLS) are dominant, special mesenchymal cells characterized by the structure of the synovial intima, playing a crucial role in both the initiation and progression of RA.

Objective: In this study, we evaluated the effects of melittin on the viability and apoptosis of FLS isolated from patients with RA.

Methods: Cell viability was determined using CCK-8 assays; apoptosis was evaluated by flow cytometry, and the expression levels of apoptosis-related proteins (caspase-3, caspase-9, BAX, and Bcl-2) were also determined. To explore whether melittin alters inflammatory processes in RA-FLS, IL-1β levels were determined using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we performed GFP-LC3 punctate fluorescence dot assays and western blotting (for LC3, ATG5, p62, and Beclin 1) to assess autophagy in RA-FLS.

Results: Our results show that melittin can significantly impair viability, promote apoptosis and autophagy, and inhibit IL-1β secretion in RA-FLS.

Conclusion: Melittin may be useful in preventing damage to the joints during accidental local stimulation.

Keywords: Melittin, rheumatoid arthritis, fibroblast-like synoviocytes, autophagy, apoptosis, ELISA.

[1]
Firestein, G.; Zvaifler, N. Rheumatoid arthritis: A disease of disordered immunity. W: Inflammation basic principles and clinical correlates. JI Gallin, IM Goldstein, K. Willis; Raven Press: New York, 1992.
[2]
Gibofsky, A. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am. J. Manag. Care, 2012, 18(13)(Suppl.), S295-S302.
[PMID: 23327517]
[3]
Xu, C.; W, X.; Mu, R.; Yang, L.; Zhang, Y.; Han, S.; Li, X.; Wang, Y.; Wang, G.; Zhu, P.; Jin, H.; Sun, L.; Chen, H.; Cui, L.; Zhang, Z.; Li, Z.; Li, J.; Zhang, F.; Lin, J.; Liu, X.; Hu, S.; Yang, X.; Lai, B.; Li, X.; Wang, X.; Su, Y.; Li, Z. Societal costs of rheumatoid arthritis in China: A hospital-based cross-sectional study. Arthritis Care Res., 2014, 66, 9.
[4]
Yu, C.L.M.; Duan, X.; Fang, Y.; Li, Q.; Wu, R.; Liu, S.; Wang, Y.; Wu, Z.; Shi, X.; Jiang, Z.; Wang, Y.; Hsieh, E.D.; Jin, S.; Jiang, N.; Wang, Q.; Zhao, Y.; Tian, X.; Zeng, X and the co-authors of CREDIT. Chinese Registry of Rheumatoid Arthritis (CREDIT): Introduction and prevalence of remission in Chinese patients with rheumatoid arthritis. Clin. Exp. Rheumatol., 2018, 36(5), 836-840.
[5]
Gaffo, A.; Saag, K.G.; Curtis, J.R. Treatment of rheumatoid arthritis. Am. J. Health Syst. Pharm., 2006, 63(24), 2451-2465.
[http://dx.doi.org/10.2146/ajhp050514] [PMID: 17158693]
[6]
Pope, R.M. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol., 2002, 2(7), 527-535.
[http://dx.doi.org/10.1038/nri846] [PMID: 12094227]
[7]
Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev., 2010, 233(1), 233-255.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00859.x] [PMID: 20193003]
[8]
Dasuri, K.; Antonovici, M.; Chen, K.; Wong, K.; Standing, K.; Ens, W.; El-Gabalawy, H.; Wilkins, J.A. The synovial proteome: analysis of fibroblast-like synoviocytes. Arthritis Res. Ther., 2004, 6(2), R161-R168.
[http://dx.doi.org/10.1186/ar1153] [PMID: 15059280]
[9]
Chang, S.K.; Gu, Z.; Brenner, M.B. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol. Rev., 2010, 233(1), 256-266.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00854.x] [PMID: 20193004]
[10]
Korb, A.; Pavenstädt, H.; Pap, T. Cell death in rheumatoid arthritis. Apoptosis, 2009, 14(4), 447-454.
[http://dx.doi.org/10.1007/s10495-009-0317-y] [PMID: 19199037]
[11]
Ohshima, S.; Mima, T.; Sasai, M.; Nishioka, K.; Shimizu, M.; Murata, N.; Yoshikawa, H.; Nakanishi, K.; Suemura, M.; McCloskey, R.V.; Kishimoto, T.; Saeki, Y. Tumour necrosis factor α (TNF-α) interferes with Fas-mediated apoptotic cell death on rheumatoid arthritis (RA) synovial cells: a possible mechanism of rheumatoid synovial hyperplasia and a clinical benefit of anti-TNF-α therapy for RA. Cytokine, 2000, 12(3), 281-288.
[http://dx.doi.org/10.1006/cyto.1999.0552] [PMID: 10704256]
[12]
Malemud, C. Apoptosis resistance in rheumatoid arthritis synovial tissue. J. Clin. Cell Immunol., 2011,, 3,, 0061.
[13]
Mizushima, N. Autophagy: process and function. Genes Dev., 2007, 21(22), 2861-2873.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[14]
Dokladny, K.; Zuhl, M.N.; Mandell, M.; Bhattacharya, D.; Schneider, S.; Deretic, V.; Moseley, P.L. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J. Biol. Chem., 2013, 288(21), 14959-14972.
[http://dx.doi.org/10.1074/jbc.M113.462408] [PMID: 23576438]
[15]
Vomero, M.; Barbati, C.; Colasanti, T.; Perricone, C.; Novelli, L.; Ceccarelli, F.; Spinelli, F.R.; Di Franco, M.; Conti, F.; Valesini, G.; Alessandri, C. Autophagy and rheumatoid arthritis: Current knowledges and future perspectives. Front. Immunol., 2018, 9, 1577.
[http://dx.doi.org/10.3389/fimmu.2018.01577] [PMID: 30072986]
[16]
Kato, M.; Ospelt, C.; Gay, R.E.; Gay, S.; Klein, K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol., 2014, 66(1), 40-48.
[http://dx.doi.org/10.1002/art.38190] [PMID: 24449574]
[17]
Jamasbi, E.; Batinovic, S.; Sharples, R.A.; Sani, M-A.; Robins-Browne, R.M.; Wade, J.D.; Separovic, F.; Hossain, M.A. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids, 2014, 46(12), 2759-2766.
[http://dx.doi.org/10.1007/s00726-014-1833-9] [PMID: 25200682]
[18]
Lee, G.; Bae, H. Anti-Inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules, 2016, 21(5), 616.
[http://dx.doi.org/10.3390/molecules21050616] [PMID: 27187328]
[19]
Huang, X.; Wang, Q.; Zheng, L.; Chen, X.; Xiao, P.; Xiong, S.; Bao, J.; Ding, H.; Huang, W.; Zhuang, J. [Isolation and characterization of human rheumatoid arthritis fibroblast-like synoviocytes]. Nan Fang Yi Ke Da Xue Xue Bao, 2009, 29(3), 462-465.
[20]
Zhao, M.; Bai, J.; Lu, Y.; Du, S.; Shang, K.; Li, P.; Yang, L.; Dong, B.; Tan, N. Anti-arthritic effects of microneedling with bee venom gel. J. Tradition. Chinese Med. Sci., 2016, 3(4), 256-262.
[http://dx.doi.org/10.1016/j.jtcms.2016.09.005]
[21]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[22]
Xu, K.; Xu, P.; Yao, J.F.; Zhang, Y.G.; Hou, W.K.; Lu, S.M. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflammat. Res., 2013, 62(2), 229-237.
[23]
Kim, E.K.; Kwon, J.E.; Lee, S.Y.; Lee, E.J.; Kim, D.S.; Moon, S.J.; Lee, J.; Kwok, S.K.; Park, S.H.; Cho, M.L. IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis., 2017, 8(1)e2565
[http://dx.doi.org/10.1038/cddis.2016.490] [PMID: 28102843]
[24]
Jiao, Y.; Ding, H.; Huang, S.; Liu, Y.; Sun, X.; Wei, W.; Ma, J.; Zheng, F. Bcl-XL and Mcl-1 upregulation by calreticulin promotes apoptosis resistance of fibroblast-like synoviocytes via activation of PI3K/Akt and STAT3 pathways in rheumatoid arthritis. Clin. Exp. Rheumatol., 2018, 36(5), 841-849.
[PMID: 29652658]
[25]
Boise, L.; Gottschalk, A.; Quintans, J.; Thompson, C. Bcl-2 and Bcl-2-related proteins in apoptosis regulation.Apoptosis in Immunology; Springer, 1995, pp. 107-121.
[http://dx.doi.org/10.1007/978-3-642-79437-7_8]
[26]
Fortuño, M.A.; Ravassa, S.; Etayo, J.C.; Díez, J. Overexpression of Bax protein and enhanced apoptosis in the left ventricle of spontaneously hypertensive rats: effects of AT1 blockade with losartan. Hypertension, 1998, 32(2), 280-286.
[http://dx.doi.org/10.1161/01.HYP.32.2.280] [PMID: 9719055]
[27]
Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 1999, 6(2), 99-104.
[http://dx.doi.org/10.1038/sj.cdd.4400476] [PMID: 10200555]
[28]
Kuiper, S.; Joosten, L.A.; Bendele, A.M.; Edwards, C.K., III; Arntz, O.J.; Helsen, M.M.; Van de Loo, F.A.; Van den Berg, W.B. Different roles of tumour necrosis factor α and interleukin 1 in murine streptococcal cell wall arthritis. Cytokine, 1998, 10(9), 690-702.
[http://dx.doi.org/10.1006/cyto.1998.0372] [PMID: 9770330]
[29]
Shinmei, M. Masuda, K.; Kikuchi, T.; Shimomura, Y. Interleukin 1, tumor necrosis factor, and interleukin 6 as mediators of cartilage destruction, Seminars in arthritis and rheumatism; Elsevier, 1989, pp. 27-32.
[30]
Nadiv, O.; Beer, Y.; Goldberg, M.; Agar, G.; Loos, M.; Katz, Y. Decreased induction of IL-1β in fibroblast-like synoviocytes: a possible regulatory mechanism maintaining joint homeostasis. Mol. Immunol., 2007, 44(12), 3147-3154.
[http://dx.doi.org/10.1016/j.molimm.2007.02.001] [PMID: 17353049]
[31]
Yonekawa, T.; Thorburn, A. Autophagy and cell death. Essays Biochem., 2013, 55, 105-117.
[http://dx.doi.org/10.1042/bse0550105] [PMID: 24070475]
[32]
Xie, Z.; Klionsky, D.J. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol., 2007, 9(10), 1102-1109.
[http://dx.doi.org/10.1038/ncb1007-1102] [PMID: 17909521]
[33]
Keller, C.W.; Lünemann, J.D. Autophagy and autophagy-related proteins in CNS autoimmunity. Front. Immunol., 2017, 8, 165.
[http://dx.doi.org/10.3389/fimmu.2017.00165] [PMID: 28289410]
[34]
Zeng, X.; Overmeyer, J.H.; Maltese, W.A. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell Sci., 2006, 119(Pt 2), 259-270.
[http://dx.doi.org/10.1242/jcs.02735] [PMID: 16390869]
[35]
Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. Autophagosome and Phagosome; Springer, 2008, pp. 77-88.
[http://dx.doi.org/10.1007/978-1-59745-157-4_4]
[36]
Hanada, T.; Ohsumi, Y. Structure-function relationship of Atg12, an ubiquitin-like modifier essential for autophagy. Autophagy, 2005, 1(2), 110-118.
[http://dx.doi.org/10.4161/auto.1.2.1858] [PMID: 16874032]
[37]
Jiang, P.; Mizushima, N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods, 2015, 75, 13-18.
[http://dx.doi.org/10.1016/j.ymeth.2014.11.021] [PMID: 25484342]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 8
Year: 2020
Page: [734 - 740]
Pages: 7
DOI: 10.2174/1389201021666191210110826
Price: $65

Article Metrics

PDF: 19
HTML: 1