Recent Advances on C-Se Bond-forming Reactions at Low and Room Temperature

Author(s): Amol D. Sonawane, Mamoru Koketsu*

Journal Name: Current Organic Chemistry

Volume 23 , Issue 28 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Over the last decades, many methods have been reported for the synthesis of selenium- heterocyclic scaffolds because of their interesting reactivities and applications in the medicinal as well as in the material chemistry. This review describes the recent numerous useful methodologies on C-Se bond formation reactions which were basically carried out at low and room temperature.

Keywords: Chalcogenation, Se-heterocyles, C-Se bond formation, 1, 3-selenazole, heterocyclic scaffolds, material chemistry.

[1]
Mohamed, E.; Wafaa, S.H.; Hanafi, H.Z. Recent advances in the chemistry of selenium-containing heterocycles: five-membered ring systems. Coord. Chem. Rev., 2016, 312, 149-177.
[http://dx.doi.org/10.1016/j.ccr.2016.01.003]
[2]
Mohamed, E.; Wafaa, S.H.; Hanafi, H.Z. Recent advances in the chemistry of selenium-containing heterocycles: six-membered ring systems. Coord. Chem. Rev., 2017, 330, 110-126.
[http://dx.doi.org/10.1016/j.ccr.2016.09.016]
[3]
Irina, P.B.; Valentine, P.A. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111, 1596-1636.
[http://dx.doi.org/10.1021/cr100347k]
[4]
Ivanova, A.; Arsenyan, P. Rise of diselenides: recent advances in the synthesis of heteroarylselenides. Coord. Chem. Rev., 2018, 370, 55-68.
[http://dx.doi.org/10.1016/j.ccr.2018.05.015]
[5]
Santoro, S.; Azeredo, J.B.; Nascimento, V.; Sancineto, L.; Braga, A.L.; Santi, C. The green side of the moon: ecofriendly aspects of organoselenium chemistry. RSC Advances, 2014, 4, 31521-31535.
[http://dx.doi.org/10.1039/C4RA04493B]
[6]
Perin, G.; Lenardao, E.J.; Jacob, R.G.; Panatieri, R.B. Synthesis of vinyl selenides. Chem. Rev., 2009, 109, 1277-1301.
[http://dx.doi.org/10.1021/cr8004394]
[7]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104, 6255-6286.
[http://dx.doi.org/10.1021/cr0406559]
[8]
Ninomiya, M.; Garud, D.R.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev., 2011, 255, 2968-2990.
[http://dx.doi.org/10.1016/j.ccr.2011.07.009]
[9]
Banerjee, B.; Koketsu, M. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds. Coord. Chem. Rev., 2017, 339, 104-127.
[http://dx.doi.org/10.1016/j.ccr.2017.03.008]
[10]
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111, 2937-2980.
[http://dx.doi.org/10.1021/cr100214d]
[11]
Thomas, W. Organoselenium chemistry in stereoselective reactions. Angew. Chem. Int. Ed., 2000, 39, 3740-3749.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3740:AID-ANIE3740>3.0.CO;2-N]
[12]
Ranu, B.C.; Dey, R.; Chatterjee, T.; Ahammed, S. Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. ChemSusChem, 2012, 5, 22-44.
[http://dx.doi.org/10.1002/cssc.201100348]
[13]
Rampon, D.S.; Luz, E.Q.; Lima, D.B.; Balaguez, R.A.; Schneider, P.H.; Alves, D. Transition metal catalysed direct selanylation of arenes and heteroarenes. Dalton Trans., 2019, 48, 9851-9905.
[http://dx.doi.org/10.1039/C9DT00473D]
[14]
Kesharwani, T.; Worlikar, S.A.; Larock, R.C. Synthesis of 2,3-disubstituted benzo[b]selenophenes via electrophilic cyclization. J. Org. Chem., 2006, 71, 2307-2322.
[http://dx.doi.org/10.1021/jo0524268]
[15]
Yue, D.; Larock, R.C. Synthesis of 2,3-disubstituted benzo[b]thiophenes via palladium-catalyzed coupling and electrophilic cyclization of terminal acetylenes. J. Org. Chem., 2002, 67, 1905-1909.
[http://dx.doi.org/10.1021/jo011016q]
[16]
Stein, A.L.; Rocha, J.D.; Menezes, P.H.; Zeni, G. Synthesis of fused 4-iodoselenophene[2,3-b] thiophenes by electrophilic cyclization of 3-alkynylthiophenes. Eur. J. Org. Chem., 2010, 705-710.
[http://dx.doi.org/10.1002/ejoc.200901118]
[17]
Yue, D.; Yao, T.; Larock, R.C. Synthesis of 2,3-disubstituted benzo[b]furans by the palladium-catalyzed coupling of o-iodoanisoles and terminal alkynes, followed by electrophilic cyclization. J. Org. Chem., 2005, 70, 10292-10296.
[http://dx.doi.org/10.1021/jo051299c]
[18]
Huang, Q.H.; Hunter, J.A.; Larock, R.C. Synthesis of substituted isoquinolines by electrophilic cyclization of iminoalkynes. J. Org. Chem., 2002, 67, 3437-3444.
[http://dx.doi.org/10.1021/jo020020e]
[19]
Arsenyan, P. A simple method for the preparation of selenopheno[3,2-b] and [2,3-b] thiophenes. Tetrahedron Lett., 2014, 55, 2527-2529.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.024]
[20]
Alves, D.; Luchese, C.; Nogueira, C.W.; Zeni, G. Electrophilic cyclization of (Z)-selenoenynes: synthesis and reactivity of 3-iodoselenophenes. J. Org. Chem., 2007, 72, 6726-6734.
[http://dx.doi.org/10.1021/jo070835t]
[21]
Grimaldi, T.B.; Lutz, G.; Back, D.F.; Zeni, G. (Biphenyl-2-alkyne) derivatives as common precursors for the synthesis of 9-iodo-10-organochalcogen-phenanthrenes and 9-organochalcogen-phenanthrenes. Org. Biomol. Chem., 2016, 14, 10415-10426.
[http://dx.doi.org/10.1039/C6OB01807F]
[22]
Mantovani, A.C.; Goulart, T.A.C.; Back, D.F.; Menezes, P.H.; Zeni, G. Iron(III) chloride and diorganyl diselenides-mediated 6-endo-dig cyclization of arylpropiolates and arylpropiolamides leading to 3-organoselenyl-2H-coumarins and 3-organoselenyl-quinolinones. J. Org. Chem., 2014, 79, 10526-10536.
[http://dx.doi.org/10.1021/jo502199q]
[23]
Prochnow, T.; Back, D.F.; Zeni, G. Iron(III) chloride and diorganyl diselenide‐promoted nucleophilic closures of 1‐benzyl‐2‐alkynylbenzenes in the preparation of 9‐(organoselanyl)-5H‐benzo [7]annulenes. Adv. Synth. Catal., 2016, 358, 1119-1129.
[http://dx.doi.org/10.1002/adsc.201501055]
[24]
Casola, K.K.; Back, D.F.; Zeni, G. Iron-catalyzed cyclization of alkynols with diorganyl diselenides: synthesis of 2,5-dihydrofuran, 3,6-dihydro-2H-pyran, and 2,5-dihydro-1H-pyrrole organoselanyl derivatives. J. Org. Chem., 2015, 80, 7702-7712.
[http://dx.doi.org/10.1021/acs.joc.5b01448]
[25]
Xing, L.; Zhang, Y.; Li, B.; Du, Y. In situ formation of RSCl/ArSeCl and their application to the synthesis of 4-chalcogenylisocumarins / pyrones from o-(1-alkynyl)benzoates and (Z)-2-alken-4-ynoates. Org. Lett., 2019, 21, 3620-3624.
[http://dx.doi.org/10.1021/acs.orglett.9b01046]
[26]
Speranca, A.; Godoi, B.; Pinton, S.; Back, D.F.; Menezes, P.H.; Zeni, G. Regioselective synthesis of isochromenones by iron(III)/PhSeSePh-mediated cyclization of 2-alkynylaryl esters. J. Org. Chem., 2011, 76, 6789-6797.
[http://dx.doi.org/10.1021/jo201211s]
[27]
Glenadel, Q.; Ismalaj, E.; Billard, T. A Metal-free route to heterocyclic trifluoromethyl- and fluoroalkylselenolated molecules. Org. Lett., 2018, 20, 56-59.
[http://dx.doi.org/10.1021/acs.orglett.7b03338]
[28]
Wilkins, L.C.; Gunther, B.A.R.; Walther, M.; Lawson, J.R.; Wirth, T.; Melen, R.L. Contrasting frustrated Lewis pair reactivity with selenium‐ and boron‐based Lewis acids. Angew. Chem. Int. Ed., 2016, 55, 11292-11295.
[http://dx.doi.org/10.1002/anie.201605239]
[29]
Perin, G.; Araujo, D.R.; Nobre, P.C.; Lenardao, E.J.; Jacob, R.G.; Silva, M.S.; Roehrs, J.A. Ultrasound-promoted synthesis of 2-organoselanyl-naphthalenes using oxone in aqueous medium as an oxidizing agent. PeerJ, 2018, 6e4706
[http://dx.doi.org/10.7717/peerj.4706]
[30]
Pistoia, R.P.; Roehrs, J.A.; Back, D.F.; Zeni, G. Synthesis of 2-acylselenophenes via iodine-promoted nucleophilic cyclization of [2-(butylselanyl)phenyl]-propynols. Adv. Synth. Catal., 2015, 357, 3655-3665.
[http://dx.doi.org/10.1002/adsc.201500569]
[31]
Lu, L.H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W.M. Sustainable routes for quantitative green selenocyanation of activated alkynes. Chin. Chem. Lett., 2019, 30, 1237-1240.
[http://dx.doi.org/10.1016/j.cclet.2019.04.033]
[32]
Wu, C.; Xiao, H.J.; Wang, S.W.; Tang, M.S.; Tang, Z.L.; Xia, W.; Li, W.F.; Cao, Z.; He, W.M. Natural deep eutectic solvent-catalyzed selenocyanation of activated alkynes via an intermolecular H-bonding activation process. ACS Sustain. Chem.& Eng., 2019, 7, 2169-2175.
[http://dx.doi.org/10.1021/acssuschemeng.8b04877]
[33]
Pistoia, R.P.; Roehrs, J.A.; Back, D.F.; Zeni, G. Iodine-mediated regioselective 5-endo-dig electrophilic cyclization reaction of selenoenynes: synthesis of selenophene derivatives. Org. Chem. Front., 2017, 4, 277-282.
[http://dx.doi.org/10.1039/C6QO00491A]
[34]
Schumacher, R.F.; Rosrio, A.R.; Leite, M.R.; Zeni, G. Cyclization of homopropargyl chalcogenides by copper(II) salts: selective synthesis of 2, 3-dihydroselenophenes, 3-arylselenophenes, and 3-haloselenophenes/thiophenes. Chemistry, 2013, 19, 13059-13064.
[http://dx.doi.org/10.1002/chem.201302129]
[35]
Stein, A.L.; Bilheri, F.N.; Rosario, A.R.; Zeni, G. FeCl3-Diorganyl dichalcogenides promoted cyclization of 2-organochalcogen-3-alkynylthiophenes: synthesis of chalcogenophene[2,3-b]thiophenes. Org. Biomol. Chem., 2013, 11, 2972-2978.
[http://dx.doi.org/10.1039/c3ob27498e]
[36]
Huang, S.; Chen, Z.; Mao, H.; Hu, F.; Li, D.; Tan, Y.; Yang, F.; Qin, W. Metal-free difunctionalization of alkynes to access tetrasubstituted olefins through spontaneous selenosulfonylation of vinylidene ortho-quinone methide (VQM). Org. Biomol. Chem., 2019, 17, 1121-1129.
[http://dx.doi.org/10.1039/C8OB02967A]
[37]
Kawaguchi, S.I.; Shirai, T.; Ohe, T.; Nomoto, A.; Sonoda, M.; Ogawa, A. Highly regioselective simultaneous introduction of phosphino and seleno groups into unsaturated bonds by the novel combination of (Ph2P)2 and (PhSe)2 upon photoirradiation. J. Org. Chem., 2009, 74, 1751-1754.
[http://dx.doi.org/10.1021/jo8020067]
[38]
Yang, L.; Guangfan, Z.; Qian, Z.; Yan, L.; Qian, Z. Copper-catalyzed three component regio- and stereospecific selenosulfonation of alkynes: synthesis of (E)-β-selenovinyl sulfones. J. Org. Chem., 2017, 82, 2269-2275.
[http://dx.doi.org/10.1021/acs.joc.6b03049]
[39]
Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Iron‐catalyzed oxidative addition of alkoxycarbonyl radicals to alkenes with carbazates and air. Angew. Chem. Int. Ed., 2010, 49, 10154-10157.
[http://dx.doi.org/10.1002/anie.201005574]
[40]
Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suoc, Y.; Wang, H. Copper-catalyzed direct oxysulfonylation of alkenes with dioxygen and sulfonylhydrazides leading to β-ketosulfones. Chem. Commun. (Camb.), 2013, 49, 10239-10241.
[http://dx.doi.org/10.1039/c3cc45803b]
[41]
Miura, T.; Kobayashi, M. Addition of phenyl areneselenosulphonates to acetylenes: a route to acetylenic sulphones. J. Chem. Soc. Chem. Commun., 1982, (8), 438-439.
[http://dx.doi.org/10.1039/c39820000438]
[42]
Qiu, J.K.; Shan, C.; Wang, D.C.; Wei, P.; Jiang, B.; Tu, S.J.; Li, G.; Guo, K. Metal-free radical-triggered selenosulfonation of 1,7-enynes for the rapid synthesis of 3,4-dihydroquinolin-2(1H)-ones in batch and flow. Adv. Synth. Catal., 2017, 359, 4332-4339.
[http://dx.doi.org/10.1002/adsc.201701118]
[43]
Huang, M.H.; Zhu, Y.L.; Hao, W.J.; Wang, A.F.; Wang, D.C.; Liu, F.; Wei, P.; Tu, S.J.; Jiang, B. Visible‐light photocatalytic bicyclization of 1,7‐enynes toward functionalized sulfone‐containing benzo[a]fluoren‐5‐ones. Adv. Synth. Catal., 2017, 359, 2229-2234.
[http://dx.doi.org/10.1002/adsc.201700124]]
[44]
Sun, K.; Wang, X.; Fu, F.; Zhang, C.; Chen, Y.; Liu, L. Metal-free selenosulfonylation of alkynes: rapid access to β-(seleno)vinyl sulfones via a cationic-species-induced pathway. Green Chem., 2017, 19, 1490-1493.
[http://dx.doi.org/10.1039/C6GC03420A]
[45]
Sun, K.; Wang, X.; Lv, Y.H.; Li, G.; Jiao, H.Z.; Dai, C.W.; Li, Y.Y.; Zhang, C.; Liu, L. Peroxodisulfate-mediated selenoamination of alkenes yielding amidoselenide-containing sulfamides and azoles. Chem. Commun. (Camb.), 2016, 52, 8471-8474.
[http://dx.doi.org/10.1039/C6CC04225B]
[46]
Tang, E.; Wang, W.; Zhao, Y.; Zhang, M.; Dai, X. Catalytic and atom-economic intermolecular amidoselenenylation of alkenes. Org. Lett., 2016, 18, 176-179.
[http://dx.doi.org/10.1021/acs.orglett.5b03157]
[47]
Tang, E.; Zhao, Y.; Li, W.; Wang, W.; Zhang, M.; Dai, X. Catalytic selenium-promoted intermolecular Friedel-crafts alkylation with simple alkenes. Org. Lett., 2016, 18, 912-915.
[http://dx.doi.org/10.1021/acs.orglett.5b03579]
[48]
Wu, P.; Wu, K.; Wang, L.; Yu, Z. Iron-promoted difunctionalization of alkenes by phenylselenylation/1,2-aryl migration. Org. Lett., 2017, 19, 5450-5453.
[http://dx.doi.org/10.1021/acs.orglett.7b02751]
[49]
Zhang, Q.B.; Yuan, P.F.; Kai, L.L.; Liu, K.; Ban, Y.L.; Wang, X.Y.; Wu, L.Z.; Liu, Q. Preparation of heterocycles via visible-light-driven aerobic selenation of olefins with diselenides. Org. Lett., 2019, 21, 885-889.
[http://dx.doi.org/10.1021/acs.orglett.8b03738]
[50]
Potapov, V.A.; Amosova, S.V.; Volkova, K.A.; Penzik, M.V.; Albanov, A.I. Reactions of selenium dichloride and dibromide with divinyl selenide: synthesis of novel selenium heterocycles and rearrangement of 2,6-dihalo-1,4-diselenanes. Tetrahedron Lett., 2010, 51, 89-92.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.073]
[51]
Shi, H.W.; Yu, C.; Yan, J. Potassium bromide or sodium chloride catalyzed acetoxyselenenylation of alkenes with diselenides and mCPBA. Chin. Chem. Lett., 2015, 26, 1117-1120.
[http://dx.doi.org/10.1016/j.cclet.2015.05.029]
[52]
Bajor, G.; Veszprymi, T.; Riague, E.H.; Guillemin, J.C. Alkenyl selenols and selenocyanates: synthesis, spectroscopic characterization by photoelectron spectroscopy, and quantum chemical study. Chemistry, 2004, 10, 3649-3656.
[http://dx.doi.org/10.1002/chem.200400159]
[53]
Luo, S.; Zhang, N.; Wang, Z.; Yan, H. Enantioselective addition of selenosulfonates to α, β-unsaturated ketones. Org. Biomol. Chem., 2018, 16, 2893-2901.
[http://dx.doi.org/10.1039/C8OB00359A]
[54]
Marcos, V.; Aleman, J.; Ruano, J.L.G.; Marini, F.; Tiecco, M. Asymmetric synthesis of α-alkyl α-selenocarbonyl compounds catalyzed by bifunctional organocatalysts. Org. Lett., 2011, 13, 3052-3055.
[http://dx.doi.org/10.1021/ol200923p]
[55]
Uchiyama, M.; Satoh, S.; Ohta, A. Asymmetric methoxyselenenylation of alkyl vinyl ethers: a new route to chiral acetals. Tetrahedron Lett., 2001, 42, 1559-1562.
[http://dx.doi.org/10.1016/S0040-4039(00)02285-1]
[56]
Shi, Y.L.; Shi, M. DABCO catalyzed addition of selenosulfonates to α,β-unsaturated ketones. Org. Biomol. Chem., 2005, 3, 1620-1621.
[http://dx.doi.org/10.1039/b501942g]
[57]
Tiecco, M.; Carlone, A.; Sternativo, S.; Marini, F.; Bartoli, G.; Melchiorre, P. Organocatalytic asymmetric α‐selenenylation of aldehydes. Angew. Chem. Int. Ed., 2007, 46, 6882-6885.
[http://dx.doi.org/10.1002/anie.200702318]
[58]
Wang, J.; Li, H.; Mei, Y.; Lou, B.; Xu, D.; Xie, D.; Guo, H.; Wang, W. Direct, facile aldehyde and ketone α-selenenylation reactions promoted by l-prolinamide and pyrrolidine sulfonamide organocatalysts. J. Org. Chem., 2005, 70, 5678-5687.
[http://dx.doi.org/10.1021/jo0506940]
[59]
Giacalone, F.; Gruttadauria, M.; Marculescu, A.M.; Noto, R. Polystyrene-supported proline and prolinamide. Versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and α-selenenylation of aldehydes. Tetrahedron Lett., 2007, 48, 255-259.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.040]
[60]
Armstrong, A.; Emmerson, D.P.G. Enantioselective synthesis of α-alkyl, α-vinyl amino acids via [2,3]-sigmatropic rearrangement of selenimides. Org. Lett., 2011, 13, 1040-1013.
[http://dx.doi.org/10.1021/ol1030926]
[61]
Bures, J.; Dingwall, P.; Armstrong, A.; Blackmond, D.G. Rationalization of an unusual solvent‐induced inversion of enantiomeric excess in organocatalytic selenylation of aldehydes. Angew. Chem. Int. Ed., 2014, 53, 8700-8704.
[http://dx.doi.org/10.1002/anie.201404327]
[62]
Sunden, H.; Rios, R.; Cordova, A. Organocatalytic highly enantioselective α-selenenylation of aldehydes. Tetrahedron Lett., 2007, 48, 7865-7869.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.125]
[63]
Wang, W.; Wang, J.; Li, H. A simple and efficient l-prolinamide-catalyzed α-selenenylation reaction of aldehydes. Org. Lett., 2004, 6, 2817-2820.
[http://dx.doi.org/10.1021/ol0488946]
[64]
See, J.Y.; Yang, H.; Zhao, Y.; Wong, M.W.; Ke, Z.; Yeung, Y.Y. Desymmetrizing enantio- and diastereoselective selenoetherification through supramolecular catalysis. ACS Catal., 2018, 82, 850-858.
[http://dx.doi.org/10.1021/acscatal.7b03510]
[65]
Khokhar, S.S.; Wirth, T. Selenocyclizations: control by coordination and by the counterion. Angew. Chem. Int. Ed., 2004, 43, 631-633.
[http://dx.doi.org/10.1002/anie.200352884]
[66]
Fragale, G.; Neuburger, M.; Wirth, T. New and efficient selenium reagents for stereoselective selenenylation reactions. Chem. Commun. (Camb.), 1998, 1867-1868
[http://dx.doi.org/10.1039/a804264k]
[67]
Back, T.G.; Dyck, B.P. Asymmetric cyclization of unsaturated alcohols and carboxylic acids with camphor-based selenium electrophiles. Chem. Commun. (Camb.), 1996, 2567-2568
[http://dx.doi.org/10.1039/cc9960002567]
[68]
Guan, H.; Wang, H.; Huang, D.; Shi, Y. Enantioselective oxysulfenylation and oxyselenenylation of olefins catalyzed by chiral bronsted acids. Tetrahedron, 2012, 68, 2728-2735.
[http://dx.doi.org/10.1016/j.tet.2012.01.006]
[69]
Wei, Q.; Wang, Y.Y.; Du, Y.L.; Gong, L.Z. Organocatalytic asymmetric selenofunctionalization of tryptamine for the synthesis of hexahydropyrrolo[2,3-b]indole derivatives. Beilstein J. Org. Chem., 2013, 9, 1559-1564.
[http://dx.doi.org/10.3762/bjoc.9.177]
[70]
Denmark, S.E.; Kalyani, D.; Collins, W.R. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions. J. Am. Chem. Soc., 2010, 132, 15752-15765.
[http://dx.doi.org/10.1021/ja106837b]
[71]
Niu, W.; Yeung, Y.Y. Catalytic and highly enantioselective selenolactonization. Org. Lett., 2015, 17, 1660-1663.
[http://dx.doi.org/10.1021/acs.orglett.5b00377]
[72]
Denmark, S.E.; Collins, W.R. Lewis base activation of lewis acids: development of a lewis base catalyzed selenolactonization. Org. Lett., 2007, 9, 3801-3804.
[http://dx.doi.org/10.1021/ol701617d]
[73]
Wirth, T., Ed.; Organoselenium Chemistry: Synthesis and Reactions; Wiley-VCH: Weinheim, Germany, 2012.
[74]
Zhang, H.; Lin, S.; Jacobsen, E.N. Enantioselective selenocyclization via dynamic kinetic resolution of seleniranium ions by hydrogen-bond donor catalysts. J. Am. Chem. Soc., 2014, 136, 16485-16488.
[http://dx.doi.org/10.1021/ja510113s]
[75]
You, Y.; Wu, Z.J.; Wang, Z.H.; Xu, X.Y.; Zhang, X.M.; Yuan, W.C. Enantioselective synthesis of 3,3-disubstituted oxindoles bearing two different heteroatoms at the C3 position by organocatalyzed sulfenylation and selenenylation of 3-pyrrolyl-oxindoles. J. Org. Chem., 2015, 80, 8470-8477.
[http://dx.doi.org/10.1021/acs.joc.5b01491]
[76]
Muniraj, N. kumar, J.D.; Prabhu, K.R. N-Iodosuccinimide catalyzed oxidative selenocyanation and thiocyanation of electron rich arenes. ChemistrySelect, 2016, 5, 1033-1038.
[http://dx.doi.org/10.1002/slct.201600292]
[77]
Abonia, R.; Gutierrez, L.F.; Zwarycz, A.T.; Smits, S.C.; Laali, K.K. An efficient selectfluor-mediated oxidative thio- and selenocyanation of diversely substituted indoles and carbazoles. Heteroatom Chem., 2019, 2019(6a), 1-10.
[http://dx.doi.org/10.1155/2019/1459681]
[78]
Zhang, X.; Wang, C.; Jiang, H.; Sun, L. A low-cost electrochemical thio- and selenocyanation strategy for electron-rich arenes under catalyst- and oxidant-free conditions. RSC Advances, 2018, 8, 22042-22045.
[http://dx.doi.org/10.1039/C8RA04407D]
[79]
Sommen, G.L.; Linden, A.; Heimgartner, H. Selenium-containing heterocycles from isoselenocyanates: synthesis of 2-methylidene-1,3-selenazolidine derivatives. Tetrahedron, 2006, 62, 3344-3354.
[http://dx.doi.org/10.1016/j.tet.2006.01.077]
[80]
Sommen, G.L.; Linden, A.; Heimgartner, H. Selenium-containing heterocycles from isoselenocyanates: base-catalyzed reaction of malononitrile with phenyl isoselenocyanate and bromoacetonitrile or α-halogenated ketones. Helv. Chim. Acta, 2007, 90, 1849-1855.
[http://dx.doi.org/10.1002/hlca.200790194]
[81]
Sommen, G.L.; Linden, A.; Heimgartner, H. Selenium-containing heterocycles from isoselenocyanates: 4-methylselenazole derivatives from the reaction with malononitrile and propargyl chloride. Helv. Chim. Acta, 2008, 91, 209-219.
[http://dx.doi.org/10.1002/hlca.200890025]
[82]
Kobayashi, K.; Yokoi, Y. A convenient synthesis of 2-sulfanylbenzoselenazole derivatives via the reaction of 2-lithiophenyl isothiocyanates with selenium. Helv. Chim. Acta, 2012, 95, 761-765.
[http://dx.doi.org/10.1002/hlca.201200014]
[83]
Koketsu, M.; Yamamura, Y.; Ishihara, H. Synthesis of 2-selenoxoperhydro-1,3-selenazin-4-ones and 2-selenoxo1,3-selenazolidin-4-ones via diselenocarbamate intermediates. Synthesis, 2006, 16, 2738-2742.
[http://dx.doi.org/10.1055/s-2006-942494]
[84]
Koketsu, M.; Kiyokuni, T.; Sakai, T.; Ando, H.; Ishihara, H. Synthesis of 1,3-selenazines and 1,3-selenazolidines via intramolecular addition of N-allylselenoureas. Chem. Lett., 2006, 35, 626-627.
[http://dx.doi.org/10.1246/cl.2006.626]
[85]
Garud, D.R.; Koketsu, M.; Ishihara, H. Isoselenocyanates: a powerful tool for the synthesis of selenium-containing heterocycles. Molecules, 2007, 12, 504-535.
[http://dx.doi.org/10.3390/12030504]
[86]
Toyoda, Y.; Koketsu, M. Synthesis and Z/E isomerization of 2-imino-1,3-thiaselenolanes via iodocyclization. Tetrahedron, 2012, 68, 10496-10501.
[http://dx.doi.org/10.1016/j.tet.2012.07.083]
[87]
Satheesh, V.; Srivastava, H.K.; Kumar, S.V.; Sengoden, M.; Punniyamurthy, T. Stereospecific Al‐catalysed tandem C-N/C-Se bond formation of isoselenocyanates with aziridines: synthesis and DFT study. Adv. Synth. Catal., 2019, 361, 55-58.
[http://dx.doi.org/10.1002/adsc.201801116]
[88]
Sengoden, M.; Irie, R.; Punniyamurthy, T. Enantiospecific aluminum-catalyzed (3+2) cycloaddition of unactivated aziridines with isothiocyanates. J. Org. Chem., 2016, 81, 11508-11513.
[http://dx.doi.org/10.1021/acs.joc.6b02190]
[89]
Xie, Y.; Liu, J.; Li, J. Selective synthesis of novel 2-imino-1,3-selenazolidin-4-ones and 2-amino-1,3,4-selenadiazin-5-ones from isoselenocyanates. Tetrahedron Lett., 2011, 52, 932-935.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.068]
[90]
Fujiwara, S.I.; Maeda, H.; Matsuya, T.; Shin-ike, T.; Kambe, N.; Sonoda, N. Imidoylation of acidic hydrocarbons with selenium and isocyanides: a new synthetic method for preparation of selenoimidates. J. Org. Chem., 2000, 65, 5022-5025.
[http://dx.doi.org/10.1021/jo0001479]
[91]
Sommen, G.L.; Linden, A.; Heimgartner, H. Synthesis of 2-selenoxo-1,3-thiazolidin-4-ones and 2-selenoxo-1,3-thiazinan-4-ones from isoselenocyanates. Heterocycles, 2005, 65, 1903-1915.
[http://dx.doi.org/10.3987/COM-05-10435]
[92]
Favero, F.; Sommen, G.L.; Linden, A.; Heimgartner, H. Synthesis of 5-selenoxo-1,2,4-triazole-1-carboxylates from isoselenocyanates and azodicarboxylates. Heterocycles, 2006, 67, 749-762.
[http://dx.doi.org/10.3987/COM-05-S(T)77]
[93]
Sommen, G.L.; Linden, A.; Heimgartner, H. Selenium‐containing heterocycles from isoselenocyanates: use of hydrazine for the synthesis of 1,3,4‐selenadiazine derivatives. Helv. Chim. Acta, 2006, 89, 1322-1329.
[http://dx.doi.org/10.1002/hlca.200690131]
[94]
Sommen, G.L.; Heimgartner, H. Synthesis of 1,3-oxaselenan-2-imines from isoselenocyanates. Pol. J. Chem., 2007, 81, 1413-1418.
[95]
Garud, D.R.; Toyoda, Y.; Koketsu, M. First synthesis of 1,3-oxaselenepanes. Tetrahedron Lett., 2009, 50, 3035-3037.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.004]
[96]
Garud, D.R.; Makimura, M.; Ando, H.; Ishihara, H.; Koketsu, M. First regioselective iodocyclization of O-allylselenocarbamates. Tetrahedron Lett., 2007, 48, 7764-7768.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.040]
[97]
Tanahashi, N.; Koketsu, M. Synthesis of 5-amino-2-selenoxo-1,3-imidazole-4-carboselenoamides by the reaction of isoselenocyanates with aminoacetonitriles. Tetrahedron Lett., 2011, 52, 4650-4653.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.119]
[98]
Murai, T.; Yamaguchi, K.; Hori, F.; Maruyama, T. Reaction of selenoamide dianions with thio- and selenoformamides leading to the formation of 5-aminoselenazoles: photophysical and electrochemical properties. J. Org. Chem., 2014, 79, 4930-4939.
[http://dx.doi.org/10.1021/jo500499g]
[99]
Shibahara, F.; Fukunaga, T.; Kubota, S.; Yoshida, A.; Murai, T. Synthesis of chiral selenazolines from N-acyloxazolidinones via a selenative rearrangement of chiral cyclic skeletons. Org. Lett., 2018, 20, 5826-5830.
[http://dx.doi.org/10.1021/acs.orglett.8b02520]
[100]
Ghosh, T.; Mukherjee, N.; Ranu, B.C. Transition metal- and oxidant-free base-mediated selenation of bicyclic arenes at room temperature. ACS Omega, 2018, 3, 17540-17546.
[http://dx.doi.org/10.1021/acsomega.8b02740]
[101]
Kim, Y.J.; Kim, D.Y. Electrochemical oxidative selenylation of imidazo[1,2-a]pyridines with diselenides. Tetrahedron Lett., 2019, 60, 739-742.
[http://dx.doi.org/10.1016/j.tetlet.2019.02.001]
[102]
Yang, D.; Li, G.; Xing, C.; Cui, W.; Li, K.; Wei, W. Metal- and photocatalyst-free visible-light-promoted regioselective selenylation of coumarin derivatives via oxidation-induced C-H functionalization. Org. Chem. Front., 2018, 5, 2974-2979.
[http://dx.doi.org/10.1039/C8QO00899J]
[103]
Ranjan, A.; Yerande, R.; Jadhav, M.; Yerande, S.G.; Dethe, D.H. One-pot synthesis of 2-amino-1,3-selenazole via an intermediary amidinoselenourea. Eur. J. Org. Chem., 2015, 2015(15), 3230-3234.
[http://dx.doi.org/10.1002/ejoc.201500168]
[104]
Xie, Y.; Yang, P.; Chen, X. One-pot synthesis of 5-arylamino-1,3,4-selenadiazol-2(3H)-ones from arylisoselenocyanates. J. Chem. Res., 2012, 36, 421.
[http://dx.doi.org/10.3184/174751912X13377840596361]
[105]
Lalithamba, H.S.; Narendra, N.; Naik, S.A.; Sureshbabu, V.V. Ultrasound mediated synthesis of 2-amino-1,3-selenazoles derived from Fmoc/Boc/Z-α-amino acids. ARKIVOC, 2010, 2010(11), 77-90.
[106]
Below, H.; Pfeiffer, W.D.; Geisler, K.; Saghyan, A.S.; Fischere, C.; Langer, P. Synthesis of 2‐unsubstituted 1,3‐selenazoles by cyclization of selenoformamide with α‐bromocarbonyl compounds. J. Heterocycl. Chem., 2015, 52, 592-596.
[http://dx.doi.org/10.1002/jhet.2076]
[107]
Kanapickaite, V.; Martynaitis, V.; Sackus, A. Facile synthesis of novel functionalized 1,3-selenazoles. ARKIVOC, 2009, 2009(11), 268-276.
[108]
Gondru, R.; Janardhan, B.; Rajitha, B. Green approach: an efficient synthesis of 2,4-disubstituted-1,3-thiazoles and selenazoles in aqueous medium under ultrasonic irradiation. Res. Chem. Intermed., 2015, 11, 8099-8109.
[109]
Madhav, J.V.; Kuarm, B.S.; Rajitha, B. Solid-state synthesis of 1,3-selenazoles employing CuPy2Cl2 as a Lewis acid catalyst. Synth. Commun., 2008, 38, 3514-3522.
[http://dx.doi.org/10.1080/00397910802162975]
[110]
Banothu, J.; Vaarla, K.; Bavantula, R.; Crooks, P.A. Sodium fluoride as an efficient catalyst for the synthesis of 2,4-disubstituted-1,3-thiazoles and selenazoles at ambient temperature. Chin. Chem. Lett., 2014, 25, 172-175.
[http://dx.doi.org/10.1016/j.cclet.2013.10.001]
[111]
Narender, M.; Reddy, M.S.; Kumar, V.P.; Srinivas, B.; Sridhar, R.; Nageswar, Y.V.D.; Rao, K.R. Aqueous-phase one-pot synthesis of 2-aminothiazole- or 2-aminoselenazole-5-carboxylates from β-keto esters, thiourea or selenourea, and N-bromo-succinimide under supramolecular catalysis. Synthesis, 2007, 22, 3469-3472.
[112]
Malinauskiene, V.; Kveselyte, A.; Dzedulionyte, K.; Bieliauskas, A.; Burinskas, S.; Slok, F.A.; Sackus, A. L-Proline and related chiral heterocyclic amino acids as scaffolds for the synthesis of functionalized 2-amino-1,3-selenazole-5-carboxylates. Chem. Het. Compd., 2018, 54, 469-473.
[http://dx.doi.org/10.1007/s10593-018-2291-1]
[113]
Koketsu, M.; Sasaki, T.; Ando, H.; Ishihara, H. Preparation of 4,5‐dihydro‐1,3‐selenazoles by reaction of aromatic primary selenoamides with acetylenedicarboxylate. J. Heterocycl. Chem., 2007, 44, 231-232.
[http://dx.doi.org/10.1002/jhet.5570440138]
[114]
Al-Rubaie, A.Z.; Al-Masoudi, W.A.; Hameed, A.J.; Yousif, L.Z.; Graia, M. Synthesis, reaction and antiviral activity of 2,4-diaryl-1,3-selenazoles. J. Korean Chem. Soc., 2008, 52, 36-46.
[http://dx.doi.org/10.5012/jkcs.2008.52.1.036]
[115]
Mohr, F. Old selenium heterocycles revisited: synthesis, spectroscopic, and structural characterization of N‐acyl‐1,3‐selenazol‐2(3H) ‐imines and 5‐acyl‐1,3‐selenazol‐2‐amines from acylselenourea derivatives. J. Heterocycl. Chem., 2014, 51, 1435-1441.
[http://dx.doi.org/10.1002/jhet.1935]
[116]
Ignat, A.G.; Gaina, L.; Kuete, V.; Silaghi-Dumitrescu, L.; Efferth, T.; Zaharia, V. Microwave-assisted synthesis of new selenazole derivatives with antiproliferative activity. Molecules, 2013, 18, 4679-4688.
[http://dx.doi.org/10.3390/molecules18044679]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 28
Year: 2019
Page: [3206 - 3225]
Pages: 20
DOI: 10.2174/1385272823666191209111934
Price: $58

Article Metrics

PDF: 30
HTML: 5
EPUB: 1