Cardiovascular Effects of Micromeria graeca (L.) Benth. ex Rchb in Normotensive and Hypertensive Rats

Author(s): Mourad Akdad, Mohamed Eddouks*

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 20 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb.

Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied.

Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats.

Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG.

Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected.

Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.

Keywords: Antihypertensive, vasorelaxation, Micromeria graeca, β-adrenergic, L-NAME, medicinal plant.

[1]
Global status report on noncommunicable diseases 2010, 2011; Available at: https://www.who.int/nmh/publications/ncd_report2010/en/ (Accessed on August 30, 2019).
[2]
Chobanian, A.V.; Chobanian, M.D. Guidelines for the Management of Hypertension. Med. Clin. North Am., 2017, 101(1), 219-227.
[http://dx.doi.org/10.1016/j.mcna.2016.08.016] [PMID: 27884231]
[3]
Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R., III; Simons-Morton, D.G.; Karanja, N.; Lin, P.H. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med., 2001, 344(1), 3-10.
[http://dx.doi.org/10.1056/NEJM200101043440101] [PMID: 11136953]
[4]
Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr; Roccella, E.J. The seventh report of the Joint National Committee on the prevention, detection, evaluation and treatment of high blood pressure. Hypertension, 2003, 42(6), 1206-1252.
[http://dx.doi.org/10.1161/01.HYP.0000107251.49515.c2] [PMID: 14656957]
[5]
Marin, P.D.; Grayer, R.J.; Veitch, N.C.; Kite, G.C.; Harborne, J.B. Acacetin glycosides as taxonomic markers in Calamintha and Micromeria. Phytochemistry, 2001, 58(6), 943-947.
[http://dx.doi.org/10.1016/S0031-9422(01)00352-1] [PMID: 11684193]
[6]
Slavkovska, V.; Couladis, M.; Bojovic, S.; Tzakou, O.; Pavlovic, M.; Lakusic, B.; Jancic, R. Essential Oil and Its Systematic Significance in Species of Micromeria Bentham from Serbia & Montenegro. Plant Syst. Evol., 2005, 255(1-2), 1-15.
[http://dx.doi.org/10.1007/s00606-005-0303-y]
[7]
Brahmi, F.; Guendouze, N.; Hauchard, D.; Okusa, P.; Kamagaju, L.; Madani, K.; Duez, P. Phenolic profile and biological activities of Micromeriagraeca (L.) Benth. exRchb. Int. J. Food Prop., 2017, 20(2), 2070-2083.
[8]
Couladis, M.; Tzakou, O.; Verykokidou, E.; Harvala, C. Screening of some Greek aromatic plants for antioxidant activity. Phytother. Res., 2003, 17(2), 194-195.
[http://dx.doi.org/10.1002/ptr.1261] [PMID: 12601688]
[9]
El Khoury, R.; Caceres, I.; Puel, O.; Bailly, S.; Atoui, A.; Oswald, I.P.; El Khoury, A.; Bailly, J.D. Identification of the anti-aflatoxinogenic activity of micromeria graeca and elucidation of its molecular mechanism in Aspergillus flavus. Toxins (Basel), 2017, 9(3), 87.
[http://dx.doi.org/10.3390/toxins9030087] [PMID: 28257049]
[10]
Formisano, C.; Oliviero, F.; Rigano, D.; Saab, A.M.; Senatore, F. Chemical composition of essential oils and in vitro antioxidant properties of extracts and essential oils of calaminthaoriganifolia and micromeriamyrtifolia, two lamiaceae from the lebanon flora. Ind. Crops Prod., 2014, 62, 405-411.
[http://dx.doi.org/10.1016/j.indcrop.2014.08.043]
[11]
Benomari, F.Z.; Djabou, N.; Medbouhi, A.; Khadir, A.; Bendahou, M.; Selles, C.; Desjobert, J.M.; Costa, J.; Muselli, A. Chemical variability and biological activities of essential oils of micromeria inodora (desf.) benth. from Algeria. Chem. Biodivers., 2016, 13(11), 1559-1572.
[http://dx.doi.org/10.1002/cbdv.201600098] [PMID: 27448034]
[12]
Rawat, P.; Singh, P.K.; Vipin, K. Antihypertensive medicinal plants and their mode of action. J. Herb. Med., 2016, 6(3), 107-118.
[http://dx.doi.org/10.1016/j.hermed.2016.06.001]
[13]
Ajebli, M.; Eddouks, M. Buxus sempervirens L Improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[14]
El-Ouady, F.; Eddouks, M. Warionia saharae induces antihypertensive and vasorelaxant activities through nitric oxide and KATP channels pathways in rats. J. Complement. Integr. Med., 2019.
[http://dx.doi.org/10.1515/jcim-2019-0024] [PMID: 31348761]
[15]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242112039
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[16]
Anwar, M.A.; Samaha, A.A.; Ballan, S.; Saleh, A.I.; Iratni, R.; Eid, A.H. salvia fruticosa induces vasorelaxation in rat isolated thoracic aorta: Role of the PI3K/Akt/eNOS/NO/cGMP signaling pathway. Sci. Rep., 2017, 7(1), 686.
[http://dx.doi.org/10.1038/s41598-017-00790-9] [PMID: 28386068]
[17]
Gauthier, C.; Tavernier, G.; Charpentier, F.; Langin, D.; Le Marec, H. Functional β3-adrenoceptor in the human heart. J. Clin. Invest., 1996, 98(2), 556-562.
[http://dx.doi.org/10.1172/JCI118823] [PMID: 8755668]
[18]
Bylund, D.B. Propranolol., 2015.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.09248-5]
[19]
Louis, S.N.S.; Nero, T.L.; Iakovidis, D.; Jackman, G.P.; Louis, W.J. LK 204-545, a highly selective beta1-adrenoceptor antagonist at human beta-adrenoceptors. Eur. J. Pharmacol., 1999, 367(2-3), 431-435.
[http://dx.doi.org/10.1016/S0014-2999(99)00019-9] [PMID: 10079020]
[20]
Trochu, J.N.; Leblais, V.; Rautureau, Y.; Bévérelli, F.; Le Marec, H.; Berdeaux, A.; Gauthier, C. Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br. J. Pharmacol., 1999, 128(1), 69-76.
[http://dx.doi.org/10.1038/sj.bjp.0702797] [PMID: 10498836]
[21]
Rautureau, Y.; Toumaniantz, G.; Serpillon, S.; Jourdon, P.; Trochu, J.N.; Gauthier, C. Beta 3-adrenoceptor in rat aorta: molecular and biochemical characterization and signalling pathway. Br. J. Pharmacol., 2002, 137(2), 153-161.
[http://dx.doi.org/10.1038/sj.bjp.0704867] [PMID: 12208771]
[22]
Dessy, C.; Moniotte, S.; Ghisdal, P.; Havaux, X.; Noirhomme, P.; Balligand, J.L. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation, 2004, 110(8), 948-954.
[http://dx.doi.org/10.1161/01.CIR.0000139331.85766.AF] [PMID: 15302798]
[23]
Cirino, G.; Sorrentino, R.; di Villa Bianca, Rd.; Popolo, A.; Palmieri, A.; Imbimbo, C.; Fusco, F.; Longo, N.; Tajana, G.; Ignarro, L.J.; Mirone, V. Involvement of beta 3-adrenergic receptor activation via cyclic GMP- but not NO-dependent mechanisms in human corpus cavernosum function. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5531-5536.
[http://dx.doi.org/10.1073/pnas.0931347100] [PMID: 12707413]
[24]
Zanesco, A.; Antunes, E. Effects of exercise training on the cardiovascular system: Pharmacological approaches. Pharmacol. Ther., 2007, 114(3), 307-317.
[http://dx.doi.org/10.1016/j.pharmthera.2007.03.010] [PMID: 17512599]
[25]
Sobey, C.G. Potassium channel function in vascular disease. Arterioscler. Thromb. Vasc. Biol., 2001, 21(1), 28-38.
[http://dx.doi.org/10.1161/01.ATV.21.1.28] [PMID: 11145930]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 8
Year: 2020
Published on: 06 December, 2019
Page: [1253 - 1261]
Pages: 9
DOI: 10.2174/1871530319666191206163136
Price: $65

Article Metrics

PDF: 14
HTML: 1