Structural Modifications on CORM-3 Lead to Enhanced Anti-angiogenic Properties Against Triple-negative Breast Cancer Cells

Author(s): Malamati Kourti*, Jun Cai, Wen Jiang, Andrew D. Westwell

Journal Name: Medicinal Chemistry

Volume 17 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Purpose: Carbon monoxide-releasing molecules (CORMs) are a special class of organometallic complexes that have been reported to offer beneficial effects against different conditions including several subtypes of cancer. Especially for the aggressive and poorly treated triplenegative breast cancer (TNBC), early CORMs have been shown to diminish malignant angiogenesis and may be considered as an alternative approach. So, this study aimed at testing novel CORM molecules against angiogenesis in TNBC seeking potent drug candidates for new therapies.

Methods: Based on previous studies, CORM-3 was chosen as the lead compound and a group of 15 new ruthenium-based CORMs was synthesized and subsequently evaluated in vitro for potential anti-angiogenic properties.

Results: A similar anti-angiogenic behaviour to the lead complex was observed and a new CORM, complex 4, emerged as a promising agent from this study. Specifically, this complex offered better inhibition of the activation of VEGFR2 and other downstream proteins of vascular endothelial cells. Complex 4 also retained the ability of the parent molecule to reduce the upregulated VEGF expression from TNBC cells and inhibit endothelial cell migration and new vessel formation. The lack of significant cytotoxicity and the downregulating activity over the cytoprotective enzyme haem oxygenase-1 (HO-1) in cancer cells may also favour CORMs against this poorly treated subtype of breast cancer.

Conclusion: Since the anti-angiogenic approach is one of the few available targeted strategies against TNBC, both CORM-3 and the new complex 4 should be considered for further research as combination agents with existing anti-angiogenic drugs for more effective treatment of malignant angiogenesis in TNBC.

Keywords: Carbon-monoxide releasing molecules (CORMs), CORM-3, angiogenesis, triple-negative breast cancer (TNBC), breast cancer, anti-angiogenic therapy.

[1]
Kalimutho, M.; Parsons, K.; Mittal, D.; López, J.A.; Srihari, S.; Khanna, K.K. Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol. Sci., 2015, 36(12), 822-846.
[http://dx.doi.org/10.1016/j.tips.2015.08.009] [PMID: 26538316]
[2]
Andreopoulou, E.; Schweber, S.J.; Sparano, J.A.; McDaid, H.M. Therapies for triple negative breast cancer. Expert Opin. Pharmacother., 2015, 16(7), 983-998.
[http://dx.doi.org/10.1517/14656566.2015.1032246] [PMID: 25881743]
[3]
Marmé, F.; Schneeweiss, A. Targeted Therapies in Triple-Negative Breast Cancer. Breast Care (Basel), 2015, 10(3), 159-166.
[http://dx.doi.org/10.1159/000433622] [PMID: 26557820]
[4]
Fosu-Mensah, N.; Peris, M.S.; Weeks, H.P.; Cai, J.; Westwell, A.D. Advances in small-molecule drug discovery for triple-negative breast cancer. Future Med. Chem., 2015, 7(15), 2019-2039.
[http://dx.doi.org/10.4155/fmc.15.129] [PMID: 26495746]
[5]
Sagara, A.; Igarashi, K.; Otsuka, M.; Kodama, A.; Yamashita, M.; Sugiura, R.; Karasawa, T.; Arakawa, K.; Narita, M.; Kuzumaki, N.; Narita, M.; Kato, Y. Endocan as a prognostic biomarker of triple-negative breast cancer. Breast Cancer Res. Treat., 2017, 161(2), 269-278.
[http://dx.doi.org/10.1007/s10549-016-4057-8] [PMID: 27888420]
[6]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[7]
Gacche, R.N.; Meshram, R.J. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim. Biophys. Acta, 2014, 1846(1), 161-179.
[http://dx.doi.org/10.1016/j.bbcan.2014.05.002] [PMID: 24836679]
[8]
Rydén, L.; Jirström, K.; Haglund, M.; Stål, O.; Fernö, M. Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up. Breast Cancer Res. Treat., 2010, 120(2), 491-498.
[http://dx.doi.org/10.1007/s10549-010-0758-6] [PMID: 20135347]
[9]
Hillen, F.; Griffioen, A.W. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev., 2007, 26(3-4), 489-502.
[http://dx.doi.org/10.1007/s10555-007-9094-7] [PMID: 17717633]
[10]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[11]
Bousquet, G.; El Bouchtaoui, M.; Sophie, T.; Leboeuf, C.; de Bazelaire, C.; Ratajczak, P.; Giacchetti, S.; de Roquancourt, A.; Bertheau, P.; Verneuil, L.; Feugeas, J.P.; Espié, M.; Janin, A. Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget, 2017, 8(21), 35205-35221.
[http://dx.doi.org/10.18632/oncotarget.16925] [PMID: 28445132]
[12]
Falcon, B.L.; Chintharlapalli, S.; Uhlik, M.T.; Pytowski, B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol. Ther., 2016, 164, 204-225.
[http://dx.doi.org/10.1016/j.pharmthera.2016.06.001] [PMID: 27288725]
[13]
Ryter, S.W.; Alam, J.; Choi, A.M.K. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev., 2006, 86(2), 583-650.
[http://dx.doi.org/10.1152/physrev.00011.2005] [PMID: 16601269]
[14]
Wu, L.; Wang, R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol. Rev., 2005, 57(4), 585-630.
[http://dx.doi.org/10.1124/pr.57.4.3] [PMID: 16382109]
[15]
Johnson, T.R.; Mann, B.E.; Clark, J.E.; Foresti, R.; Green, C.J.; Motterlini, R. Metal carbonyls: a new class of pharmaceuticals? Angew. Chem. Int. Ed. Engl., 2003, 42(32), 3722-3729.
[http://dx.doi.org/10.1002/anie.200301634] [PMID: 12923835]
[16]
Motterlini, R.; Mann, B.E.; Foresti, R. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin. Investig. Drugs, 2005, 14(11), 1305-1318.
[http://dx.doi.org/10.1517/13543784.14.11.1305] [PMID: 16255672]
[17]
Motterlini, R.; Sawle, P.; Hammad, J.; Bains, S.; Alberto, R.; Foresti, R.; Green, C.J. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J., 2005, 19(2), 284-286.
[http://dx.doi.org/10.1096/fj.04-2169fje] [PMID: 15556971]
[18]
Clark, J.E.; Naughton, P.; Shurey, S.; Green, C.J.; Johnson, T.R.; Mann, B.E.; Foresti, R.; Motterlini, R. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ. Res., 2003, 93(2), e2-e8.
[http://dx.doi.org/10.1161/01.RES.0000084381.86567.08] [PMID: 12842916]
[19]
Pitchumony, T.S.; Spingler, B.; Motterlini, R.; Alberto, R. Syntheses, structural characterization and CO releasing properties of boranocarbonate [H3BCO2H]- derivatives. Org. Biomol. Chem., 2010, 8(21), 4849-4854.
[http://dx.doi.org/10.1039/c0ob00099j] [PMID: 20734000]
[20]
Johnson, T.R.; Mann, B.E.; Teasdale, I.P.; Adams, H.; Foresti, R.; Green, C.J.; Motterlini, R. Metal carbonyls as pharmaceuticals? [Ru(CO)3Cl(glycinate)], a CO-releasing molecule with an extensive aqueous solution chemistry. Dalton Trans., 2007, (15), 1500-1508.
[http://dx.doi.org/10.1039/b613629j] [PMID: 17404651]
[21]
Romanski, S.; Kraus, B.; Schatzschneider, U.; Neudörfl, J.M.; Amslinger, S.; Schmalz, H.G. Acyloxybutadiene iron tricarbonyl complexes as enzyme-triggered CO-releasing molecules (ET-CORMs). Angew. Chem. Int. Ed. Engl., 2011, 50(10), 2392-2396.
[http://dx.doi.org/10.1002/anie.201006598] [PMID: 21351362]
[22]
Niesel, J.; Pinto, A.; Peindy N’Dongo, H.W.; Merz, K.; Ott, I.; Gust, R.; Schatzschneider, U. Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex. Chem. Commun. (Camb.), 2008, (15), 1798-1800.
[http://dx.doi.org/10.1039/b719075a] [PMID: 18379697]
[23]
Jackson, C.S.; Schmitt, S.; Dou, Q.P.; Kodanko, J.J. Synthesis, characterization, and reactivity of the stable iron carbonyl complex [Fe(CO)(N4Py)](ClO4)2: photoactivated carbon monoxide release, growth inhibitory activity, and peptide ligation. Inorg. Chem., 2011, 50(12), 5336-5338.
[http://dx.doi.org/10.1021/ic200676s] [PMID: 21618979]
[24]
Kourti, M.; Jiang, W.G.; Cai, J. Aspects of Carbon Monoxide in Form of CO-Releasing Molecules Used in Cancer Treatment: More Light on the Way. Oxid. Med. Cell. Longev., 2017, 20179326454
[http://dx.doi.org/10.1155/2017/9326454] [PMID: 28286606]
[25]
Loboda, A.; Jozkowicz, A.; Dulak, J. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy. Vascul. Pharmacol., 2015, 74, 11-22.
[http://dx.doi.org/10.1016/j.vph.2015.09.004] [PMID: 26392237]
[26]
Romão, C.C.; Vieira, H.L.A. Metal Carbonyl Prodrugs: CO Delivery and Beyond. In: Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging; , 2015; pp. 165-202.
[http://dx.doi.org/10.1002/9783527673438.ch06]
[27]
Kourti, M.; Westwell, A.; Jiang, W.; Cai, J. Repurposing old carbon monoxide-releasing molecules towards the anti-angiogenic therapy of triple-negative breast cancer. Oncotarget, 2019, 10(10), 1132-1148.
[http://dx.doi.org/10.18632/oncotarget.26638] [PMID: 30800223]
[28]
Ahmad, S.; Hewett, P.W.; Fujisawa, T.; Sissaoui, S.; Cai, M.; Gueron, G.; Al-Ani, B.; Cudmore, M.; Ahmed, S.F.; Wong, M.K.K.; Wegiel, B.; Otterbein, L.E.; Vítek, L.; Ramma, W.; Wang, K.; Ahmed, A. Carbon monoxide inhibits sprouting angiogenesis and vascular endothelial growth factor receptor-2 phosphorylation. Thromb. Haemost., 2015, 113(2), 329-337.
[http://dx.doi.org/10.1160/TH14-01-0002] [PMID: 25354586]
[29]
van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: the MTT assay. Methods Mol. Biol., 2011, 731, 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20] [PMID: 21516412]
[30]
Lopes-Bastos, B.; Jin, L.; Ruge, F.; Owen, S.; Sanders, A.; Cogle, C.; Chester, J.; Jiang, W.G.; Cai, J. Association of breast carcinoma growth with a non-canonical axis of IFNγ/IDO1/TSP1. Oncotarget, 2017, 8(49), 85024-85039.
[http://dx.doi.org/10.18632/oncotarget.18781] [PMID: 29156701]
[31]
Mohr, F.; Niesel, J.; Schatzschneider, U.; Lehmann, C.W. Synthesis, structures, and CO releasing properties of two tricarbonyl manganese(I) complexes. Z. Anorg. Allg. Chem., 2012, 638(3-4), 543-546.
[http://dx.doi.org/10.1002/zaac.201100422]
[32]
Berlinguet, L.; Begin, N.; Babineau, L.M.; Martel, F.; Vallee, R.; Laferte, R.O. Biochemical studies of an unnatural and antitumor amino acid: 1-aminocyclopentanecarboxylic acid. I. Toxicity and tissue distribution. Can. J. Biochem. Physiol., 1962, 40, 425-432.
[http://dx.doi.org/10.1139/y62-048] [PMID: 13867937]
[33]
Connors, T.A.; Elson, L.A.; Haddow, A.; Ross, W.C.J. The pharmacology and tumour growth inhibitory activity of 1-aminocyclopentane-1-carboxylic acid and related compounds. Biochem. Pharmacol., 1960, 5(1-2), 108-129.
[http://dx.doi.org/10.1016/0006-2952(60)90014-9] [PMID: 13880910]
[34]
Mykhailiuk, P.K.; Starova, V.; Iurchenko, V.; Shishkina, S.V.; Shishkin, O.V.; Khilchevskyi, O.; Zaporozhets, O. 1-Amino-4,4-difluorocyclohexanecarboxylic acid as a promising building block for drug discovery: Design, synthesis and characterization. Tetrahedron, 2013, 69(20), 4066-4075.
[http://dx.doi.org/10.1016/j.tet.2013.03.072]
[35]
Zhao, Q.; Xu, T.; Li, M.; Yang, Y.; Hu, H.; Wang, S.; Yan, W.; Chen, R.; Zhang, C.; Xu, C. Synthesis of six phenylalanine derivatives and their cell toxicity effect on human colon cancer cell line HT-29. Lett. Drug Des. Discov., 2015, 12(6), 466-470.
[http://dx.doi.org/10.2174/1570180812666141206001604]
[36]
Prütz, W.A. Nitro-tyrosine as promoter of free radical damage in a DNA model system. Free Radic. Res. Commun., 1986, 2(1-2), 77-83.
[http://dx.doi.org/10.3109/10715768609088057] [PMID: 3505241]
[37]
Simić, A.; Manojlović, D.; Šegan, D.; Todorović, M. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules, 2007, 12(10), 2327-2340.
[http://dx.doi.org/10.3390/12102327] [PMID: 17978760]
[38]
Wang, P.; Liu, H.; Zhao, Q.; Chen, Y.; Liu, B.; Zhang, B.; Zheng, Q. Syntheses and evaluation of drug-like properties of CO-releasing molecules containing ruthenium and group 6 metal. Eur. J. Med. Chem., 2014, 74, 199-215.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.041] [PMID: 24463436]
[39]
Pliška, V.; Testa, B.; van de Waterbeemd, H. Lipophilicity in Drug Action and Toxicology; Lipophilicity in Drug Action and Toxicology, 2008, Vol. 4, .
[40]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[41]
Franchini, S.; Manasieva, L.I.; Sorbi, C.; Battisti, U.M.; Fossa, P.; Cichero, E.; Denora, N.; Iacobazzi, R.M.; Cilia, A.; Pirona, L.; Ronsisvalle, S.; Arico, G.; Brasili, L. Synthesis, biological evaluation and molecular modeling of 1-oxa-4-thiaspiro- and 1,4-dithiaspiro[4.5]decane derivatives as potent and selective 5-HT1A receptor agonists. Eur. J. Med. Chem., 2017, 125, 435-452.
[42]
Tonelli, M.A-O.; Cichero, E.; Mahmoud, A.M.; Rabbito, A.; Tasso, B.; Fossa, P.; Ligresti, A. Exploring the effectiveness of novel benzimidazoles as CB2 ligands: synthesis, biological evaluation, molecular docking studies and ADMET prediction. MedChemComm, 2018, 9(12), 2045-2054.
[43]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[44]
Egorova, K.S.; Ananikov, V.P. Toxicity of Metal Compounds: Knowledge and Myths. Organometallics, 2017, 36(21), 4071-4090.
[http://dx.doi.org/10.1021/acs.organomet.7b00605]
[45]
Abhinand, C.S.; Raju, R.; Soumya, S.J.; Arya, P.S.; Sudhakaran, P.R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal., 2016, 10(4), 347-354.
[http://dx.doi.org/10.1007/s12079-016-0352-8] [PMID: 27619687]
[46]
Zhu, X.; Zhou, W. The emerging regulation of VEGFR-2 in triple-negative breast cancer. Front. Endocrinol. (Lausanne), 2015, 6, 159.
[http://dx.doi.org/10.3389/fendo.2015.00159] [PMID: 26500608]
[47]
Potente, M.; Carmeliet, P. The Link Between Angiogenesis and Endothelial Metabolism. Annu. Rev. Physiol., 2017, 79, 43-66.
[http://dx.doi.org/10.1146/annurev-physiol-021115-105134] [PMID: 27992732]
[48]
Dulak, J.; Deshane, J.; Jozkowicz, A.; Agarwal, A. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation, 2008, 117(2), 231-241.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.698316] [PMID: 18195184]
[49]
Seixas, J.D.; Chaves-Ferreira, M.; Montes-Grajales, D.; Gonçalves, A.M.; Marques, A.R.; Saraiva, L.M.; Olivero-Verbel, J.; Romão, C.C.; Bernardes, G.J.L. An N-Acetyl Cysteine Ruthenium Tricarbonyl Conjugate Enables Simultaneous Release of CO and Ablation of Reactive Oxygen Species. Chemistry, 2015, 21(42), 14708-14712.
[http://dx.doi.org/10.1002/chem.201502474] [PMID: 26316066]
[50]
Kunz, P.C.; Meyer, H.; Barthel, J.; Sollazzo, S.; Schmidt, A.M.; Janiak, C. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating. Chem. Commun. (Camb.), 2013, 49(43), 4896-4898.
[http://dx.doi.org/10.1039/c3cc41411f] [PMID: 23609342]
[51]
Parasuraman, S. Toxicological screening. J. Pharmacol. Pharmacother., 2011, 2(2), 74-79.
[http://dx.doi.org/10.4103/0976-500X.81895] [PMID: 21772764]
[52]
Lai, D.Y.; Woo, Y.T. Amino and Nitro Compounds.In: Hamilton and Hardy's Industrial Toxicology: Sixth Edition;; , 2015, pp. 615-642.
[http://dx.doi.org/10.1002/9781118834015.ch61]
[53]
Li Volti, G.; Sacerdoti, D.; Sangras, B.; Vanella, A.; Mezentsev, A.; Scapagnini, G.; Falck, J.R.; Abraham, N.G. Carbon monoxide signaling in promoting angiogenesis in human microvessel endothelial cells. Antioxid. Redox Signal., 2005, 7(5-6), 704-710.
[http://dx.doi.org/10.1089/ars.2005.7.704] [PMID: 15890016]
[54]
Józkowicz, A.; Huk, I.; Nigisch, A.; Weigel, G.; Dietrich, W.; Motterlini, R.; Dulak, J. Heme oxygenase and angiogenic activity of endothelial cells: stimulation by carbon monoxide and inhibition by tin protoporphyrin-IX. Antioxid. Redox Signal., 2003, 5(2), 155-162.
[http://dx.doi.org/10.1089/152308603764816514] [PMID: 12716475]
[55]
Choi, Y.K.; Kim, C.K.; Lee, H.; Jeoung, D.; Ha, K.S.; Kwon, Y.G.; Kim, K.W.; Kim, Y.M. Carbon monoxide promotes VEGF expression by increasing HIF-1α protein level via two distinct mechanisms, translational activation and stabilization of HIF-1α protein. J. Biol. Chem., 2010, 285(42), 32116-32125.
[http://dx.doi.org/10.1074/jbc.M110.131284] [PMID: 20724477]
[56]
Wilson, J.L.; Bouillaud, F.; Almeida, A.S.; Vieira, H.L.; Ouidja, M.O.; Dubois-Randé, J.L.; Foresti, R.; Motterlini, R. Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus. Free Radic. Biol. Med., 2017, 104, 311-323.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.022] [PMID: 28108277]
[57]
Menyhárt, O.; Harami-Papp, H.; Sukumar, S.; Schäfer, R.; Magnani, L.; de Barrios, O.; Győrffy, B. Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim. Biophys. Acta, 2016, 1866(2), 300-319.
[http://dx.doi.org/10.1016/j.bbcan.2016.10.002] [PMID: 27742530]
[58]
Sass, G.; Leukel, P.; Schmitz, V.; Raskopf, E.; Ocker, M.; Neureiter, D.; Meissnitzer, M.; Tasika, E.; Tannapfel, A.; Tiegs, G. Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. Int. J. Cancer, 2008, 123(6), 1269-1277.
[http://dx.doi.org/10.1002/ijc.23695] [PMID: 18566988]
[59]
Li, Y.; Su, J. DingZhang, X.; Zhang, J.; Yoshimoto, M.; Liu, S.; Bijian, K.; Gupta, A.; Squire, J.A.; Jamali, M.A.A.; Bismar, T.A. PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome. J. Pathol., 2011, 224(1), 90-100.
[http://dx.doi.org/10.1002/path.2855] [PMID: 21381033]
[60]
Szabo, C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat. Rev. Drug Discov., 2016, 15(3), 185-203.
[http://dx.doi.org/10.1038/nrd.2015.1] [PMID: 26678620]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2021
Published on: 29 December, 2020
Page: [40 - 59]
Pages: 20
DOI: 10.2174/1573406415666191206102452
Price: $65

Article Metrics

PDF: 17