Polyacrylic Acid Modified Cerium Oxide Nanoparticles: Synthesis and Characterization as a Peroxidase Mimic for Non-Enzymatic H2O2 Sensor

Author(s): Gurdeep Rattu, Nishtha Khansili, Prayaga M. Krishna*

Journal Name: Current Nanoscience

Volume 16 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Cerium oxide nanoparticles (nanoceria) are efficient free-radical scavengers due to their dual valence state and thus exhibit optical and catalytic properties. Therefore, the main purpose of this work was to understand the peroxidase mimic activity of polymer-stabilized nanoceria for enzyme-less H2O2 sensing by fluorescence spectrometer.

Objective: This research revealed the development of fluorescence hydrogen peroxide nanosensor based on the peroxidase-like activity of polyacrylic acid stabilized nanoceria (PAA-CeO2 Nps).

Methods: PAA-CeO2 Nps were synthesized by simple cross-linking reaction at a low temperature and characterized by XRD, SEM, Zeta potential, TGA, FT-IR and UV-VIS spectroscopic analysis. H2O2 sensing was performed by a fluorescence spectrometer.

Results: The synthesized polymer nanocomposite was characterized by XRD, SEM, TGA, FT-IR and UV-VIS spectroscopic analysis. The XRD diffraction patterns confirmed the polycrystalline nature and SEM micrograph showed nanoparticles having hexagonal symmetry and crystallite size of 32 nm. The broad peak of Ce–O bond appeared at 508 cm-1. UV-VIS measurements revealed a welldefined absorbance peak around 315 nm and an optical band-gap of 3.17 eV. As synthesized PAACeO2 Nps effectively catalysed the decomposition of hydrogen peroxide (H2O2) into hydroxyl radicals. Then terephthalic acid was oxidized by hydroxyl radical to form a highly fluorescent product. Under optimized conditions, the linear range for determination of hydrogen peroxide was 0.01 - 0.2 mM with a limit of detection (LOD) of 1.2 μM.

Conclusion: The proposed method is ideally suited for the sensing of H2O2 at a low cost and this detection system enabled the sensing of analytes (sugars), which can enzymatically generate hydrogen peroxide.

Keywords: Cerium, biosensor, PAA-CeO2, hydrogen peroxide, fluorescence, sensor.

[1]
Izawa, S.; Kono, K.; Mimura, K.; Kawaguchi, Y.; Watanabe, M.; Maruyama, T.; Fujii, H. H2O2 production within tumor microenvironment inversely correlated with infiltration of CD56(dim) NK cells in gastric and esophageal cancer: possible mechanisms of NK cell dysfunction. Cancer Immunol. Immunother., 2011, 60(12), 1801-1810.
[http://dx.doi.org/10.1007/s00262-011-1082-7] [PMID: 21811786]
[2]
Youdim, K.A.; Joseph, J.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic. Biol. Med., 2001, 30(6), 583-594.
[http://dx.doi.org/10.1016/S0891-5849(00)00510-4] [PMID: 11295356]
[3]
Szatrowski, T.P.; Nathan, C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res., 1991, 51(3), 794-798.
[PMID: 1846317]
[4]
Xu, X.; Jiang, S.; Hu, Z.; Liu, S. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano, 2010, 4(7), 4292-4298.
[http://dx.doi.org/10.1021/nn1010057] [PMID: 20565121]
[5]
Yu, C.; Wang, L.; Li, W.; Zhu, C.; Bao, N.; Gu, H. Detection of cellular H2O2 in living cells based on horseradish peroxidase at the interface of Au nanoparticles decorated graphene oxide. Sens. Actuators B Chem., 2015, 211, 17-24.
[http://dx.doi.org/10.1016/j.snb.2015.01.064]
[6]
Saha, B.; Jana, S.K.; Majumder, S.; Satpati, B.; Banerjee, S. Selective growth of co-electrodeposited Mn2O3-Au spherical composite network towards enhanced non-enzymatic hydrogen peroxide sensing. Electrochim. Acta, 2015, 174, 853-863.
[http://dx.doi.org/10.1016/j.electacta.2015.06.067]
[7]
Jakubec, P.; Urbanova, V.; Markova, Z.; Zboril, R. Novel Fe@Fe-O@Ag nanocomposite for efficient non-enzymatic sensing of hydrogen peroxide. Electrochim. Acta, 2015, 153, 62-67.
[http://dx.doi.org/10.1016/j.electacta.2014.11.170]
[8]
Hu, A.L.; Liu, Y.H.; Deng, H.H.; Hong, G.L.; Liu, A.L.; Lin, X.H.; Xia, X.H.; Chen, W. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L lactate detection. Biosens. Bioelectron., 2014, 61, 374-378.
[http://dx.doi.org/10.1016/j.bios.2014.05.048] [PMID: 24912038]
[9]
Yang, X.; Ouyang, Y.J.; Wu, F.; Hu, Y.J.; Zhang, H.F.; Wu, Z.Y. In situ & controlled preparation of platinum nanoparticles dopping into graphene sheets@cerium oxide nanocomposites sensitized screen printed electrode for nonenzymatic electrochemical sensing of hydrogen peroxide. J. Electroanal. Chem. (Lausanne Switz.), 2016, 777, 85-91.
[http://dx.doi.org/10.1016/j.jelechem.2016.08.008]
[10]
Miao, Z.; Zhang, D.; Chen, Q. Non-enzymatic hydrogen peroxide sensors based on multi-wall carbon nanotube/Pt nanoparticle nanohybrids. Materials (Basel), 2014, 7(4), 2945-2955.
[http://dx.doi.org/10.3390/ma7042945] [PMID: 28788600]
[11]
Putnam, C.D.; Arvai, A.S.; Bourne, Y.; Tainer, J.A. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J. Mol. Biol., 2000, 296(1), 295-309.
[http://dx.doi.org/10.1006/jmbi.1999.3458] [PMID: 10656833]
[12]
Choi, M.M.F.; Yiu, T.P. Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor. Enzyme Microb. Technol., 2004, 34, 41-47.
[http://dx.doi.org/10.1016/j.enzmictec.2003.08.005]
[13]
Wang, L.; Wang, E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem. Commun., 2004, 6, 225-229.
[http://dx.doi.org/10.1016/j.elecom.2003.12.004]
[14]
Fang, X.; Hu, L.; Ye, C.; Zang, L. One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors. Pure Appl. Chem., 2010, 82, 2185-2198.
[http://dx.doi.org/10.1351/PAC-CON-09-11-40]
[15]
Qasem, M.A.A.; Aziz, M.A.; Hakeem, A.S.; Onaizi, S.A. Preparation of nano-Co3O4 by direct thermal decomposition of cobalt(II) nitrate hexahydrate for electrochemical water oxidation. Curr. Nanosci., 2018, 14, 154-159.
[16]
Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater., 2010, 22(19), 2206-2210.
[http://dx.doi.org/10.1002/adma.200903783] [PMID: 20564257]
[17]
André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H-C.; Müller, W. E.G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater., 2011, 21, 501-509.
[http://dx.doi.org/10.1002/adfm.201001302]
[18]
Wang, S.; Chen, W.; Liu, A.L.; Hong, L.; Deng, H.H.; Lin, X.H. Comparison of the peroxidase-like activity of unmodified, amino modified, and citrate-capped gold nanoparticles. ChemPhysChem, 2012, 13(5), 1199-1204.
[http://dx.doi.org/10.1002/cphc.201100906] [PMID: 22383315]
[19]
Shi, W.; Zhang, X.; He, S.; Huang, Y. CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem. Commun. (Camb.), 2011, 47(38), 10785-10787.
[http://dx.doi.org/10.1039/c1cc14300j] [PMID: 21892508]
[20]
Cui, R.; Han, Z.; Zhu, J.J. Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chemistry, 2011, 17(34), 9377-9384.
[http://dx.doi.org/10.1002/chem.201100478] [PMID: 21769953]
[21]
Koposova, E.; Liu, X.; Kisner, A.; Ermolenko, Y.; Shumilova, G.; Offenhäusser, A.; Mourzina, Y. Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosens. Bioelectron., 2014, 57, 54-58.
[http://dx.doi.org/10.1016/j.bios.2014.01.034] [PMID: 24534581]
[22]
Golsheikh, A.M.; Huang, N.M.; Lim, H.N.; Zakaria, R.; Yin, C-Y. One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon, 2014, 62, 405-412.
[http://dx.doi.org/10.1016/j.carbon.2013.06.025]
[23]
Reed, K.; Cormack, A.; Kulkarni, A.; Mayton, M.; Sayle, D.; Klaessig, F.; Stadler, B. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ. Sci. Nano, 2014, 1, 390-405.
[http://dx.doi.org/10.1039/C4EN00079J]
[24]
Jalilpour, M.; Fathslilou, M. Effect of aging time and calcination temperature on the cerium oxide nanoparticles synthesis via reverse coprecipitation method. Int. J. Phys. Sci., 2012, 7, 944-948.
[25]
Patil, S.D. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology [dissertation], Department of Mechanical, Materials and Aerospace Engineering University of Central Florida : Florida, USA. 2006.
[26]
Barreca, D.; Bruno, G.; Gasparotto, A.; Losurdo, M.; Tondello, E. Nanostructure and optical properties of cerium oxide thin flms obtained by plasma enhanced chemical vapor deposition. Mater. Sci. Eng. C, 2003, 23, 1013-1016.
[http://dx.doi.org/10.1016/j.msec.2003.09.103]
[27]
Shi, W.; Liu, X.; Zhang, X.D.; Huang, Y.M. Intrinsic peroxidase like activity exhibited by cerium oxide nanoparticles and their application to glucose detection. Sci. Sin. Chim., 2014, 44, 1633.
[http://dx.doi.org/10.1360/N032013-00060]
[28]
Rowe, M.D.; Chang, C-C.; Thamm, D.H.; Kraft, S.L.; Harmon, J.F., Jr; Vogt, A.P.; Sumerlin, B.S.; Boyes, S.G. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Langmuir, 2009, 25(16), 9487-9499.
[http://dx.doi.org/10.1021/la900730b] [PMID: 19422256]
[29]
Taguchi, M.; Takami, S.; Adschiri, T.; Nakane, T.; Sato, K.; Naka, T. Supercritical hydrothermal synthesis of hydrophilic polymer-modified water-dispersible CeO2 nanoparticles. CrystEngComm, 2011, 13, 2841-2848.
[http://dx.doi.org/10.1039/C0CE00467G]
[30]
Lien, C.W.; Huang, C.C.; Chang, H.T. Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem. Commun. (Camb.), 2012, 48(64), 7952-7954.
[http://dx.doi.org/10.1039/c2cc32833j] [PMID: 22760735]
[31]
He, F.; Tang, Y.; Yu, M.; Wang, S.; Li, Y.; Zhu, D. Fluorescence‐amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing. Adv. Funct. Mater., 2005, 16, 91-94.
[http://dx.doi.org/10.1002/adfm.200500602]
[32]
Wolfbeis, O.S.; Schaferling, M.; Durkop, A. Luminescent probes for detection and imaging of hydrogen peroxide. Mikrochim. Acta, 2003, 143, 221-227.
[http://dx.doi.org/10.1007/s00604-003-0090-5]
[33]
Yuan, J.; Guo, W.; Yin, J.; Wang, E. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta, 2009, 77(5), 1858-1863.
[http://dx.doi.org/10.1016/j.talanta.2008.10.032] [PMID: 19159810]
[34]
Charbouillot, T.; Brigante, M.; Mailhot, G.; Maddigapu, P.R.; Minero, C.; Vione, D. Performance and selectivity of the terephthalic acid probe for (OH)-O-center dot as a function of temperature, pH and composition of atmospherically relevant aqueous media. J. Photochem. Photobiol. Chem., 2011, 222, 70-76.
[http://dx.doi.org/10.1016/j.jphotochem.2011.05.003]
[35]
Chelliah, M.; Rayappan, J.B.B.; Krishnan, U.M. Synthesis and characterization of cerium oxide nanoparticles by hydroxide mediated approach. J. Appl. Sci. (Faisalabad), 2012, 12, 1734-1737.
[http://dx.doi.org/10.3923/jas.2012.1734.1737]
[36]
Wang, Z.L.; Feng, X. Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B, 2003, 107, 13563-13566.
[http://dx.doi.org/10.1021/jp036815m]
[37]
Ho, C.; Yu, J.C.; Kwong, T.; Mak, A.C.; Lai, S. Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chem. Mater., 2005, 17, 4514-4522.
[http://dx.doi.org/10.1021/cm0507967]
[38]
Ansari, A.A.; Solanki, P.R.; Malhotra, B.D. Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. J. Biotechnol., 2009, 142(2), 179-184.
[http://dx.doi.org/10.1016/j.jbiotec.2009.04.005] [PMID: 19393698]
[39]
Hirano, M.; Inagaki, M. Preparation of monodispersed cerium (IV) oxide particles by thermal hydrolysis: influence of the presence of urea and Gd doping on their morphology and growth. J. Mater. Chem., 2000, 10, 473-477.
[http://dx.doi.org/10.1039/a907510k]
[40]
Maqbool, Q.; Nazar, M.; Naz, S.; Hussain, T.; Jabeen, N.; Kausar, R.; Anwaar, S.; Abbas, F.; Jan, T. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int. J. Nanomedicine, 2016, 11, 5015-5025.
[http://dx.doi.org/10.2147/IJN.S113508] [PMID: 27785011]
[41]
Mangalam, D.; Manoharadoss, M.; Sadaiyandi, K.; Mahendran, M.; Sagadevan, S.; Nadu, T. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles. Mater. Res., 2016, 19, 478-482.
[http://dx.doi.org/10.1590/1980-5373-MR-2015-0698]
[42]
Taguchi, M.; Takami, S.; Naka, T.; Adschiri, T. Growth mechanism and surface chemical characteristics of dicarboxylic acid modified CeO2 nanocrystals produced in supercritical water: Tailor-made water-soluble CeO2 nanocrystals. Cryst. Growth Des., 2009, 9, 5297-5303.
[http://dx.doi.org/10.1021/cg900809b]
[43]
Ouyang, W.X.; Teng, F.; Fang, X.S. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv. Funct. Mater., 2018, 28, 1707178.
[http://dx.doi.org/10.1002/adfm.201707178]
[44]
Khalkhali, M.; Rostamizadeh, K.; Sadighian, S.; Khoeini, F.; Naghibi, M.; Hamidi, M. The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study. Daru, 2015, 23, 45.
[http://dx.doi.org/10.1186/s40199-015-0124-7] [PMID: 26381740]
[45]
Chen, M.; Wang, L.Y.; Han, J.T.; Zhang, J.Y.; Li, Z.Y.; Qian, D.J. Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process. J. Phys. Chem. B, 2006, 110(23), 11224-11231.
[http://dx.doi.org/10.1021/jp061134n] [PMID: 16771388]
[46]
Tong, R.; Wang, Y.; Yang, G.; Ma, A.; Sun, K.; Yang, H.; Wang, J. Study of preparation and properties on polymer-modified magnetite nanoparticles. S. Afr. J. Chem., 2015, 68, 99-104.
[http://dx.doi.org/10.17159/0379-4350/2015/v68a15]
[47]
Ouyang, W.; Teng, F.; He, J-H.; Fang, X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater., 2019, 29, 1807672.
[http://dx.doi.org/10.1002/adfm.201807672]
[48]
Ou, J.Z.; Chrimes, A.F.; Wang, Y.; Tang, S.Y.; Strano, M.S.; Kalantar-zadeh, K. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems. Nano Lett., 2014, 14(2), 857-863.
[http://dx.doi.org/10.1021/nl4042356] [PMID: 24397241]
[49]
Liu, Q.; Chen, P.; Xu, Z.; Chen, M.; Ding, Y.; Yue, K.; Xu, J. A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sens. Actuators B Chem., 2017, 251, 339-348.
[http://dx.doi.org/10.1016/j.snb.2017.05.069]
[50]
Han, L.; Li, C.; Zhang, T.; Lang, Q.; Liu, A. Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl. Mater. Interfaces, 2015, 7(26), 14463-14470.
[http://dx.doi.org/10.1021/acsami.5b03591] [PMID: 26076372]
[51]
Lin, L.; Song, X.; Chen, Y.; Rong, M.; Zhao, T.; Wang, Y.; Jiang, Y.; Chen, X. Intrinsic peroxidase-like catalytic activity of nitrogen doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal. Chim. Acta, 2015, 869, 89-95.
[http://dx.doi.org/10.1016/j.aca.2015.02.024] [PMID: 25818144]
[52]
Chen, X.; Zhai, N.; Synder, J.H.; Chen, Q.; Liu, P.; Jin, L.; Zheng, Q.; Lin, F.; Hu, J.; Zhou, H. Colorimetric detection of Hg2+ and Pb2+ based on peroxidase-like activity of graphene oxide-gold nanohybrids. Anal. Methods, 2015, 7, 1951-1957.
[http://dx.doi.org/10.1039/C4AY02801E]
[53]
Qian, J.; Yang, X.; Yang, Z.; Zhu, G.; Mao, H.; Wang, K. Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: Synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 1624-1632.
[http://dx.doi.org/10.1039/C4TB01702A]
[54]
Nirala, N.R.; Abraham, S.; Kumar, V.; Bansal, A.; Srivastava, A.; Saxena, P.S. Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of grapheme quantum dots. Sens. Actuators B Chem., 2015, 218, 42-50.
[http://dx.doi.org/10.1016/j.snb.2015.04.091]
[55]
Teker, M.Ş.; Karaca, E.; Pekmez, N.Ö.; Tamer, U.; Pekmez, K. An enzyme‐free H2O2 sensor based on poly(2‐aminophenylbenz-imidazole)/gold nanoparticles coated pencil graphite electrode. Electroanalysis, 2018, 31, 75-82.
[http://dx.doi.org/10.1002/elan.201800656]
[56]
Shamkhalichenar, H.; Choi, J-W. An inkjet-printed non-enzymatic hydrogen peroxide sensor on paper. J. Electrochem. Soc., 2017, 164, 101-106.
[http://dx.doi.org/10.1149/2.0161705jes]
[57]
Xu, X.; Yan, S.; Wang, B.; Qu, P.; Wang, J.; Wu, J. Graphene aerogel/platinum nanoparticle nanocomposites for direct electrochemistry of cytochrome c and hydrogen peroxide sensing. J. Nanosci. Nanotechnol., 2016, 16, 12299-12306.
[http://dx.doi.org/10.1166/jnn.2016.12963]
[58]
Jamal, M.; Xu, J.; Razeeb, K.M. Disposable biosensor based on immobilisation of glutamate oxidase on Pt nanoparticles modified Au nanowire array electrode. Biosens. Bioelectron., 2010, 26(4), 1420-1424.
[http://dx.doi.org/10.1016/j.bios.2010.07.071] [PMID: 20729064]
[59]
Li, Y.; Zhang, J.J.; Xuan, J.; Jiang, L.P.; Zhu, J.J. Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem. Commun., 2010, 12, 777-780.
[http://dx.doi.org/10.1016/j.elecom.2010.03.031]
[60]
Wen, Z.; Ci, S.; Li, J. Pt nanoparticles inserting in carbon nanotube arrays: Nanocomposites for glucose biosensors. J. Phys. Chem. C, 2009, 113, 13482-13487.
[http://dx.doi.org/10.1021/jp902830z]
[61]
Zhang, B.Y.; Zavabeti, A.; Chrimes, A.F.; Haque, F.; O’Dell, L.A.; Khan, H.; Syed, N.; Datta, R.; Wang, Y.; Chesman, A.S.R.; Daeneke, T.; Kalantar‐zadeh, K.; Ou, J.Z. Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing. Adv. Funct. Mater., 2018, 28, 1706006.
[http://dx.doi.org/10.1002/adfm.201706006]
[62]
Wan, J.; Wang, W.; Yin, G.; Ma, X. Nonenzymatic H2O2 sensor based on Pt nanoflower electrode. J. Cluster Sci., 2012, 23, 1061-1068.
[http://dx.doi.org/10.1007/s10876-012-0497-4]
[63]
Bui, M.P.N.; Pham, X.H.; Han, K.N.; Li, C.A.; Kim, Y.S.; Seong, G.H. Electrocatalytic reduction of hydrogen peroxide by silver particles patterned on single-walled carbon nanotubes. Sens. Actuators B Chem., 2010, 150, 436-441.
[http://dx.doi.org/10.1016/j.snb.2010.06.019]
[64]
Niu, X.; Zhao, H.; Chen, C.; Lan, M. Platinum nanoparticle-decorated carbon nanotube clusters on screen-printed gold nanofilm electrode for enhanced electrocatalytic reduction of hydrogen peroxide. Electrochim. Acta, 2012, 65, 97-103.
[http://dx.doi.org/10.1016/j.electacta.2012.01.030]
[65]
Zhang, T.; Yuan, R.; Chai, Y.; Li, W.; Ling, S. A novel nonenzymatic hydrogen peroxide sensor based on a polypyrrole nanowire-copper nanocomposite modified gold electrode. Sensors (Basel), 2008, 8(8), 5141-5152.
[http://dx.doi.org/10.3390/s8085141] [PMID: 27873806]
[66]
Zhong, H.A.; Yuan, R.; Chai, Y.Q.; Zhang, Y.; Wang, C.Y.; Jia, F. Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles. Mikrochim. Acta, 2012, 176, 389-395.
[http://dx.doi.org/10.1007/s00604-011-0731-z]
[67]
Heli1, H.; Sattarahmady, N.; Dehdari Vais, R.; Mehdizadeh, A.R. Enhanced electrocatalytic reduction and highly sensitive nonenzymatic detection of hydrogen peroxide using platinum hierarchical nanoflowers. Sens. Actuators B Chem., 2013, 192, 310-316.
[68]
Wang, L.; Zhu, H.Z.; Song, Y.H.; Liu, L.; He, Z.F.; Wan, L.L.; Chen, S.H.; Xiang, Y.; Chen, S.S.; Chen, J. Architecture of poly(o-phenylenediamine)-Ag nanoparticle composites for a hydrogen peroxide sensor. Electrochim. Acta, 2012, 60, 314-320.
[http://dx.doi.org/10.1016/j.electacta.2011.11.045]
[69]
Chen, H.; Dong, S. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived ceramic-carbon nanotube nanocomposite film. Biosens. Bioelectron., 2007, 22(8), 1811-1815.
[http://dx.doi.org/10.1016/j.bios.2006.08.013] [PMID: 16996257]
[70]
Chen, K.J.; Chandrasekara Pillai, K.; Rick, J.; Pan, C.J.; Wang, S.H.; Liu, C.C.; Hwang, B.J. Bimetallic PtM (M=Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens. Bioelectron., 2012, 33(1), 120-127.
[http://dx.doi.org/10.1016/j.bios.2011.12.037] [PMID: 22236778]
[71]
Guo, S.; Wen, D.; Dong, S.; Wang, E. Gold nanowire assembling architecture for H2O2 electrochemical sensor. Talanta, 2009, 77(4), 1510-1517.
[http://dx.doi.org/10.1016/j.talanta.2008.09.042] [PMID: 19084672]
[72]
Lu, W.B.; Liao, F.; Luo, Y.L.; Chang, G.H.; Sun, X.P. Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochim. Acta, 2011, 56, 2295-2298.
[http://dx.doi.org/10.1016/j.electacta.2010.11.053]
[73]
Shan, D.; Han, E.; Xue, H.; Cosnier, S. Self-assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide. Biomacromolecules, 2007, 8(10), 3041-3046.
[http://dx.doi.org/10.1021/bm070329d] [PMID: 17824641]
[74]
Zhou, K.F.; Zhu, Y.H.; Yang, X.L.; Luo, J.; Li, C.Z.; Luan, S.R. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim. Acta, 2010, 55, 3055-3060.
[http://dx.doi.org/10.1016/j.electacta.2010.01.035]
[75]
Evans, S.A.G.; Elliott, J.M.; Andrews, L.M.; Bartlett, P.N.; Doyle, P.J.; Denuault, G. Detection of hydrogen peroxide at mesoporous platinum microelectrodes. Anal. Chem., 2002, 74(6), 1322-1326.
[http://dx.doi.org/10.1021/ac011052p] [PMID: 11924592]
[76]
Wang, H.; Wang, H.; Li, T.; Ma, J.; Li, K.; Zuo, X. Silver nanoparticles selectively de-posited on graphene-colloidal carbon sphere composites and their application for hydrogen peroxide sensing. Sens. Actuators B Chem., 2017, 239, 1205-1212.
[http://dx.doi.org/10.1016/j.snb.2016.08.143]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 04 October, 2020
Page: [816 - 828]
Pages: 13
DOI: 10.2174/1573413715666191204124329
Price: $65

Article Metrics

PDF: 20
HTML: 2