Neuroprotection with Natural Antioxidants and Nutraceuticals in the Context of Brain Cell Degeneration: The Epigenetic Connection

Author(s): Iván Carrera*, Olaia Martínez, Ramón Cacabelos.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 32 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Bioactive antioxidant agents present in selected plants are known to provide the first line of biological defense against oxidative stress. In particular, soluble vitamin C, E, carotenoids and phenolic compounds have demonstrated crucial biological effects in cells against oxidative damage, preventing prevalent chronic diseases, such as diabetes, cancer and cardiovascular disease. The reported wide range of effects that included anti-aging, anti-atherosclerosis, anti-inflammatory and anticancer activity were studied against degenerative pathologies of the brain. Vitamins and different phytochemicals are important epigenetic modifiers that prevent neurodegeneration. In order to explore the potential antioxidant sources in functional foods and nutraceuticals against neurodegeneration, the present paper aims to show a comprehensive assessment of antioxidant activity at chemical and cellular levels. The effects of the different bioactive compounds available and their antioxidant activity through an epigenetic point of view are also discussed.

Keywords: Degeneration, Neuroprotection, Nootropic, Biotherapy, DNA, Epigenetic connection.

[1]
Salganik, R.I. The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J. Am. Coll. Nutr., 2001, 20(5, (Suppl.), 464S-472S.
[http://dx.doi.org/10.1080/07315724.2001.10719185] [PMID: 11603657]
[2]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[3]
Perestrelo, R.; Silva, C.L.; Rodrigues, F.; Caldeira, M.; Câmara, J.S. A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds. J. Food Sci. Technol., 2016, 53(1), 132-144.
[http://dx.doi.org/10.1007/s13197-015-2022-x] [PMID: 26787937]
[4]
Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[5]
Shah, S.M.A.; Akram, M.; Riaz, M.; Munir, N.; Rasool, G. Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose Response, 2019, 17(2), 155932581985-2243.
[http://dx.doi.org/10.1177/1559325819852243] [PMID: 31205459]
[6]
Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci., 2015, 11(8), 982-991.
[http://dx.doi.org/10.7150/ijbs.12096] [PMID: 26157352]
[7]
Liebthal, M.; Maynard, D.; Dietz, K.J. Peroxiredoxins and redox signaling in plants. Antioxid. Redox Signal., 2018, 28(7), 609-624.
[http://dx.doi.org/10.1089/ars.2017.7164] [PMID: 28594234]
[8]
Hassan, W.; Noreen, H.; Rehman, S.; Gul, S.; Kamal, M.A.; Kamdem, J.P.; Zaman, B.; da Rocha, J.B.T. Oxidative stress and antioxidant potential of one hundred medicinal plants. Curr. Top. Med. Chem., 2017, 17(12), 1336-1370.
[http://dx.doi.org/10.2174/1568026617666170102125648] [PMID: 28049396]
[9]
Apel, K.; Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 2004, 55, 373-399.
[http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701] [PMID: 15377225]
[10]
Qasim, M.; Abideen, Z.; Adnan, M. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot., 2017, 110, 240-250.
[http://dx.doi.org/10.1016/j.sajb.2016.10.005]
[11]
Selkoe, D.J. Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol., 2004, 6(11), 1054-1061.
[http://dx.doi.org/10.1038/ncb1104-1054] [PMID: 15516999]
[12]
Amor, S.; Puentes, F.; Baker, D.; van der Valk, P. Inflammation in neurodegenerative diseases. Immunology, 2010, 129(2), 154-169.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03225.x] [PMID: 20561356]
[13]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[PMID: 25774178]
[14]
Cummings, J.; Lee, G.; Mortsdorf, T.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement. (N. Y.), 2017, 3(3), 367-384.
[http://dx.doi.org/10.1016/j.trci.2017.05.002] [PMID: 29067343]
[15]
Remely, M.; Lovrecic, L.; de la Garza, A.L.; Migliore, L.; Peterlin, B.; Milagro, F.I.; Martinez, A.J.; Haslberger, A.G. Therapeutic perspectives of epigenetically active nutrients. Br. J. Pharmacol., 2015, 172(11), 2756-2768.
[http://dx.doi.org/10.1111/bph.12854] [PMID: 25046997]
[16]
Coppedè, F. Genetics and epigenetics of Parkinson’s disease. ScientificWorldJournal, 2012, 2012 489830
[http://dx.doi.org/10.1100/2012/489830] [PMID: 22623900]
[17]
Guillaumet-Adkins, A.; Yañez, Y.; Peris-Diaz, M.D.; Calabria, I.; Palanca-Ballester, C.; Sandoval, J. Epigenetics and Oxidative Stress in Aging. Oxid. Med. Cell. Longev., 2017, 20179175806
[http://dx.doi.org/10.1155/2017/9175806] [PMID: 28808499]
[18]
Cencioni, C.; Spallotta, F.; Martelli, F.; Valente, S.; Mai, A.; Zeiher, A.M.; Gaetano, C. Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int. J. Mol. Sci., 2013, 14(9), 17643-17663.
[http://dx.doi.org/10.3390/ijms140917643] [PMID: 23989608]
[19]
Cacabelos, R.; Lombardi, V.; Fernandez-Novoa, L. Basic and clinical studies with marine LipoFishins and vegetal favalins in neurodegeneration and age-related disorders. In: Studies in Natural Products Chemistry; Elsevier B.V.: Amsterdam, 2018; Vol. 59, pp. 195-221.
[20]
Barbalace, M.C.; Malaguti, M.; Giusti, L.; Lucacchini, A.; Hrelia, S.; Angeloni, C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12) E3061
[http://dx.doi.org/10.3390/ijms20123061] [PMID: 31234555]
[21]
Brown, E.S.; Allsopp, P.J.; Magee, P.J.; Gill, C.I.; Nitecki, S.; Strain, C.R.; McSorley, E.M. Seaweed and human health. Nutr. Rev., 2014, 72(3), 205-216.
[http://dx.doi.org/10.1111/nure.12091] [PMID: 24697280]
[22]
Jin, D.Q.; Lim, C.S.; Sung, J.Y.; Choi, H.G.; Ha, I.; Han, J.S. Ulva conglobata, a marine algae, has neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells. Neurosci. Lett., 2006, 402(1-2), 154-158.
[http://dx.doi.org/10.1016/j.neulet.2006.03.068] [PMID: 16644126]
[23]
Xie, P.; Horio, F.; Fujii, I.; Zhao, J.; Shinohara, M.; Matsukura, M. A novel polysaccharide derived from algae extract inhibits cancer progression via JNK, not via the p38 MAPK signaling pathway. Int. J. Oncol., 2018. [EPub ahead of Print]
[http://dx.doi.org/10.3892/ijo.2018.4297] [PMID: 29512724]
[24]
Ning, C.; Wang, H.D.; Gao, R.; Chang, Y.C.; Hu, F.; Meng, X.; Huang, S.Y. Marine-derived protein kinase inhibitors for neuroinflammatory diseases. Biomed. Eng. Online, 2018, 17(1), 46.
[http://dx.doi.org/10.1186/s12938-018-0477-5] [PMID: 29690896]
[25]
Neal, M.; Richardson, J.R. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(2), 432-443.
[http://dx.doi.org/10.1016/j.bbadis.2017.11.004] [PMID: 29113750]
[26]
González-Fuentes, J.; Selva, J.; Moya, C.; Castro-Vázquez, L.; Lozano, M.V.; Marcos, P.; Plaza-Oliver, M.; Rodríguez-Robledo, V.; Santander-Ortega, M.J.; Villaseca-González, N.; Arroyo-Jimenez, M.M. Neuroprotective natural molecules, from food to brain. Front. Neurosci., 2018, 12, 721.
[http://dx.doi.org/10.3389/fnins.2018.00721] [PMID: 30405328]
[27]
Katz, L.; Baltz, R.H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[28]
Spagnuolo, C.; Napolitano, M.; Tedesco, I.; Moccia, S.; Milito, A.; Russo, G.L. Neuroprotective role of natural polyphenols. Curr. Top. Med. Chem., 2016, 16(17), 1943-1950.
[http://dx.doi.org/10.2174/1568026616666160204122449] [PMID: 26845551]
[29]
Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem., 2013, 72, 1-20.
[http://dx.doi.org/10.1016/j.plaphy.2013.05.009] [PMID: 23774057]
[30]
Pohl, F.; Kong Thoo Lin, P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In Vitro, In Vivo and clinical trials. Molecules, 2018, 23(12), 3283.
[http://dx.doi.org/10.3390/molecules23123283] [PMID: 30544977]
[31]
Infante-Garcia, C.; Ramos-Rodriguez, J.J.; Delgado-Olmos, I.; Gamero-Carrasco, C.; Fernandez-Ponce, M.T.; Casas, L.; Mantell, C.; Garcia-Alloza, M. Long-term mangiferin extract treatment improves central pathology and cognitive deficits in APP/PS1 mice. Mol. Neurobiol., 2017, 54(6), 4696-4704.
[http://dx.doi.org/10.1007/s12035-016-0015-z] [PMID: 27443159]
[32]
Takeuchi, T.; Duszkiewicz, A.J.; Morris, R.G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 369(1633)20130288
[http://dx.doi.org/10.1098/rstb.2013.0288] [PMID: 24298167]
[33]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019. 20192105607
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[34]
Albarracin, S.L.; Stab, B.; Casas, Z.; Sutachan, J.J.; Samudio, I.; Gonzalez, J.; Gonzalo, L.; Capani, F.; Morales, L.; Barreto, G.E. Effects of natural antioxidants in neurodegenerative disease. Nutr. Neurosci., 2012, 15(1), 1-9.
[http://dx.doi.org/10.1179/1476830511Y.0000000028] [PMID: 22305647]
[35]
Sun, D.; Yue, Q.; Guo, W.; Li, T.; Zhang, J.; Li, G.; Liu, Z.; Sun, J. Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons. Biofactors, 2015, 41(4), 252-260.
[http://dx.doi.org/10.1002/biof.1221] [PMID: 26212417]
[36]
Reglodi, D.; Renaud, J.; Tamas, A.; Tizabi, Y.; Socías, S.B.; Del-Bel, E.; Raisman-Vozari, R. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Prog. Neurobiol., 2017, 155, 120-148.
[http://dx.doi.org/10.1016/j.pneurobio.2015.10.004] [PMID: 26542398]
[37]
Singh, N.A.; Mandal, A.K.; Khan, Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr. J., 2016, 15(1), 60.
[http://dx.doi.org/10.1186/s12937-016-0179-4] [PMID: 27268025]
[38]
Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol., 2010, 48(1), 429-435.
[http://dx.doi.org/10.1016/j.fct.2009.10.041] [PMID: 19883715]
[39]
Espargaró, A.; Ginex, T.; Vadell, M.D.; Busquets, M.A.; Estelrich, J.; Muñoz-Torrero, D.; Luque, F.J.; Sabate, R. Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-alzheimer drugs. J. Nat. Prod., 2017, 80(2), 278-289.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00643] [PMID: 28128562]
[40]
Cittadini, M.C.; Repossi, G.; Albrecht, C.; Di Paola Naranjo, R.; Miranda, A.R.; de Pascual-Teresa, S.; Soria, E.A. Effects of bioavailable phenolic compounds from Ilex paraguariensis on the brain of mice with lung adenocarcinoma. Phytother. Res., 2019, 33(4), 1142-1149.
[http://dx.doi.org/10.1002/ptr.6308] [PMID: 30729593]
[41]
Chan, E.W.L.; Yeo, E.T.Y.; Wong, K.W.L.; See, M.L.; Wong, K.Y.; Gan, S.Y. Piper sarmentosum roxb. Root extracts confer neuroprotection by attenuating beta amyloid-induced pro-inflammatory cytokines released from microglial cells. Curr. Alzheimer Res., 2019, 16(3), 251-260.
[http://dx.doi.org/10.2174/1567205016666190228124630] [PMID: 30819080]
[42]
Kean, R.J.; Lamport, D.J.; Dodd, G.F.; Freeman, J.E.; Williams, C.M.; Ellis, J.A.; Butler, L.T.; Spencer, J.P. Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: an 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am. J. Clin. Nutr., 2015, 101(3), 506-514.
[http://dx.doi.org/10.3945/ajcn.114.088518] [PMID: 25733635]
[43]
Vauzour, D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid. Med. Cell. Longev., 2012, 2012 914273
[http://dx.doi.org/10.1155/2012/914273] [PMID: 22701758]
[44]
Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: from spice to drugs. Curr. Med. Chem., 2014, 21(2), 204-222.
[http://dx.doi.org/10.2174/092986732102131206115810] [PMID: 23590716]
[45]
Lee, W.H.; Loo, C.Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[46]
Koronyo, Y.; Salumbides, B.C.; Black, K.L.; Koronyo-Hamaoui, M. Alzheimer’s disease in the retina: imaging retinal aβ plaques for early diagnosis and therapy assessment. Neurodegener. Dis., 2012, 10(1-4), 285-293.
[http://dx.doi.org/10.1159/000335154] [PMID: 22343730]
[47]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[48]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[49]
Mythri, R.B.; Bharath, M.M. Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr. Pharm. Des., 2012, 18(1), 91-99.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[50]
Mythri, R.B.; Harish, G.; Dubey, S.K.; Misra, K.; Bharath, M.M. Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson’s disease. Mol. Cell. Biochem., 2011, 347(1-2), 135-143.
[http://dx.doi.org/10.1007/s11010-010-0621-4] [PMID: 20972609]
[51]
Wang, J.; Du, X.X.; Jiang, H.; Xie, J.X. Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochem. Pharmacol., 2009, 78(2), 178-183.
[http://dx.doi.org/10.1016/j.bcp.2009.03.031] [PMID: 19464433]
[52]
Rajeswari, A.; Sabesan, M. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology, 2008, 16(2), 96-99.
[http://dx.doi.org/10.1007/s10787-007-1614-0] [PMID: 18408903]
[53]
Sharma, N.; Nehru, B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology, 2018, 26(2), 349-360.
[http://dx.doi.org/10.1007/s10787-017-0402-8] [PMID: 29027056]
[54]
Pluta, R.; Ułamek-Kozioł, M.; Czuczwar, S.J. Neuroprotective and neurological/cognitive enhancement effects of curcumin after brain ischemia injury with alzheimer’s disease phenotype. Int. J. Mol. Sci., 2018, 19(12) E4002
[http://dx.doi.org/10.3390/ijms19124002] [PMID: 30545070]
[55]
Micera, A.; Bruno, L.; Cacciamani, A.; Rongioletti, M.; Squitti, R. Alzheimer’s disease and retinal degeneration: a glimpse at essential trace metals in ocular fluids and tissues. Curr. Alzheimer Res., 2019. [Epub ahead of print]
[http://dx.doi.org/10.2174/1567205016666191023114015] [PMID: 31642780]
[56]
Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K.F.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(1), 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[57]
Ipar, V.S.; Dsouza, A.; Devarajan, P.V. Enhancing curcumin oral bioavailability through nanoformulations. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(4), 459-480.
[http://dx.doi.org/10.1007/s13318-019-00545-z] [PMID: 30771095]
[58]
Sandhir, R.; Yadav, A.; Mehrotra, A.; Sunkaria, A.; Singh, A.; Sharma, S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med., 2014, 16(1), 106-118.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[59]
Das, S.; Das, D.K. Anti-inflammatory responses of resveratrol. Inflamm. Allergy Drug Targets, 2007, 6(3), 168-173.
[http://dx.doi.org/10.2174/187152807781696464] [PMID: 17897053]
[60]
Chen, R.S.; Wu, P.L.; Chiou, R.Y. Peanut roots as a source of resveratrol. J. Agric. Food Chem., 2002, 50(6), 1665-1667.
[http://dx.doi.org/10.1021/jf011134e] [PMID: 11879054]
[61]
Venturini, C.D.; Merlo, S.; Souto, A.A. Fernandes, Mda.C.; Gomez, R.; Rhoden, C.R. Resveratrol and red wine function as antioxidants in the nervous system without cellular proliferative effects during experimental diabetes. Oxid. Med. Cell. Longev., 2010, 3(6), 434-441.
[http://dx.doi.org/10.4161/oxim.3.6.14741] [PMID: 21307644]
[62]
Vingtdeux, V.; Dreses-Werringloer, U.; Zhao, H.; Davies, P.; Marambaud, P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci., 2008, 9(Suppl. 2), S6.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S6] [PMID: 19090994]
[63]
Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med., 2002, 113(Suppl. 9B), 71S-88S.
[http://dx.doi.org/10.1016/S0002-9343(01)00995-0] [PMID: 12566142]
[64]
Lopez, M.S.; Dempsey, R.J.; Vemuganti, R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem. Int., 2015, 89, 75-82.
[http://dx.doi.org/10.1016/j.neuint.2015.08.009] [PMID: 26277384]
[65]
Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev., 2018, 2018 8152373
[http://dx.doi.org/10.1155/2018/8152373] [PMID: 30510627]
[66]
Wang, H.; Yang, Y.J.; Qian, H.Y.; Zhang, Q.; Xu, H.; Li, J.J. Resveratrol in cardiovascular disease: what is known from current research? Heart Fail. Rev., 2012, 17(3), 437-448.
[http://dx.doi.org/10.1007/s10741-011-9260-4] [PMID: 21688187]
[67]
Carrizzo, A.; Forte, M.; Damato, A.; Trimarco, V.; Salzano, F.; Bartolo, M.; Maciag, A.; Puca, A.A.; Vecchione, C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem. Toxicol., 2013, 61, 215-226.
[http://dx.doi.org/10.1016/j.fct.2013.07.021] [PMID: 23872128]
[68]
Vingtdeux, V.; Giliberto, L.; Zhao, H.; Chandakkar, P.; Wu, Q.; Simon, J.E.; Janle, E.M.; Lobo, J.; Ferruzzi, M.G.; Davies, P.; Marambaud, P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem., 2010, 285(12), 9100-9113.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[69]
Rege, S.D.; Geetha, T.; Griffin, G.D.; Broderick, T.L.; Babu, J.R. Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front. Aging Neurosci., 2014, 6, 218.
[http://dx.doi.org/10.3389/fnagi.2014.00218] [PMID: 25309423]
[70]
Carrera, I.; Fernandez-Novoa, L.; Sampedro, C.; Tarasov, V.V.; Aliev, G.; Cacabelos, R. Dopaminergic neuroprotection with atremorine in parkinson’s disease. Curr. Med. Chem., 2018, 25(39), 5372-5388.
[http://dx.doi.org/10.2174/0929867325666180410100559] [PMID: 29637853]
[71]
Carrera, I.; Fernandez-Novoa, L.; Sampedro, C.; Cacabelos, R. Neuroprotective effect of atremorine in an experimental model of parkinson’s disease. Curr. Pharm. Des., 2017, 23(18), 2673-2684.
[http://dx.doi.org/10.2174/1381612823666170210143530] [PMID: 28190394]
[72]
Romero, A.; Parada, E.; González-Lafuente, L.; Farré-Alins, V.; Ramos, E.; Cacabelos, R.; Egea, J. Neuroprotective effects of E-PodoFavalin-15999 (Atremorine®). CNS Neurosci. Ther., 2017, 23(5), 450-452.
[http://dx.doi.org/10.1111/cns.12693] [PMID: 28371323]
[73]
Cacabelos, R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int. J. Mol. Sci., 2017, 18(3) E551
[http://dx.doi.org/10.3390/ijms18030551] [PMID: 28273839]
[74]
Cacabelos, R.; Fernández-Novoa, L.; Alejo, R. E-PodoFavalin-15999 (Atremorine®)-induced dopamine response in parkinson’s disease: pharmacogenetics-realted effects. J. Genomic Med. Pharmacogen., 2016, 1, 1-26.
[75]
Cacabelos, R.; Fernández-Novoa, L.; Alejo, R. E-PodoFavalin-15999 (Atremorine®)-Induced neurotransmitter and hormonal response in parkinson’s disease. J. Exploratory Res. in Pharmacology, 2016, 1, 1-12.
[http://dx.doi.org/10.14218/JERP.2016.00031]
[76]
Richards, E.J. Inherited epigenetic variation--revisiting soft inheritance. Nat. Rev. Genet., 2006, 7(5), 395-401.
[http://dx.doi.org/10.1038/nrg1834] [PMID: 16534512]
[77]
Cacabelos, R. Pharmacoepigenetics; Elsevier: Amsterdam, 2019, Vol. 10, pp. 1-983.
[78]
Margueron, R.; Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nat. Rev. Genet., 2010, 11(4), 285-296.
[http://dx.doi.org/10.1038/nrg2752] [PMID: 20300089]
[79]
Kornberg, R.D.; Lorch, Y. Chromatin-modifying and -remodeling complexes. Curr. Opin. Genet. Dev., 1999, 9(2), 148-151.
[http://dx.doi.org/10.1016/S0959-437X(99)80022-7] [PMID: 10322131]
[80]
Berger, S.L. The complex language of chromatin regulation during transcription. Nature, 2007, 447(7143), 407-412.
[http://dx.doi.org/10.1038/nature05915] [PMID: 17522673]
[81]
Wang, J.; Yu, J.T.; Tan, M.S.; Jiang, T.; Tan, L. Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. Ageing Res. Rev., 2013, 12(4), 1024-1041.
[http://dx.doi.org/10.1016/j.arr.2013.05.003] [PMID: 23688931]
[82]
Nebbioso, A.; Carafa, V.; Benedetti, R.; Altucci, L. Trials with ‘epigenetic’ drugs: an update. Mol. Oncol., 2012, 6(6), 657-682.
[http://dx.doi.org/10.1016/j.molonc.2012.09.004] [PMID: 23103179]
[83]
Cuadrado-Tejedor, M.; Oyarzabal, J.; Lucas, M.P.; Franco, R.; García-Osta, A. Epigenetic drugs in alzheimer’s disease. Biomol. Concepts, 2013, 4(5), 433-445.
[http://dx.doi.org/10.1515/bmc-2013-0012] [PMID: 25436752]
[84]
Kouzarides, T. SnapShot: Histone-modifying enzymes. Cell, 2007, 131(4), 822.
[http://dx.doi.org/10.1016/j.cell.2007.11.005] [PMID: 18022374]
[85]
Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293(5532), 1074-1080.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[86]
Roth, S.Y.; Denu, J.M.; Allis, C.D. Histone acetyltransferases. Annu. Rev. Biochem., 2001, 70, 81-120.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.81] [PMID: 11395403]
[87]
Xu, W.S.; Parmigiani, R.B.; Marks, P.A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 2007, 26(37), 5541-5552.
[http://dx.doi.org/10.1038/sj.onc.1210620] [PMID: 17694093]
[88]
Saunders, L.R.; Verdin, E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene, 2007, 26(37), 5489-5504.
[http://dx.doi.org/10.1038/sj.onc.1210616] [PMID: 17694089]
[89]
Agger, K.; Christensen, J.; Cloos, P.A.; Helin, K. The emerging functions of histone demethylases. Curr. Opin. Genet. Dev., 2008, 18(2), 159-168.
[http://dx.doi.org/10.1016/j.gde.2007.12.003] [PMID: 18281209]
[90]
Tsukada, Y.; Fang, J.; Erdjument-Bromage, H.; Warren, M.E.; Borchers, C.H.; Tempst, P.; Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature, 2006, 439(7078), 811-816.
[http://dx.doi.org/10.1038/nature04433] [PMID: 16362057]
[91]
Jonas, S.; Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet., 2015, 16(7), 421-433.
[http://dx.doi.org/10.1038/nrg3965] [PMID: 26077373]
[92]
Hawkins, P.G.; Morris, K.V. RNA and transcriptional modulation of gene expression. Cell Cycle, 2008, 7(5), 602-607.
[http://dx.doi.org/10.4161/cc.7.5.5522] [PMID: 18256543]
[93]
Teijido, O.; Cacabelos, R. Pharmacoepigenomic interventions as novel potential treatments for Alzheimer’s and Parkinson’s diseases. Int. J. Mol. Sci., 2018, 19(10), 10.
[http://dx.doi.org/10.3390/ijms19103199] [PMID: 30332838]
[94]
Cacabelos, R.; Torrellas, C. Epigenetics of Aging and alzheimer’s disease: implications for pharmacogenomics and drug response. Int. J. Mol. Sci., 2015, 16(12), 30483-30543.
[http://dx.doi.org/10.3390/ijms161226236] [PMID: 26703582]
[95]
Cacabelos, R. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev. Res., 2014, 75(6), 348-365.
[http://dx.doi.org/10.1002/ddr.21219] [PMID: 25195579]
[96]
Kubota, T.; Takae, H.; Miyake, K. Epigenetic mechanisms and therapeutic perspectives for neurodevelopmental disorders. Pharmaceuticals (Basel), 2012, 5(4), 369-383.
[http://dx.doi.org/10.3390/ph5040369] [PMID: 24281407]
[97]
Figueroa-Romero, C.; Hur, J.; Bender, D.E.; Delaney, C.E.; Cataldo, M.D.; Smith, A.L.; Yung, R.; Ruden, D.M.; Callaghan, B.C.; Feldman, E.L. Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS One, 2012, 7(12)e52672
[http://dx.doi.org/10.1371/journal.pone.0052672] [PMID: 23300739]
[98]
Paez-Colasante, X.; Figueroa-Romero, C.; Sakowski, S.A.; Goutman, S.A.; Feldman, E.L. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat. Rev. Neurol., 2015, 11(5), 266-279.
[http://dx.doi.org/10.1038/nrneurol.2015.57] [PMID: 25896087]
[99]
Al-Chalabi, A.; Jones, A.; Troakes, C.; King, A.; Al-Sarraj, S.; van den Berg, L.H. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol., 2012, 124(3), 339-352.
[http://dx.doi.org/10.1007/s00401-012-1022-4] [PMID: 22903397]
[100]
Nicolia, V.; Fuso, A.; Cavallaro, R.A.; Di Luzio, A.; Scarpa, S. B vitamin deficiency promotes tau phosphorylation through regulation of GSK3beta and PP2A. J. Alzheimers Dis., 2010, 19(3), 895-907.
[http://dx.doi.org/10.3233/JAD-2010-1284] [PMID: 20157245]
[101]
Cacabelos, R.; Torrellas, C. Epigenetic drug discovery for alzheimer’s disease. Expert Opin. Drug Discov., 2014, 9(9), 1059-1086.
[http://dx.doi.org/10.1517/17460441.2014.930124] [PMID: 24989365]
[102]
Teijido, O.; Cacabelos, R. Interrogating the epigenome to unveil the secrets of neurodegeneration: promising epigenetic therapies. J. Genomic. Med. Pharmacogenomics, 2016, 1, 95-150.
[103]
Mastroeni, D.; Grover, A.; Delvaux, E.; Whiteside, C.; Coleman, P.D.; Rogers, J. Epigenetic mechanisms in alzheimer’s disease. Neurobiol. Aging, 2011, 32(7), 1161-1180.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.08.017] [PMID: 21482442]
[104]
Tohgi, H.; Utsugisawa, K.; Nagane, Y.; Yoshimura, M.; Genda, Y.; Ukitsu, M. Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res. Mol. Brain Res., 1999, 70(2), 288-292.
[http://dx.doi.org/10.1016/S0169-328X(99)00163-1] [PMID: 10407177]
[105]
Sanchez-Mut, J.V.; Aso, E.; Panayotis, N.; Lott, I.; Dierssen, M.; Rabano, A.; Urdinguio, R.G.; Fernandez, A.F.; Astudillo, A.; Martin-Subero, J.I.; Balint, B.; Fraga, M.F.; Gomez, A.; Gurnot, C.; Roux, J.C.; Avila, J.; Hensch, T.K.; Ferrer, I.; Esteller, M. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease. Brain, 2013, 136(Pt 10), 3018-3027.
[http://dx.doi.org/10.1093/brain/awt237] [PMID: 24030951]
[106]
O’Suilleabhain, P.E.; Sung, V.; Hernandez, C.; Lacritz, L.; Dewey, R.B., Jr; Bottiglieri, T.; Diaz-Arrastia, R. Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations. Arch. Neurol., 2004, 61(6), 865-868.
[http://dx.doi.org/10.1001/archneur.61.6.865] [PMID: 15210523]
[107]
Matsumoto, L.; Takuma, H.; Tamaoka, A.; Kurisaki, H.; Date, H.; Tsuji, S.; Iwata, A. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One, 2010, 5(11) e15522
[http://dx.doi.org/10.1371/journal.pone.0015522] [PMID: 21124796]
[108]
Stilling, R.M.; Fischer, A. The role of histone acetylation in age-associated memory impairment and Alzheimer’s disease. Neurobiol. Learn. Mem., 2011, 96(1), 19-26.
[http://dx.doi.org/10.1016/j.nlm.2011.04.002] [PMID: 21540120]
[109]
Francis, Y.I.; Fà, M.; Ashraf, H.; Zhang, H.; Staniszewski, A.; Latchman, D.S.; Arancio, O. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2009, 18(1), 131-139.
[http://dx.doi.org/10.3233/JAD-2009-1134] [PMID: 19625751]
[110]
Zhang, K.; Schrag, M.; Crofton, A.; Trivedi, R.; Vinters, H.; Kirsch, W. Targeted proteomics for quantification of histone acetylation in alzheimer’s disease. Proteomics, 2012, 12(8), 1261-1268.
[http://dx.doi.org/10.1002/pmic.201200010] [PMID: 22577027]
[111]
Kontopoulos, E.; Parvin, J.D.; Feany, M.B. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet., 2006, 15(20), 3012-3023.
[http://dx.doi.org/10.1093/hmg/ddl243] [PMID: 16959795]
[112]
Cavalcante da Silva, V.; Fernandes, L.; Abdo Agamme, A. Maternal vitamin B deficiency and epigenetic changes of genes involved in the alzheimer’ s disease pathogenesis. Biol. Med. (Aligarh), 2017, 9, 3.
[http://dx.doi.org/10.4172/0974-8369.1000393]
[113]
St Laurent, R.; O’Brien, L.M.; Ahmad, S.T. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced drosophila model of parkinson’s disease. Neuroscience, 2013, 246, 382-390.
[http://dx.doi.org/10.1016/j.neuroscience.2013.04.037] [PMID: 23623990]
[114]
Lardenoije, R.; Iatrou, A.; Kenis, G.; Kompotis, K.; Steinbusch, H.W.; Mastroeni, D.; Coleman, P.; Lemere, C.A.; Hof, P.R.; van den Hove, D.L.; Rutten, B.P. The epigenetics of aging and neurodegeneration. Prog. Neurobiol., 2015, 131, 21-64.
[http://dx.doi.org/10.1016/j.pneurobio.2015.05.002] [PMID: 26072273]
[115]
Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol., 2010, 5, 253-295.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092250] [PMID: 20078221]
[116]
Quintas, A.; de Solís, A.J.; Díez-Guerra, F.J.; Carrascosa, J.M.; Bogónez, E. Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction. Exp. Gerontol., 2012, 47(2), 198-201.
[http://dx.doi.org/10.1016/j.exger.2011.11.010] [PMID: 22143179]
[117]
Sommer, M.; Poliak, N.; Upadhyay, S.; Ratovitski, E.; Nelkin, B.D.; Donehower, L.A.; Sidransky, D. DeltaNp63alpha overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse. Cell Cycle, 2006, 5(17), 2005-2011.
[http://dx.doi.org/10.4161/cc.5.17.3194] [PMID: 16940753]
[118]
Sasaki, T.; Maier, B.; Bartke, A.; Scrable, H. Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell, 2006, 5(5), 413-422.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00235.x] [PMID: 16939484]
[119]
Kanfi, Y.; Naiman, S.; Amir, G.; Peshti, V.; Zinman, G.; Nahum, L.; Bar-Joseph, Z.; Cohen, H.Y. The sirtuin SIRT6 regulates lifespan in male mice. Nature, 2012, 483(7388), 218-221.
[http://dx.doi.org/10.1038/nature10815] [PMID: 22367546]
[120]
Julien, C.; Tremblay, C.; Emond, V.; Lebbadi, M.; Salem, N., Jr; Bennett, D.A.; Calon, F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2009, 68(1), 48-58.
[http://dx.doi.org/10.1097/NEN.0b013e3181922348] [PMID: 19104446]
[121]
Lithner, C.U.; Lacor, P.N.; Zhao, W.Q.; Mustafiz, T.; Klein, W.L.; Sweatt, J.D.; Hernandez, C.M. Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer’s disease. Neurobiol. Aging, 2013, 34(9), 2081-2090.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.028] [PMID: 23582659]
[122]
Fischer, A. Targeting histone-modifications in Alzheimer’s disease. What is the evidence that this is a promising therapeutic avenue? Neuropharmacology, 2014, 80, 95-102.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.038] [PMID: 24486385]
[123]
Tang, Y.; Li, T.; Li, J.; Yang, J.; Liu, H.; Zhang, X.J.; Le, W. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ., 2014, 21(3), 369-380.
[http://dx.doi.org/10.1038/cdd.2013.159] [PMID: 24212761]
[124]
Sadlon, A.; Takousis, P.; Alexopoulos, P.; Evangelou, E.; Prokopenko, I.; Perneczky, R. miRNAs Identify Shared Pathways in Alzheimer’s and Parkinson’s Diseases. Trends Mol. Med., 2019, 25(8), 662-672.
[http://dx.doi.org/10.1016/j.molmed.2019.05.006] [PMID: 31221572]
[125]
Schulz, J.; Takousis, P.; Wohlers, I.; Itua, I.O.G.; Dobricic, V.; Rücker, G.; Binder, H.; Middleton, L.; Ioannidis, J.P.A.; Perneczky, R.; Bertram, L.; Lill, C.M. Meta-analyses identify differentially expressed micrornas in Parkinson’s disease. Ann. Neurol., 2019, 85(6), 835-851.
[http://dx.doi.org/10.1002/ana.25490] [PMID: 30990912]
[126]
Kim, J.; Inoue, K.; Ishii, J.; Vanti, W.B.; Voronov, S.V.; Murchison, E.; Hannon, G.; Abeliovich, A. A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 2007, 317(5842), 1220-1224.
[http://dx.doi.org/10.1126/science.1140481] [PMID: 17761882]
[127]
Guedes, J.R.; Custódia, C.M.; Silva, R.J.; de Almeida, L.P.; Pedroso de Lima, M.C.; Cardoso, A.L. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum. Mol. Genet., 2014, 23(23), 6286-6301.
[http://dx.doi.org/10.1093/hmg/ddu348] [PMID: 24990149]
[128]
Sheinerman, K.S.; Umansky, S.R. Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies. Front. Cell. Neurosci., 2013, 7, 150.
[http://dx.doi.org/10.3389/fncel.2013.00150] [PMID: 24058335]
[129]
Sheinerman, K.S.; Tsivinsky, V.G.; Abdullah, L.; Crawford, F.; Umansky, S.R. Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging (Albany NY), 2013, 5(12), 925-938.
[http://dx.doi.org/10.18632/aging.100624] [PMID: 24368295]
[130]
Mohajeri, M.H.; Troesch, B.; Weber, P. Inadequate supply of vitamins and DHA in the elderly: implications for brain aging and Alzheimer-type dementia. Nutrition, 2015, 31(2), 261-275.
[http://dx.doi.org/10.1016/j.nut.2014.06.016] [PMID: 25592004]
[131]
Athanasopoulos, D.; Karagiannis, G.; Tsolaki, M. Recent findings in alzheimer disease and nutrition focusing on epigenetics. Adv. Nutr., 2016, 7(5), 917-927.
[http://dx.doi.org/10.3945/an.116.012229] [PMID: 27633107]
[132]
Kalbe, E.; Kessler, J.; Calabrese, P.; Smith, R.; Passmore, A.P.; Brand, M.; Bullock, R. DemTect: a new, sensitive cognitive screening test to support the diagnosis of mild cognitive impairment and early dementia. Int. J. Geriatr. Psychiatry, 2004, 19(2), 136-143.
[http://dx.doi.org/10.1002/gps.1042] [PMID: 14758579]
[133]
Martin, S.L.; Hardy, T.M.; Tollefsbol, T.O. Medicinal chemistry of the epigenetic diet and caloric restriction. Curr. Med. Chem., 2013, 20(32), 4050-4059.
[http://dx.doi.org/10.2174/09298673113209990189] [PMID: 23895687]
[134]
Dauncey, M.J. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients, 2013, 5(3), 887-914.
[http://dx.doi.org/10.3390/nu5030887] [PMID: 23503168]
[135]
Coppedè, F. The potential of epigenetic therapies in neurodegenerative diseases. Front. Genet., 2014, 5, 220.
[http://dx.doi.org/10.3389/fgene.2014.00220] [PMID: 25071843]
[136]
Fuso, A.; Nicolia, V.; Cavallaro, R.A.; Ricceri, L.; D’Anselmi, F.; Coluccia, P.; Calamandrei, G.; Scarpa, S. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol. Cell. Neurosci., 2008, 37(4), 731-746.
[http://dx.doi.org/10.1016/j.mcn.2007.12.018] [PMID: 18243734]
[137]
Marques, S.; Outeiro, T.F. Epigenetics in parkinson’s and alzheimer’s diseases. Subcell. Biochem., 2013, 61, 507-525.
[http://dx.doi.org/10.1007/978-94-007-4525-4_22] [PMID: 23150265]
[138]
Yi, S.A.; Han, J.; Han, J.W. Epigenetic role of nuclear S6K1 in early adipogenesis. BMB Rep., 2016, 49(8), 401-402.
[http://dx.doi.org/10.5483/BMBRep.2016.49.8.116] [PMID: 27439608]
[139]
Burdge, G.C.; Lillycrop, K.A. Fatty acids and epigenetics. Curr. Opin. Clin. Nutr. Metab. Care, 2014, 17(2), 156-161.
[http://dx.doi.org/10.1097/MCO.0000000000000023] [PMID: 24322369]
[140]
Chiu, S.; Woodbury-Fariña, M.A.; Shad, M.U.; Husni, M.; Copen, J.; Bureau, Y.; Cernovsky, Z.; Hou, J.J.; Raheb, H.; Terpstra, K.; Sanchez, V.; Hategan, A.; Kaushal, M.; Campbell, R. The role of nutrient-based epigenetic changes in buffering against stress, aging, and Alzheimer’s disease. Psychiatr. Clin. North Am., 2014, 37(4), 591-623.
[http://dx.doi.org/10.1016/j.psc.2014.09.001] [PMID: 25455068]
[141]
Grossi, C.; Rigacci, S.; Ambrosini, S.; Ed Dami, T.; Luccarini, I.; Traini, C.; Failli, P.; Berti, A.; Casamenti, F.; Stefani, M. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One, 2013, 8(8) e71702
[http://dx.doi.org/10.1371/journal.pone.0071702] [PMID: 23951225]
[142]
Luccarini, I.; Grossi, C.; Rigacci, S.; Coppi, E.; Pugliese, A.M.; Pantano, D.; la Marca, G.; Ed Dami, T.; Berti, A.; Stefani, M.; Casamenti, F. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ß toxicity: biochemical, epigenetic and functional correlates. Neurobiol. Aging, 2015, 36(2), 648-663.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.029] [PMID: 25293421]
[143]
Witkin, J.M.; Li, X. Curcumin, an active constiuent of the ancient medicinal herb Curcuma longa L.: some uses and the establishment and biological basis of medical efficacy. CNS Neurol. Disord. Drug Targets, 2013, 12(4), 487-497.
[http://dx.doi.org/10.2174/1871527311312040007] [PMID: 23574161]
[144]
Hassan, F.U.; Rehman, M.S.; Khan, M.S.; Ali, M.A.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front. Genet., 2019, 10, 514.
[http://dx.doi.org/10.3389/fgene.2019.00514] [PMID: 31214247]
[145]
Maiti, P.; Dunbar, G.L. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int. J. Mol. Sci., 2018, 19(6) E1637
[http://dx.doi.org/10.3390/ijms19061637] [PMID: 29857538]
[146]
Reuter, S.; Gupta, S.C.; Park, B.; Goel, A.; Aggarwal, B.B. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr., 2011, 6(2), 93-108.
[http://dx.doi.org/10.1007/s12263-011-0222-1] [PMID: 21516481]
[147]
Balasubramanyam, K.; Varier, R.A.; Altaf, M.; Swaminathan, V.; Siddappa, N.B.; Ranga, U.; Kundu, T.K. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem., 2004, 279(49), 51163-51171.
[http://dx.doi.org/10.1074/jbc.M409024200] [PMID: 15383533]
[148]
Biswas, S.K.; McClure, D.; Jimenez, L.A.; Megson, I.L.; Rahman, I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid. Redox Signal., 2005, 7(1-2), 32-41.
[http://dx.doi.org/10.1089/ars.2005.7.32] [PMID: 15650394]
[149]
Zhu, X.; Li, Q.; Chang, R.; Yang, D.; Song, Z.; Guo, Q.; Huang, C. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One, 2014, 9(3) e91303
[http://dx.doi.org/10.1371/journal.pone.0091303] [PMID: 24603592]
[150]
Ogiwara, H.; Ui, A.; Shiotani, B.; Zou, L.; Yasui, A.; Kohno, T. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor. Carcinogenesis, 2013, 34(11), 2486-2497.
[http://dx.doi.org/10.1093/carcin/bgt240] [PMID: 23825154]
[151]
Bora-Tatar, G.; Dayangaç-Erden, D.; Demir, A.S.; Dalkara, S.; Yelekçi, K.; Erdem-Yurter, H. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg. Med. Chem., 2009, 17(14), 5219-5228.
[http://dx.doi.org/10.1016/j.bmc.2009.05.042] [PMID: 19520580]
[152]
Liu, H.L.; Chen, Y.; Cui, G.H.; Zhou, J.F. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol. Sin., 2005, 26(5), 603-609.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00081.x] [PMID: 15842781]
[153]
Gerszon, J.; Rodacka, A.; Puchala, M. Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. Adv. Cell Biol., 2014, 4, 97-117.
[http://dx.doi.org/10.2478/acb-2014-0006]
[154]
Granzotto, A.; Zatta, P. Resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties against Aβ and Aβ-metal complexes toxicity. PLoS One, 2011, 6(6) e21565
[http://dx.doi.org/10.1371/journal.pone.0021565] [PMID: 21738712]
[155]
Feng, X.; Liang, N.; Zhu, D.; Gao, Q.; Peng, L.; Dong, H.; Yue, Q.; Liu, H.; Bao, L.; Zhang, J.; Hao, J.; Gao, Y.; Yu, X.; Sun, J. Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One, 2013, 8(3)e59888
[http://dx.doi.org/10.1371/journal.pone.0059888] [PMID: 23555824]
[156]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[157]
Calvo-Flores Guzmán, B.; Vinnakota, C.; Govindpani, K.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. The GABAergic system as a therapeutic target for alzheimer’s disease. J. Neurochem., 2018, 146(6), 649-669.
[http://dx.doi.org/10.1111/jnc.14345] [PMID: 29645219]
[158]
Palomera-Ávalos, V.; Griñán-Ferré, C.; Izquierdo, V.; Camins, A.; Sanfeliu, C.; Pallàs, M. Metabolic stress induces cognitive disturbances and inflammation in aged mice: protective role of resveratrol. Rejuvenation Res., 2017, 20(3), 202-217.
[http://dx.doi.org/10.1089/rej.2016.1885] [PMID: 27998210]
[159]
Zhao, Y.Q.; Jordan, I.K.; Lunyak, V.V. Epigenetics components of aging in the central nervous system. Neurotherapeutics, 2013, 10(4), 647-663.
[http://dx.doi.org/10.1007/s13311-013-0229-y] [PMID: 24132650]
[160]
Thakur, V.S.; Gupta, K.; Gupta, S. Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases. Int. J. Oncol., 2012, 41(1), 353-361.
[PMID: 22552582]
[161]
Sadowska-Bartosz, I.; Bartosz, G. Effect of antioxidants supplementation on aging and longevity. BioMed Res. Int., 2014, 2014 404680
[http://dx.doi.org/10.1155/2014/404680] [PMID: 24783202]
[162]
Badshah, H.; Kim, T.H.; Kim, M.O. Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem. Int., 2015, 80, 51-59.
[http://dx.doi.org/10.1016/j.neuint.2014.10.009] [PMID: 25451757]
[163]
Cacabelos, R.; Carrera, I.; Alejo, R.; Fernández-Novoa, L.; Cacabelos, P.; Corzo, L.; Rodríguez, S.; Alcaraz, M.; Tellado, I.; Cacabelos, N.; Pego, R.; Carril, J.C. Pharmacogenetics of atremorine-induced neuroprotection and dopamine response in parkinson’s disease. Planta Med., 2019, 85(17), 1351-1362.
[http://dx.doi.org/10.1055/a-1013-7686] [PMID: 31559607]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 32
Year: 2019
Page: [2999 - 3011]
Pages: 13
DOI: 10.2174/1568026619666191202155738
Price: $65

Article Metrics

PDF: 27
HTML: 3