Preparation and Characterization of β-glucosidase Films for Stabilization and Handling in Dry Configurations

Author(s): Liguang Zhang, Yanan Shen, Wenjing Lu, Lengqiu Guo, Min Xiang, Dayong Zhang*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 8 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films.

Methods: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed.

Results: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed.

Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.

Keywords: Dry film, ethylene glycol, gelatin film, β-glucosidase, protein stabilization, SEM.

[1]
Patel, R.; Kumari, M.; Khan, A.B. Recent advances in the applications of ionic liquids in protein stability and activity: a review. Appl. Biochem. Biotechnol., 2014, 172(8), 3701-3720.
[http://dx.doi.org/10.1007/s12010-014-0813-6] [PMID: 24599667]
[2]
Bonzom, C.; Schild, L.; Gustafsson, H.; Olsson, L. Feruloyl esterase immobilization in mesoporous silica particles and characterization in hydrolysis and transesterification. BMC Biochem., 2018, 19(1), 1.
[http://dx.doi.org/10.1186/s12858-018-0091-y] [PMID: 29390959]
[3]
Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes--the route toward applications. Science, 2002, 297(5582), 787-792.
[http://dx.doi.org/10.1126/science.1060928] [PMID: 12161643]
[4]
Lenders, J.P.; Germain, P.; Crichton, R.R. Immobilization of a soluble chemically thermostabilized enzyme. Biotechnol. Bioeng., 1985, 27(5), 572-578.
[http://dx.doi.org/10.1002/bit.260270505] [PMID: 18553711]
[5]
Schmid, R.D. Stabilized soluble enzymes. Adv. Biochem. Eng., 1979, 12, 41-118.
[6]
Song, J.G.; Lee, S.H.; Han, H-K. The stabilization of biopharmaceuticals: Current understanding and future perspectives. J. Pharm. Investig., 2017, 47(6), 475-496.
[http://dx.doi.org/10.1007/s40005-017-0341-9]
[7]
Neurath, H.; Greenstein, J.P.; Putnam, F.W.; Erickson, J.A. The chemistry of protein denaturation. Chem. Rev., 1944, 34(2), 157-265.
[http://dx.doi.org/10.1021/cr60108a003]
[8]
Hammann, F.; Schmid, M. Determination and quantification of molecular interactions in protein films: A review. Materials (Basel), 2014, 7(12), 7975-7996.
[http://dx.doi.org/10.3390/ma7127975] [PMID: 28788285]
[9]
Cho, H.J.; Oh, D.; Kim, D.D. Polysaccharides-based spray-dried microspheres for maintained stability and controlled release of protein. J. Pharm. Investig., 2012, 42(2), 83-88.
[http://dx.doi.org/10.1007/s40005-012-0013-8]
[10]
Manning, M.C.; Patel, K.; Borchardt, R.T. Stability of protein pharmaceuticals. Pharm. Res., 1989, 6(11), 903-918.
[http://dx.doi.org/10.1023/A:1015929109894] [PMID: 2687836]
[11]
Wang, W.; Meeler, A.R.; Bergerud, L.T.; Hesselberg, M.; Byrne, M.; Wu, Z. Quantification and characterization of antibody deamidation by peptide mapping with mass spectrometry. Int. J. Mass Spectrom., 2012, 312(4), 107-113.
[http://dx.doi.org/10.1016/j.ijms.2011.06.006]
[12]
Fischer, R.; Stoger, E.; Schillberg, S.; Christou, P.; Twyman, R.M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol., 2004, 7(2), 152-158.
[http://dx.doi.org/10.1016/j.pbi.2004.01.007] [PMID: 15003215]
[13]
Wang, W. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm., 2005, 289(1-2), 1-30.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.014] [PMID: 15652195]
[14]
Wang, W.; Nema, S.; Teagarden, D. Protein aggregation--pathways and influencing factors. Int. J. Pharm., 2010, 390(2), 89-99.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.025] [PMID: 20188160]
[15]
Bee, J.S.; Goletz, T.J.; Ragheb, J.A. The future of protein particle characterization and understanding its potential to diminish the immunogenicity of biopharmaceuticals: a shared perspective. J. Pharm. Sci., 2012, 101(10), 3580-3585.
[http://dx.doi.org/10.1002/jps.23247] [PMID: 22736570]
[16]
Baeshen, M.N.; Al-Hejin, A.M.; Bora, R.S.; Ahmed, M.M.; Ramadan, H.A.; Saini, K.S.; Baeshen, N.A.; Redwan, E.M. Production of biopharmaceuticals in E. coli: Current scenario and future perspectives. J. Microbiol. Biotechnol., 2015, 25(7), 953-962.
[http://dx.doi.org/10.4014/jmb.1412.12079] [PMID: 25737124]
[17]
Hartmeier, W. Immobilized biocatalysts - From simple to complex systems. Trends Biotechnol., 1985, 3(6), 149-153.
[http://dx.doi.org/10.1016/0167-7799(85)90104-0]
[18]
Iyer, P.V.; Ananthanarayan, L. Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem., 2008, 43(10), 1019-1032.
[http://dx.doi.org/10.1016/j.procbio.2008.06.004]
[19]
Bolivar, J.M.; Wilson, L.; Ferrarotti, S.A.; Fernandez-Lafuente, R.; Guisan, J.M.; Mateo, C. Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme Microb. Technol., 2007, 40(4), 540-546.
[http://dx.doi.org/10.1016/j.enzmictec.2006.05.009]
[20]
Garcia-Galan, C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R.; Rodrigues, R.C. ChemInform abstract: Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal., 2012, 353(16), 2885-2904.
[http://dx.doi.org/10.1002/adsc.201100534]
[21]
Betancor, L.; Luckarift, H.R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol., 2008, 26(10), 566-572.
[http://dx.doi.org/10.1016/j.tibtech.2008.06.009] [PMID: 18757108]
[22]
Zhang, L.; Otte, A.; Xiang, M.; Liu, D.; Pinal, R. Investigation of film with β-galactosidase designed for stabilization and handling in dry configuration. Molecules, 2015, 20(9), 17180-17193.
[http://dx.doi.org/10.3390/molecules200917180] [PMID: 26393556]
[23]
Hoque, M.S.; Benjakul, S.; Prodpran, T. Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocoll., 2011, 25(1), 82-90.
[http://dx.doi.org/10.1016/j.foodhyd.2010.05.008]
[24]
Vieira, M.G.A.; Silva, M.A.D.; Santos, L.O.D.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J., 2011, 47(3), 254-263.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.12.011]
[25]
Audic, J.L.; Chaufer, B. Influence of plasticizers and crosslinking on the properties of biodegradable films made from sodium caseinate. Eur. Polym. J., 2005, 41(8), 1934-1942.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.02.023]
[26]
Vanin, F.M.; Sobral, P.J.A.; Menegalli, F.C.; Carvalho, R.A.; Habitante, A.M.Q.B. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll., 2005, 19(5), 899-907.
[http://dx.doi.org/10.1016/j.foodhyd.2004.12.003]
[27]
Cao, N.; Yang, X.M.; Fu, Y.H. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll., 2009, 23(3), 729-735.
[http://dx.doi.org/10.1016/j.foodhyd.2008.07.017]
[28]
Karim, A.A.; Rajeev, B. Gelatin alternatives for the food industry: Recent developments, challenges and prospects. Trends Food Sci. Technol., 2008, 19(12), 644-656.
[http://dx.doi.org/10.1016/j.tifs.2008.08.001]
[29]
Singh, G.; Verma, A.K.; Kumar, V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech, 2016, 6(1), 3.
[http://dx.doi.org/10.1007/s13205-015-0328-z] [PMID: 28330074]
[30]
Espinoza-Sánchez, E.A.; Torres-Castillo, J.A.; Rascón-Cruz, Q.; Zavala-García, F.; Sinagawa-García, S.R. Production and characterization of fungal β -glucosidase and bacterial cellulases by tobacco chloroplast transformation. Plant Biotechnol. Rep., 2016, 10(2), 61-73.
[http://dx.doi.org/10.1007/s11816-016-0386-7]
[31]
Mahapatra, S.; Vickram, A.S.; Sridharan, T.B.; Parameswari, R.; Pathy, M.R. Screening, production, optimization and characterization of β-glucosidase using microbes from shellfish waste. 3 Biotech, 2016, 6( 2), 213..
[http://dx.doi.org/10.1007/s13205-016-0530-7] [PMID: 28330285]
[32]
Yang, F.; Yang, X.; Li, Z.; Du, C.; Wang, J.; Li, S. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl. Microbiol. Biotechnol., 2015, 99(21), 8903-8915.
[http://dx.doi.org/10.1007/s00253-015-6619-9] [PMID: 25957152]
[33]
Upadhyaya, J.; Yoon, M.S.; Kim, M.J.; Ryu, N.S.; Song, Y.E.; Kim, Y.H.; Kim, M.K. Purification and characterization of a novel ginsenoside Rc-hydrolyzing β-glucosidase from Armillaria mellea mycelia. AMB Express, 2016, 6(1), 112.
[http://dx.doi.org/10.1186/s13568-016-0277-x] [PMID: 27837549]
[34]
Yan, F.Y.; Xia, W.; Zhang, X.X.; Chen, S.; Nie, X.Z.; Qian, L.C. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. J. Zhejiang Univ. Sci. B, 2016, 17(6), 455-464.
[http://dx.doi.org/10.1631/jzus.B1500317] [PMID: 27256679]
[35]
Goswami, S.; Gupta, N.; Datta, S. Using the β-glucosidase catalyzed reaction product glucose to improve the ionic liquid tolerance of β-glucosidases. Biotechnol. Biofuels, 2016, 9(1), 72.
[http://dx.doi.org/10.1186/s13068-016-0484-3] [PMID: 27006691]
[36]
Kumar, P.S.; Pulicherla, K.; Ghosh, M.; Kumar, A.; Rao, K.S. Structural prediction and comparative docking studies of psychrophilic β- Galactosidase with lactose, ONPG and PNPG against its counter parts of mesophilic and thermophilic enzymes. Bioinformation, 2011, 6(8), 311-314.
[http://dx.doi.org/10.6026/97320630006311] [PMID: 21769193]
[37]
Montanari, R. Cold chain tracking: A managerial perspective. Trends Food Sci. Technol., 2008, 19(8), 425-431.
[http://dx.doi.org/10.1016/j.tifs.2008.03.009]
[38]
Vesper, J.; Kartoglu, Ü.; Bishara, R.; Reeves, T. A case study in experiential learning: pharmaceutical cold chain management on wheels. J. Contin. Educ. Health Prof., 2010, 30(4), 229-236.
[http://dx.doi.org/10.1002/chp.20087] [PMID: 21171028]
[39]
Tan, Y.B.; Zhang, Q.Y. Food cold chain transportation management based on grid technology. Appl. Mech. Mater., 2014, 543-547, 4540-4542.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.543-547.4540]
[40]
Fotiou, F.; Aravind, S.; Wang, P.P.; Nerapusee, O. Impact of illegal trade on the quality of epoetin alfa in Thailand. Clin. Ther., 2009, 31(2), 336-346.
[http://dx.doi.org/10.1016/j.clinthera.2009.02.014] [PMID: 19302906]
[41]
Zhao, T.; Zhang, H.; Zhou, D.; Gao, Y.; Dong, Y.; Greiser, U.; Tai, H.; Wang, W. Water soluble hyperbranched polymers from controlled radical homopolymerization of PEG diacrylate. RSC Advances, 2015, 5(43), 33823-33830.
[http://dx.doi.org/10.1039/C5RA01253H]
[42]
Di Pierro, P.; Rossi Marquez, G.; Mariniello, L.; Sorrentino, A.; Villalonga, R.; Porta, R. Effect of transglutaminase on the mechanical and barrier properties of whey protein/pectin films prepared at complexation pH. J. Agric. Food Chem., 2013, 61(19), 4593-4598.
[http://dx.doi.org/10.1021/jf400119q] [PMID: 23642230]
[43]
Tang, C.H.; Jiang, Y.; Wen, Q.B.; Yang, X.Q. Effect of transglutaminase treatment on the properties of cast films of soy protein isolates. J. Biotechnol., 2005, 120(3), 296-307.
[http://dx.doi.org/10.1016/j.jbiotec.2005.06.020] [PMID: 16084619]
[44]
Su, J.F.; Huang, Z.; Zhao, Y.H.; Yuan, X.Y.; Wang, X.Y.; Li, M. Moisture sorption and water vapor permeability of soy protein isolate/poly(vinyl alcohol)/glycerol blend films. Ind. Crops Prod., 2010, 31(2), 266-276.
[http://dx.doi.org/10.1016/j.indcrop.2009.11.010]
[45]
Dou, Y.; Huang, X.; Zhang, B.; He, M.; Yin, G.; Cui, Y. Preparation and characterization of dialdehyde starch crosslinked feather keratin film for food packaging application. RSC Adv., 2015, 5(34), 27168-27174.
[http://dx.doi.org/10.1039/C4RA15469J]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 8
Year: 2020
Page: [741 - 747]
Pages: 7
DOI: 10.2174/1389201020666191202145351
Price: $65

Article Metrics

PDF: 11
HTML: 1